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WTF Do You Mean?
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The difficulty of literature is not
to write, but to write what you
mean; not to affect your reader,

but to affect him precisely as you
wish.

Robert Louis Stevenson

“Truth of Intercourse”



Any program is a model of a
model within a theory of a model
of an abstraction of some portion
of the world or of some universe
of discourse.

Meir M Lehman

“Programs, Life Cycles, and Laws of Software Evolution”



The purpose of abstraction is not
to be vague, but to create a new
semantic level in which one can
be absolutely precise.

Edsger W Dijkstra

“The Humble Programmer”



It’s jJust semantics.



It’s just meaning.
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The only kind of
writing 1s rewriting.

Ernest Hemingway
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If a plot works out exactly
as you first planned, you’re
not working loosely enough
to give room to your
imagination and instincts.
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pantser, noun

= Writer who writes by the seat of their pants.
= In contrast to a plotter, a pantser doesn’t
work to (or have) an outline.









language



programming



natural



algorithm



algorithm, noun

= a process or set of rules to be followed in
calculations or other problem-solving
operations, especially by a computer

Concise Oxford English Dictionary



procedure



The main difference is that the
procedure can halt or need not

halt. But the algorithm always
halts and gives you the output.

https.//www.quora.com/What-is-the-difference-between-an-algorithm-and-a-procedure
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algorism



algorisme



algorismus
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<algorithm>




std: :sort



LOGIC

An introductory course
W, H. Newton-Smith




An Axiomatic Basis for
Computer Programming

C. A. R. HoAre
The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

KEY WORDS AND PHRASES:
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation

CR CATEGORY: 4.0, 4.21, 4.22, 5.20, 5.21, 5.23, 5.24

axiomatic method, theory of programming’

of axioms it is possible to deduce such simple theorems as:
z=2xz+y X0
y<ror+yXg=0—y)+yXQq+q)
The proof of the second of these is:
A5 (r—y)+tyX A+9
=(r—-—y)+ yGX1+yXq

A9 =@ —y)+ y+yXq)
A3 =(r—y)+y)+yXgqg
A6 =r+yXgq providedy < r

The axioms Al to A9 are, of course, true of the tradi-
tional infinite set of integers in mathematics. However,
they are also true of the finite sets of “integers’ which are
manipulated by computers provided that they are con-
fined to nonnegative numbers. Their truth is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of “over-
flow”’; for example:

(1) Striet interpretation: the result of an overflowing
operation does not exist; when overflow occurs, the offend-
ing program never completes its operation. Note that in
this case, the equalities of Al to A9 are strict, in the sense
that both sides exist or fail to exist together.






[f the assertion P is true before
initiation of a program (), then
the assertion R will be true on

its completion.






template<typename Iterator>
void sort(Iterator begin, Iterator end);
// post: is_sorted(begin, end)

@®



template<typename Iterator>
void sort(Iterator begin, Iterator end);
// post: is_sorted(begin, end) and
// the values from the resulting range are
// a permutation of the original values

@®
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If there are no preconditions
imposed, we write true {Q} R.



template<typename Iterator>
void sort(Iterator begin, Iterator end);
// pre: true
// post: is_sorted(begin, end) and
// the values from the resulting range are
// a permutation of the original values

@®



template<typename Iterator>
void sort(Iterator begin, Iterator end);
// pre: begin and end are valid iterators
// post: is_sorted(begin, end) and
// the values from the resulting range are
// a permutation of the original values

@®



template<typename Iterator>
void sort(Iterator begin, Iterator end);

/]
/]
/]
/]
/]

pre: begin and end are valid iterators
from the same range

post: 1s_sorted(begin, end) and
the values from the resulting range are
a permutation of the original values

@®



template<typename Iterator>
void sort(Iterator begin, Iterator end);

// pre: begin and end are valid iterators
// from the same range and begin does not
// follow end
// post: is_sorted(begin, end) and
// the values from the resulting range are
// a permutation of the original values

@®



template<typename Iterator>
void sort(Iterator begin, Iterator end);
// pre: end is reachable from begin
// post: is_sorted(begin, end) and
// the values from the resulting range are
// a permutation of the original values

@®



template<typename Iterator>
void sort(Iterator begin, Iterator end);
// pre: end 1s reachable from begin
// post: i1s_sorted(begin, end) and
// the values from the resulting range are
// a permutation of the original values

@®



template<typename Iterator>
void sort(Iterator begin, Iterator end)

[[ post: is_sorted(begin, end) 1]1;

@®



std: :sort



std: :gsort



std::vector<int> values {3, 1, 4, 1, 5, 9};
const std::vector<int> sorted {1, 1, 3, 4, 5, 9};

std::sort(values.begin(), values.end());
assert(values == sorted);

@®



algorithm?



O(n log n)






std::vector<int> values {3, 1, 4, 1, 5, 9};
const std::vector<int> sorted {1, 1, 3, 4, 5, 9};

permutation_sort(values.begin(), values.end());
assert(values == sorted);

@®



std::vector<int> values {3, 1, 4, 1, 5, 9};
const std::vector<int> sorted {1, 1, 3, 4, 5, 9};

template<typename Iterator>
void permutation_sort(Iterator begin, Iterator end)

{

while (std::next_permutation(begin, end))

b

}
permutation_sort(values.begin(), values.end());
assert(values == sorted);

@®






std::vector<int> values {3, 1, 4, 1, 5, 9};
const std::vector<int> sorted {1, 1, 3, 4, 5, 9};

template<typename Iterator>
void bogosort(Iterator begin, Iterator end)
{
while (!std::is_sorted(begin, end))
std: :random_shuffle(begin, end);

¥
bogosort(values.begin(), values.end());
assert(values == sorted);

@®



OMG!



