
The State of Package 
Management in C++



“

“We need a better package/build 
system”

Bjarne Stroustrup
CppCon 2017



What we want

◉ Bjarne pitched a simple workflow
○ > download gui_xyz
○ > install gui_xyz

◉ Done!
◉ Then you can just write(*)

○ import gui_xyz;

(*) When Modules are adopted



What do we have today?



I am Mathieu Ropert
I’m a C++ developer at Paradox Development Studio 
where I make Europa Universalis and Imperator.

You can reach me at:

mro@puchiko.net

@MatRopert

https://mropert.github.io

Hello!

5



About this talk

◉ Why package management?

◉ Today’s packager managers for C++

◉ Making your library packageable

◉ Looking at the future

6



The great challenge to come

Why package 
management?1

7



Getting stuff done

◉ ISO C++17 Standard Library currently offers:
○ File I/O
○ Filesystem operations
○ Console output
○ Command line arguments
○ System environment variables

◉ That’s it 😢



Getting stuff done

◉ Out of the box you can’t
○ Access HTTP resources

■ … or any network resource at all
○ Display any 2D or 3D GUI
○ Play sounds
○ Access a SQL (or NoSQL) database
○ Read a well defined format (ZIP, JPEG, JSON…)
○ Handle Unicode



Getting stuff done?

◉ Not every software is purely about 
computation and console UI

◉ Makes it hard to kickstart development

◉ Especially harmful to education



Getting stuff done

◉ Push it into the standard!
○ Networking TS
○ 2D graphics proposal
○ SG11: Databases
○ SG16: Unicode

◉ Use a 3rd party library



3rd party libraries?

◉ C++ doesn’t lack in quantity or quality
○ Boost
○ Catch2
○ CURL
○ FFMpeg
○ FreeImage
○ OpenSSL
○ SQLite



Here’s my new cool library!

◉ “It’s header-only”

◉ “It has no dependencies”



Why do we do this?

A. We don’t trust code made by others while 
implicitly asking them to trust ours

B. We are afraid that the hassle of package 
management will drive potential users away



Why do we do this?

A. We don’t trust code made by others while 
implicitly asking them to trust ours

B. We are afraid that the hassle of package 
management will drive potential users away



Why do we do this?

◉ Using external libraries has historically been 
painful in C++

◉ Dependencies of dependencies quickly turned 
into a nightmare

◉ How to redistribute them with the final 
product?



Package management

◉ Leverage on code made by others

◉ Regardless of the platform or environment

◉ At a low cost

◉ Don’t reinvent the wheel!



Package management

◉ Not a new topic
○ Unix distributions have been doing it for decades
○ A lot of languages offer a package manager

◉ But native cross-platform software has always 
been hard
○ ABI concerns
○ Different compilers and build systems



Package management

◉ C++ is more than 30 years old, and sometimes 
uses even older C software

◉ Can’t suddenly invent a standard and 
magically port all existing software to it

◉ Have to work with the existing ecosystem



Use cases

Open environment

◉ Open source 
development

◉ Education

◉ Unlimited number of 
build configurations

Close environment

◉ Private or corporate 
projects

◉ Binary distributions

◉ Manageable number of 
build configurations



Many options, few solutions

Today’s package 
managers for C++2

21



Installing packages 101

◉ Install dependencies

◉ Download sources

◉ (Patch)

◉ Configure / Build

◉ Copy to install directory



Installing packages 101

◉ Install dependencies

◉ Download binaries

◉ Copy to install directory



Using installed packages

◉ Depends on your build system

◉ Quite straightforward for CMake

◉ Others may or may not be supported

◉ Fallback to include/lib search path



A few good choices

◉ There’s a surprisingly large number of attempts 
at solving the problem

◉ Featuring different approaches

◉ Only a handful really stand out



A few good choices

◉ Constraint #1: support the 3 majors OS: Linux, 
OSX and Windows

◉ Even if not all users target the big 3, there will 
be a sensible share targeting each

◉ Eliminates: NuGet, Nix, apt-get, yum, ...



