
Development strategies:
You’ve written a library - now what?

Marshall Clow

C++ Alliance

April 10, 2019

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 1 / 28



About me

I have been working on LLVM for nine years, and on libc++ for about seven, and I am the
“code owner” for libc++.

I am also the chairman of the Library Working Group of the C++ Standards Committee.

I work for the C++Alliance, a US-based non-profit organization.

Contact info:

1 Email: mclow.lists@gmail.com

2 Slack: marshall

3 IRC: mclow

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 2 / 28



Documentation

Does your library have any documentation? Even just a README?

In many cases, the documentation is how you make a first impression.
Good docs can draw people in.

Many people evaluate a library by looking at the documentation.

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 3 / 28



What kinds of documentation should you have?

1 Overview

2 Getting Started

3 Examples

4 Tutorials

5 Reference

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 4 / 28



What kinds of documentation should you have?

1 Overview

2 Getting Started

3 Examples

4 Tutorials

5 Reference

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 4 / 28



What kinds of documentation should you have?

1 Overview

2 Getting Started

3 Examples

4 Tutorials

5 Reference

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 4 / 28



What kinds of documentation should you have?

1 Overview

2 Getting Started

3 Examples

4 Tutorials

5 Reference

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 4 / 28



What kinds of documentation should you have?

1 Overview

2 Getting Started

3 Examples

4 Tutorials

5 Reference

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 4 / 28



Tests

Disclaimer: I really like tests.

A good set of tests can help you over and over again:

1 Make sure that you’ve fixed a bug

2 Catch regressions

3 Pinpoint problems with someone’s installation or configuration.

4 Porting to a new platform

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 5 / 28



A good test suite is:

1 Easy to run

2 Always green

3 Comprehensive

4 Run often - preferably on every change.

5 Easy to automate

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 6 / 28



Example: Boost

The boost documentation explains how to run the boost tests on your machine.

To run a library’s regression tests, run Boost’s b2 utility
from the <boost-root>/libs/<library>/test directory.

To run every library’s regression tests, run b2 from the <boost-root>/status directory.

Source: https://www.boost.org/development/running regression tests.html

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 7 / 28



Tools

There are an amazing number of tools available to developers today:

1 Compilers

2 Static Analyzers

3 Dynamic Analyzers

4 Code Coverage Tools

5 Fuzzers

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 8 / 28



Tools

There are an amazing number of tools available to developers today:

1 Compilers

2 Static Analyzers

3 Dynamic Analyzers

4 Code Coverage Tools

5 Fuzzers

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 8 / 28



Tools

There are an amazing number of tools available to developers today:

1 Compilers

2 Static Analyzers

3 Dynamic Analyzers

4 Code Coverage Tools

5 Fuzzers

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 8 / 28



Tools

There are an amazing number of tools available to developers today:

1 Compilers

2 Static Analyzers

3 Dynamic Analyzers

4 Code Coverage Tools

5 Fuzzers

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 8 / 28



Tools

There are an amazing number of tools available to developers today:

1 Compilers

2 Static Analyzers

3 Dynamic Analyzers

4 Code Coverage Tools

5 Fuzzers

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 8 / 28



Compiler warnings

Different compilers will warn on different things.
Sometimes they point out problems in your code:

int val = <some expression >;

if (val < INT_MIN) { ... }

or

if (a = b) { ... }

but sometimes the compiler is just wrong:

auto foo = std:: make_unique <unsigned char >(0);

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 9 / 28



Static Analyzers

The ”static” part of static analysis means that it does not happen while your program is
running. It happens inside of a separate program, which builds a model of your code and then
analyses that mode.

Every compiler has a (simple) static analyzer inside of it; that’s how they generate the
”tautological comparison” warnings.

There are several commercial static analysis tools. Coverity, Fortify and KlocWork seem to be
the most popular.

LLVM has a static analysis framework, and a tool (clang-tidy) that uses it.

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 10 / 28



Static analysis example from clang-tidy

void foo(int a, double b);

...

foo(1.0, 3);

This is perfectly legal code.

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 11 / 28



Dynamic Analyzers

Dynamic Analyzers perform their work while your program is running.

1 Assertions

2 ”Debug Mode”

3 Sanitizers

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 12 / 28



Dynamic Analyzers

Dynamic Analyzers perform their work while your program is running.

1 Assertions

2 ”Debug Mode”

3 Sanitizers

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 12 / 28



Dynamic Analyzers

Dynamic Analyzers perform their work while your program is running.

1 Assertions

2 ”Debug Mode”

3 Sanitizers

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 12 / 28



Fuzzers

Fuzzers create random-looking inputs to your program, and then see if your program
misbehaves and/or crashes.

1 libFuzzer from clang

2 American Fuzzy Lop

3 OSS-Fuzz aka ”Fuzzing as a service”

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 13 / 28



Dealing with Users

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 14 / 28



Dealing with users

What do users do?

1 Ask Questions / make Comments

2 File bug reports

3 Make feature Requests

4 Offer contributions

5 Port to new systems

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 15 / 28



So what do you do with all this?

Thank them!

If someone has gone to the trouble to learn your library enough to send you a comment, or file
a bug report, or make a contribution, you should be grateful.

1 Questions can hopefully be answered with a link to your documentation.

2 Bugs should be fixed (duh!) or explained why it’s not a bug.

3 Contributions can be evaluated and discussed with the submitter.

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 16 / 28



Bug Example: libc++

Bug report: multimap<T>::clear() missing an exception specifier.
It should be marked noexcept, but it is not.

What did I do?

