What Do You Mean?
@KevlinHenney

WTF Do You Mean?
@KevlinHenney

The difficulty of literature is not
to write, but to write what you
mean; not to affect your reader,

but to affect him precisely as you
wish.

Robert Louis Stevenson

“Truth of Intercourse”

Any program is a model of a
model within a theory of a model
of an abstraction of some portion
of the world or of some universe
of discourse.

Meir M Lehman

“Programs, Life Cycles, and Laws of Software Evolution”

The purpose of abstraction is not
to be vague, but to create a new
semantic level in which one can
be absolutely precise.

Edsger W Dijkstra

“The Humble Programmer”

It’s jJust semantics.

It’s just meaning.

software

system ot
meaning

code
1es1s
scripts

codified
knowledge

knowledge
acquisition

learning

communication

social
negotiation

model of
varticipation

software
architecture

design

synthesis

analysis

systole

diastole

The only kind of
writing 1s rewriting.

Ernest Hemingway

styie,

I screen

structure,

ples o

Substance,

writing

princ

and the

If a plot works out exactly
as you first planned, you’re
not working loosely enough
to give room to your
imagination and instincts.

W \\‘*"“-"ré . D REFERENCE

N\ e . 'useoxmmmcnoumvor

(g : A ‘
4 INou oR n g IS
. wo >
‘ : L The \\ill‘('>\»£
- .
L Book .

| T.FHOAD gy

T Eorrmd
An /chf VMta

creator of the A\ j

with " A ;l’dnr
\

ORD , mﬂg
| of 175

REFERENCE DICTIONARY

MATHEMATICS

pantser, noun

= Writer who writes by the seat of their pants.
= In contrast to a plotter, a pantser doesn’t
work to (or have) an outline.

language

programming

natural

algorithm

algorithm, noun

= a process or set of rules to be followed in
calculations or other problem-solving
operations, especially by a computer

Concise Oxford English Dictionary

procedure

The main difference is that the
procedure can halt or need not

halt. But the algorithm always
halts and gives you the output.

https.//www.quora.com/What-is-the-difference-between-an-algorithm-and-a-procedure

algorithm

algorism

algorisme

algorismus

)31 sl

algorithm

<algorithm>

std: :sort

LOGIC

An introductory course
W, H. Newton-Smith

An Axiomatic Basis for
Computer Programming

C. A. R. HoAre
The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

KEY WORDS AND PHRASES:
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation

CR CATEGORY: 4.0, 4.21, 4.22, 5.20, 5.21, 5.23, 5.24

axiomatic method, theory of programming’

of axioms it is possible to deduce such simple theorems as:
z=2xz+y X0
y<ror+yXg=0—y)+yXQq+q)
The proof of the second of these is:
A5 (r—y)+tyX A+9
=(r—-—y)+ yGX1+yXq

A9 =@ —y)+ y+yXq)
A3 =(r—y)+y)+yXgqg
A6 =r+yXgq providedy < r

The axioms Al to A9 are, of course, true of the tradi-
tional infinite set of integers in mathematics. However,
they are also true of the finite sets of “integers’ which are
manipulated by computers provided that they are con-
fined to nonnegative numbers. Their truth is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of “over-
flow”’; for example:

(1) Striet interpretation: the result of an overflowing
operation does not exist; when overflow occurs, the offend-
ing program never completes its operation. Note that in
this case, the equalities of Al to A9 are strict, in the sense
that both sides exist or fail to exist together.

[f the assertion P is true before
initiation of a program (), then
the assertion R will be true on

its completion.

template<typename Iterator>
void sort(Iterator begin, Iterator end);
// post: is_sorted(begin, end)

@®

template<typename Iterator>
void sort(Iterator begin, Iterator end);
// post: is_sorted(begin, end) and
// the values from the resulting range are
// a permutation of the original values

@®

An Axiomatic Basis for
Computer Programming

C. A. R. HoAre
The Queen’s University of Belfast,* Northern Ireland

In this paper an attempt is made to explore the logical founda-
tions of computer programming by use of techniques which
were first applied in the study of geometry and have later
been extended to other branches of mathematics. This in-
volves the elucidation of sets of axioms and rules of inference
which can be used in proofs of the properties of computer
programs. Examples are given of such axioms and rules, and
a formal proof of a simple theorem is displayed. Finally, it is
argued that important advantages, both theoretical and prac-
tical, may follow from a pursuance of these topics.