$ cat > sleepsort

while [ -n "$1" ]

do
(sleep $1; echo $1) &
shift

done

wait

$ chmod +x sleepsort

$ ./sleepsort 314159

1
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OUR FIELD HAS BEEN
STRUGGLING WITH THIS
PROBLEM FOR YEARS.

7

STRUGGLE NO MORE!
T'™M HERE TO S0LVE
IT WJITH ALGORITHIMS!

SIX MONTHS LATER:

WOW, THIS PROBLEM
15 REHLLY HARD,

WMS‘JV

i




"We TOLD you it was hard.”
"Yeah, but now that I'VE tried,
we KNOW it's hard."
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Read the
Humanities

Keith Braithwaite



Ludwig Wittgenstein makes a very
good case [...] That any language
we use to speak To one another is
not—cannot be—a serialization
formart for getting a thought or idea
or picture out of one person’'s head
and info another’s.

Keith Braithwaite



Wittgenstein also shows that our
apility to understand one another at
all does not arise from sharead
definifions, It arises from a shared
experience, from a form of life.

Keith Braithwaite



This may e one reason why
programmers who are steeped In
their problem domain tend to do

befter than those who stand apart
from it.

Keith Braithwaite
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Your Customers
Do Not Meadn
What They Say

Nate Jackson




I've never mel a customer yet thaf
wasn't all foo happy 1o tell me what
they wanted—usually in great detail.

The problem is that customers don't
always tell you the whole fruth.

Nate Jackson



They generally. don't lie.
They use their terms and their contexts.

They leave out significant details.

They make assumptions.

Nate Jackson



This Is compounded by the fact that
many customers don't actually know
what they want in the first place!

Nate Jackson



This iIs compounded by the fact that
many humans don’t actually know
what they want in the first place!



You have to finish things — that's
what you learn from, you learn by
finishing things.

Neil Gaiman



SOFTWARE ENGINEERING

Report on a conference sponsored by the

NATO SCIENCE COMMITTEE
Garmisch, Germany, 7th to 11th October 1968



The design process
1S an 1terative one.

Andy Kinslow
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We may therefore picture the
process of form-making as the
action of a series of subsystems, all
interlinked, yet sufficiently free of
one another to adjust independently
in a feasible amount of time.



It works, because the cycles of
correction and recorrection, which
occur during adaptation, are
restricted to one subsystem at a time.



Circiea be€low, wnicn can, In principli€, ope€rate€ Ialrly I1nde-
pendently.?2

We may therefore picture the process of form-making as
the action of a series of subsystems. all interlinked. vet suf-



Kevlin Henney
| @KevlinHenney

First Roman Programmer: Months VII, VIII, X and X don't
have names. What shall we call them?

Second Roman Programmer: Just number them.

RPI: Isn't it bad practice to hardcode numbers?

RPII: It's fine. They'll never change.

RPI: September, October, November, December it is, then!
7:17 PM - Nov 8, 2017

O 115 Q 87 people are talking about this



WILEY SERIES IN
SOFTWARE DESIGN PATTERNS

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

On Patterns and Pattern Languages

Frank Buschmann

Kevlin Henney
Douglas C. Schmidt




In its earliest form, semiotics
(nee semiology) defines a sign
as a two-part whole, a dyad,
comprising a signifier and a
signified.



The signifier is the expression of
a sign, its material aspect. The
signified is the corresponding
mental concept engendered by
the signifier.
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This sentence
no verb.
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Agile Software
Development
with Scrum
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prioritise by
estimated
business value



“Yes, the planet got destroyed, but for a beautiful moment in
time we created a lot of value for shareholders.”

httpy/tomtoro.com/cartoons/



S-Programs
P-Programs
E-Programs

Meir M Lehman

“Programs, Life Cycles, and Laws of Software Evolution”



S-Programs

Programs whose function is formally
defined by and derivable from a
specification.

Meir M Lehman

“Programs, Life Cycles, and Laws of Software Evolution”



P-Programs

Despite the fact that the problem to be
solved can be precisely defined, the
acceptability of a solution is
determined by the environment in

which it is embedded.

Meir M Lehman

"Programs, Life Cycles, and Laws of Software Evolution"



E-Programs

Programs that mechanize a human or
societal activity.

The program has become a part of the
world it models, it is embedded in it.

Meir M Lehman

"Programs, Life Cycles, and Laws of Software Evolution"
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Sterling flash crash
£/$, 6-7 October

—
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v N &

Source: Bloomberg EE

The pound has dived on Asian markets with automated trading being blamed
for the volatility.






Always design a thing by
considering it in its next
larger contexi.

Eliel Saarinen



Development needs to go further
than the technical stack; the full
stack includes the world and
people around the software.

Kevlin Henney

https://jaxlondon.com/blog/java-core-languages/the-error-of-our-ways-kevlin-henney/



Software
Requirements
& Specifications

a lexicon of practice, principles and prejudices




Too often we push the
problem into the
background because
we are in a hurry to
proceed to a solution.



It’s jJust semantics.



It’s just meaning.