1 Check: Do we have a test for this?

2 Write a test

3 Watch it fail

4 Add noexcept

5 Run the tests again

6 Watch them pass

7 Check in the new test and the fix

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 17 / 28



Design Example: Howard Hinnant’s Calendar library

The library has types named day, month, weekday, year, which are thin wrappers over a
numeric value, with a bit of logic.
Originally, these were not default constructible; since what is the value of a
default-constructed day?

But people wanted to do this:

day d;

somestream >> d;

and

std::vector <weekday > v(12); // 12 weekdays

and then read them in from a file.

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 18 / 28



Lesson from Howard’s Calendar library

Listen to your users!

They will use your library in ways that you did not anticipate.

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 19 / 28



Do you have explicit releases?

Do you expect your users to ”live at head”, or will they use a particular version of your library?

People who are using your library for important things want to change their infrastructure at
times of their choosing.

You should consider having milestones, which are intended to be stable for a while.

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 20 / 28



What goes into a release?

1 An announcement

2 Release notes

3 A method for obtaining the release

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 21 / 28



Release Notes

What kinds of things should go into release notes?

1 New features since the last release.

2 Problems fixed since the last release.

3 Changes that affect users.

4 News about the project - maybe future plans.

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 22 / 28



Managing Change

As your user base grows (as you gain understanding of the problem domain), you’ll see places
where your library can be improved; either on your own own or via suggestions from other
people.

Making these kinds of changes is a tricky process, because it involves change in both the
library code and in the code of the people who use it.

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 23 / 28



Managing Change (2)

It is important to consider both the costs and the benefits of a change.

The benefits are clear to you; they’re right there in the code.
The costs are less clear, because much of them are not borne by you.
Your users are the ones that will have to change.

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 24 / 28



Managing Change (3)

How can you mitigate the costs of breaking changes?

1 Make changes only when the benefit is compelling

2 Documentation

3 Provide both old and new interfaces for a period of time

4 Example conversions

5 Automated code conversion tool

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 25 / 28



Managing Change (3)

How can you mitigate the costs of breaking changes?

1 Make changes only when the benefit is compelling

2 Documentation

3 Provide both old and new interfaces for a period of time

4 Example conversions

5 Automated code conversion tool

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 25 / 28



Managing Change (3)

How can you mitigate the costs of breaking changes?

1 Make changes only when the benefit is compelling

2 Documentation

3 Provide both old and new interfaces for a period of time

4 Example conversions

5 Automated code conversion tool

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 25 / 28



Managing Change (3)

How can you mitigate the costs of breaking changes?

1 Make changes only when the benefit is compelling

2 Documentation

3 Provide both old and new interfaces for a period of time

4 Example conversions

5 Automated code conversion tool

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 25 / 28



Managing Change (3)

How can you mitigate the costs of breaking changes?

1 Make changes only when the benefit is compelling

2 Documentation

3 Provide both old and new interfaces for a period of time

4 Example conversions

5 Automated code conversion tool

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 25 / 28



Conclusions

1 Good documentation can help attract new users

2 Tests can help keep your code quality high

3 There are a lot of tools out help you improve your code

4 Listen to your users - treat them kindly

5 Take field experience into account

6 Tell them what you’ve done.

7 Think about how changes will affect your users

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 26 / 28



Conclusions

1 Good documentation can help attract new users

2 Tests can help keep your code quality high

3 There are a lot of tools out help you improve your code

4 Listen to your users - treat them kindly

5 Take field experience into account

6 Tell them what you’ve done.

7 Think about how changes will affect your users

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 26 / 28



Conclusions

1 Good documentation can help attract new users

2 Tests can help keep your code quality high

3 There are a lot of tools out help you improve your code

4 Listen to your users - treat them kindly

5 Take field experience into account

6 Tell them what you’ve done.

7 Think about how changes will affect your users

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 26 / 28



Conclusions

1 Good documentation can help attract new users

2 Tests can help keep your code quality high

3 There are a lot of tools out help you improve your code

4 Listen to your users - treat them kindly

5 Take field experience into account

6 Tell them what you’ve done.

7 Think about how changes will affect your users

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 26 / 28



Conclusions

1 Good documentation can help attract new users

2 Tests can help keep your code quality high

3 There are a lot of tools out help you improve your code

4 Listen to your users - treat them kindly

5 Take field experience into account

6 Tell them what you’ve done.

7 Think about how changes will affect your users

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 26 / 28



Conclusions

1 Good documentation can help attract new users

2 Tests can help keep your code quality high

3 There are a lot of tools out help you improve your code

4 Listen to your users - treat them kindly

5 Take field experience into account

6 Tell them what you’ve done.

7 Think about how changes will affect your users

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 26 / 28



Conclusions

1 Good documentation can help attract new users

2 Tests can help keep your code quality high

3 There are a lot of tools out help you improve your code

4 Listen to your users - treat them kindly

5 Take field experience into account

6 Tell them what you’ve done.

7 Think about how changes will affect your users

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 26 / 28



Thank you

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 27 / 28



Links

1 C++Alliance: https://www.cppalliance.org

2 Sanitizers in clang:
https://clang.llvm.org/docs/UsersManual.html#controlling-code-generation

3 Fuzzers in clang: https://llvm.org/docs/LibFuzzer.html

4 clang-tidy: http://clang.llvm.org/extra/clang-tidy/

5 Kostya’s Fuzzing talk: https://www.youtube.com/watch?v=k-Cv8Q3zWNQ

6 OSS-Fuzz: https://github.com/google/oss-fuzz

7 Blog post about changing API:
https://cplusplusmusings.wordpress.com/2016/02/01/sometimes-you-get-things-wrong/

Marshall Clow (C++ Alliance) Development strategies: You’ve written a library - now what? April 10, 2019 28 / 28


	Introduction
	Documentation
	Tests
	Dealing with Users
	Releases
	Managing Change
	Wrap Up