A few good choices

◉ Constraint #2: must work with the existing 
ecosystem

◉ Do not expect maintainers to switch to a new 
build system, work with the existing

◉ Eliminates: Bazel, build2, meson



A few good choices

◉ Constraint #3: respect encapsulation

◉ Don’t be intrusive and force package 
management intrinsics inside build files

◉ Eliminates: hunter



A few good choices

◉ Constraint #4: handle the diamond problem



Diamond problem?

my_prog

libA libB

libC



Diamond problem?

my_prog

libA libB

libC 1.0.0



Diamond problem?

my_prog

libA libB

libC 1.0.0 libC 1.2.4



Diamond problem?

my_prog

libA libB

libC 1.0.0 libC 2.1.4



A few good choices

◉ Constraint #4: handle the diamond problem



A few good choices

◉ Constraint #4: handle the diamond problem

◉ Incompatible versions of the same 
dependency in the tree are extremely painful



A few good choices

◉ Constraint #4: handle the diamond problem

◉ Incompatible versions of the same 
dependency in the tree are extremely painful

◉ Eliminates: hunter



A few good choices

◉ Constraint #5: be known

◉ I can’t put your package manager in this talk if I 
never heard about it

◉ Eliminates: ???



A few good choices

◉ Conan (JFrog)

◉ vcpkg (Microsoft)

◉ cget (Paul Fultz II)



A few good choices

◉ Conan (JFrog)

◉ vcpkg (Microsoft)

◉ cget (Paul Fultz II)



The barbarian packager

◉ Started in 2015

◉ Today owned by JFrog

◉ Written in Python

◉ Around 300 packages

◉ Supports ARM and x86 
on most platforms



The barbarian packager

conanfile.txt

[requires]

gtest/1.8.1@bincrafters/stable

[generators]

cmake_paths



The barbarian packager

$ conan install ../

$ cmake ../ -DCMAKE_TOOLCHAIN_FILE=conan_paths.cmake



The barbarian packager

CMakeLists.txt

find_package(GTest REQUIRED)

enable_testing()

add_executable(foo foo_test.cpp)

target_link_libraries(foo PRIVATE GTest::GTest GTest::Main)

add_test(AllTestsInFoo foo)



The barbarian packager

◉ Decentralized

◉ Select the remotes you want to use

◉ Offers a default repo of curated packages

◉ Companies can set up their own



The barbarian packager



The barbarian packager

◉ Uses binary caching by default

◉ Remotes can store artifacts with recipes

◉ Saves up compilation time immediately

◉ Better suited for closed environments



The barbarian packager

◉ Default integration method can be intrusive

◉ Curated package repo is growing slowly

◉ Allows multiple versions of the same library

◉ Multi target generator is still experimental



vcpkg

◉ Started in 2016

◉ Maintained by Microsoft

◉ Written in C++ and CMake

◉ Around 800 packages

◉ Supports ARM and x86 on 
Windows, Linux and OSX



vcpkg

$ vcpkg install googletest

$ cmake ../ -DCMAKE_TOOLCHAIN_FILE=/.../vcpkg.cmake



vcpkg

CMakeLists.txt

find_package(GTest REQUIRED)

enable_testing()

add_executable(foo foo_test.cpp)

target_link_libraries(foo PRIVATE GTest::GTest GTest::Main)

add_test(AllTestsInFoo foo)



vcpkg

◉ Centralized versioned repository 

◉ Fast growing list of OSS packages

◉ High quality curation

◉ Builds and handles Debug/Release by default



vcpkg

◉ No binary caching out of the box

◉ Linux support still a bit behind

◉ Workflow is quite different for users and 
maintainers



The ultimate showdown

◉ If you quickly want to try out a new 3rd party, 
vcpkg is your best option

◉ For education and personal projects, vcpkg is 
also recommended

◉ Conan really shines in corporate environments



Help us poor maintainers

Making your library 
packageable3

54



“

Keep It Simple Stupid



Tried and true solutions

◉ Don’t try to be creative!