KEY WORDS AND PHRASES:
proofs of programs, formal language definition, programming language
design, machine-independent programming, program documentation

CR CATEGORY: 4.0, 4.21, 4.22, 5.20, 5.21, 5.23, 5.24

axiomatic method, theory of programming’

of axioms it is possible to deduce such simple theorems as:
z=2xz+y X0
y<ror+yXg=0—y)+yXQq+q)
The proof of the second of these is:
A5 (r—y)+tyX A+9
=(r—-—y)+ yGX1+yXq

A9 =@ —y)+ y+yXq)
A3 =(r—y)+y)+yXgqg
A6 =r+yXgq providedy < r

The axioms Al to A9 are, of course, true of the tradi-
tional infinite set of integers in mathematics. However,
they are also true of the finite sets of “integers’ which are
manipulated by computers provided that they are con-
fined to nonnegative numbers. Their truth is independent
of the size of the set; furthermore, it is largely independent
of the choice of technique applied in the event of “over-
flow”’; for example:

(1) Striet interpretation: the result of an overflowing
operation does not exist; when overflow occurs, the offend-
ing program never completes its operation. Note that in
this case, the equalities of Al to A9 are strict, in the sense
that both sides exist or fail to exist together.

If there are no preconditions
imposed, we write true {Q} R.

template<typename Iterator>
void sort(Iterator begin, Iterator end);
// pre: true
// post: is_sorted(begin, end) and
// the values from the resulting range are
// a permutation of the original values

@®

template<typename Iterator>
void sort(Iterator begin, Iterator end);
// pre: begin and end are valid iterators
// post: is_sorted(begin, end) and
// the values from the resulting range are
// a permutation of the original values

@®

template<typename Iterator>
void sort(Iterator begin, Iterator end);

/]
/]
/]
/]
/]

pre: begin and end are valid iterators
from the same range

post: 1s_sorted(begin, end) and
the values from the resulting range are
a permutation of the original values

@®

template<typename Iterator>
void sort(Iterator begin, Iterator end);

// pre: begin and end are valid iterators
// from the same range and begin does not
// follow end
// post: is_sorted(begin, end) and
// the values from the resulting range are
// a permutation of the original values

@®

template<typename Iterator>
void sort(Iterator begin, Iterator end);
// pre: end is reachable from begin
// post: is_sorted(begin, end) and
// the values from the resulting range are
// a permutation of the original values

@®

template<typename Iterator>
void sort(Iterator begin, Iterator end);
// pre: end 1s reachable from begin
// post: i1s_sorted(begin, end) and
// the values from the resulting range are
// a permutation of the original values

@®

template<typename Iterator>
void sort(Iterator begin, Iterator end)

[[post: is_sorted(begin, end) 1]1;

@®

std: :sort

std: :gsort

std::vector<int> values {3, 1, 4, 1, 5, 9};
const std::vector<int> sorted {1, 1, 3, 4, 5, 9};

std::sort(values.begin(), values.end());
assert(values == sorted);

@®

algorithm?

O(n log n)

std::vector<int> values {3, 1, 4, 1, 5, 9};
const std::vector<int> sorted {1, 1, 3, 4, 5, 9};

permutation_sort(values.begin(), values.end());
assert(values == sorted);

@®

std::vector<int> values {3, 1, 4, 1, 5, 9};
const std::vector<int> sorted {1, 1, 3, 4, 5, 9};

template<typename Iterator>
void permutation_sort(Iterator begin, Iterator end)

{

while (std::next_permutation(begin, end))

b

}
permutation_sort(values.begin(), values.end());
assert(values == sorted);

@®

std::vector<int> values {3, 1, 4, 1, 5, 9};
const std::vector<int> sorted {1, 1, 3, 4, 5, 9};

template<typename Iterator>
void bogosort(Iterator begin, Iterator end)
{
while (!std::is_sorted(begin, end))
std: :random_shuffle(begin, end);

¥
bogosort(values.begin(), values.end());
assert(values == sorted);

@®

OMG!