◉ All package maintainers know CMake

◉ All clients will have it installed

◉ Anything else will require more work



The Big Three

◉ Expect your users to be on Windows, Linux 
and OSX

◉ Stick to what’s available on all three

◉ It’s fine to have Win32 and POSIX toggles

◉ MinGW and Cygwin are not Windows support



Assembly vs portability

◉ If you have to use Assembly

◉ Don’t (*)

◉ Remember Windows has MASM, Linux has 
GAS, OSX has no default.

◉ 3rd parties introduce build dependencies



Assembly vs portability

◉ Even with a portable syntax, ASM is still not 
portable

◉ Calling conventions and other ABI things vary 
between systems

◉ Simpler to have one source per target and use 
the system toolchain



Build Dependencies

◉ Code generators, extra assemblers, exotic 
build systems...

◉ Avoid them if possible

◉ Remember they need to be built for the host 
platform, not the target



Don’t hide dependencies

◉ Tell us which dependencies you require!

◉ Use find_package(XXX REQUIRED)

◉ Don’t try to install missing dependencies

◉ Don’t disable features and continue



About feature toggles

◉ Avoid them!

◉ Make additional libraries that can be packaged 
separately

◉ If you have a toggle, disable it by default and 
fail it can’t be built when enabled



About feature toggles

MyLib

OpenSSL SQLite

if (OpenSSL_FOUND) if (SQLite_FOUND)



About feature toggles

MyLib

MyLib-SSL MyLib-DB

OpenSSL SQLite



Preserving ABI

◉ Your library has to be ABI compatible with 
anything built with the same toolchain

◉ Change CFLAGS or CXXFLAGS only if you’re 
sure it doesn’t break ABI

◉ Checking and failing is safer than patching



Preserving ABI

Safe

◉ Warning flags (-W)

◉ Optimization flags (-O)

◉ Debug flags (-g)

◉ C++ Standard flags (-std)

Unsafe

◉ Architecture flags (-m)

◉ Runtime flags (-stdlib, 
/MT, /MD)

◉ Sanitizer flags (-asan)



Beware of ABI defines

◉ Some #defines can also break ABI

◉ _ITERATOR_DEBUG_LEVEL

◉ _GLIBCXX_USE_CXX11_ABI

◉ Don’t touch them!



Package me if you can!

◉ cmake -DCMAKE_TOOLCHAIN_FILE=...

◉ make

◉ make install



Are we there yet?

What’s next?4

69



Slow progress?

◉ C++ isn’t a new language

◉ Build is not part of the standard

◉ We have to harmonize 30 years of diverging 
practices



Convergence is easy!



A build standard

◉ We can’t rewrite the build of all existing 
libraries

◉ But we can package and expose them in a 
standard way

◉ New projects should be held to a higher 
standard



A build standard

◉ CMake isn’t the best build system ever but...

◉ Going solo today will only isolate your library 
from the rest of the ecosystem

◉ Declarative CMakeLists are easy to migrate 
once we agree on a better system



A build standard today

◉ Write a simple CMakeLists

◉ Run checks, fail if they aren’t met

◉ Rely on a toolchain file for build environment

◉ Describe requirements in README



Challenges for tomorrow

◉ More standard!

◉ Describing requirements

◉ Producing a package manifest upon install



Challenges for tomorrow

◉ Lower the cost of entry

◉ Generate toolchain files when installing 
development kit

◉ Or provide a wizard to setup one



Challenges for tomorrow

◉ Get support from the build system

◉ Offer a strict “packaging” mode

◉ Report incompatible patterns in build files



How can I help?

◉ Try out a package manager

◉ Make your library packageable

◉ Submit a recipe for Conan and vcpkg

◉ Tell your friends!



Package management today

◉ Package managers are already out there

◉ Write packageable libraries

◉ Document your requirements

◉ Use a toolchain file



Any questions ?
You can reach me at

mro@puchiko.net

@MatRopert

@mropert

https://mropert.github.io

Thanks!

80



Resources

◉ Don't package your libraries, write packagable 
libraries! (R. Schumacher, CppCon 2018)

◉ How To Make Package Managers Cry
(K. Hoste, FOSDEM 2018)

◉ Why Not Conan 1, 2 and 3
(D. Rodriguez-Losada, CppCon ‘16, 17 and ‘18)