$ cat > sleepsort

while [-n "$1"]

do
(sleep $1; echo $1) &
shift

done

wait

$ chmod +x sleepsort

$./sleepsort 314159

1

(Vo6) I R VO I

@®

OUR FIELD HAS BEEN
STRUGGLING WITH THIS
PROBLEM FOR YEARS.

7

STRUGGLE NO MORE!
T'™M HERE TO S0LVE
IT WJITH ALGORITHIMS!

SIX MONTHS LATER:

WOW, THIS PROBLEM
15 REHLLY HARD,

WMS‘JV

i

"We TOLD you it was hard.”
"Yeah, but now that I'VE tried,
we KNOW it's hard."

Edited by Kevlin Henney

&
(=]
©
0
=
(<)
=
e
O
2
©
O

from the Experts

O’REILLY*

Read the
Humanities

Keith Braithwaite

Ludwig Wittgenstein makes a very
good case [...] That any language
we use to speak To one another is
not—cannot be—a serialization
formart for getting a thought or idea
or picture out of one person’'s head
and info another’s.

Keith Braithwaite

Wittgenstein also shows that our
apility to understand one another at
all does not arise from sharead
definifions, It arises from a shared
experience, from a form of life.

Keith Braithwaite

This may e one reason why
programmers who are steeped In
their problem domain tend to do

befter than those who stand apart
from it.

Keith Braithwaite

e

P - Y
B S T I

- - .
B W e o % -
S

A w
o SN TR

» A3

-‘,‘.‘gqql- s

mEMNEE
@Al
wBaQl

CL VR B

EdERDEG
PEELEE
GE®™®
DeagTm s
GeaaMie .
CEaEDEs
e O

Edited by Kevlin Henney

Collective Wisdom
from the Experts

1§

O’REILLY*

Your Customers
Do Not Meadn
What They Say

Nate Jackson

I've never mel a customer yet thaf
wasn't all foo happy 1o tell me what
they wanted—usually in great detail.

The problem is that customers don't
always tell you the whole fruth.

Nate Jackson

They generally. don't lie.
They use their terms and their contexts.

They leave out significant details.

They make assumptions.

Nate Jackson

This Is compounded by the fact that
many customers don't actually know
what they want in the first place!

Nate Jackson

This iIs compounded by the fact that
many humans don’t actually know
what they want in the first place!

You have to finish things — that's
what you learn from, you learn by
finishing things.

Neil Gaiman

SOFTWARE ENGINEERING

Report on a conference sponsored by the

NATO SCIENCE COMMITTEE
Garmisch, Germany, 7th to 11th October 1968

The design process
1S an 1terative one.

Andy Kinslow

OTES ON TH
YNTHESI

F FOR

We may therefore picture the
process of form-making as the
action of a series of subsystems, all
interlinked, yet sufficiently free of
one another to adjust independently
in a feasible amount of time.

It works, because the cycles of
correction and recorrection, which
occur during adaptation, are
restricted to one subsystem at a time.

Circiea be€low, wnicn can, In principli€, ope€rate€ Ialrly I1nde-
pendently.?2

We may therefore picture the process of form-making as
the action of a series of subsystems. all interlinked. vet suf-

Kevlin Henney
| @KevlinHenney

First Roman Programmer: Months VII, VIII, X and X don't
have names. What shall we call them?

Second Roman Programmer: Just number them.

RPI: Isn't it bad practice to hardcode numbers?

RPII: It's fine. They'll never change.

RPI: September, October, November, December it is, then!
7:17 PM - Nov 8, 2017

O 115 Q 87 people are talking about this

WILEY SERIES IN
SOFTWARE DESIGN PATTERNS

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

On Patterns and Pattern Languages

Frank Buschmann

Kevlin Henney
Douglas C. Schmidt

In its earliest form, semiotics
(nee semiology) defines a sign
as a two-part whole, a dyad,
comprising a signifier and a
signified.

The signifier is the expression of
a sign, its material aspect. The
signified is the corresponding
mental concept engendered by
the signifier.

dinner

half two

14:30

| 3:30

half twee

halv to

halv tva

halb zwel

02:30

01:30

velocity

V=V, +V,

V=V

Q‘Q
~ |)

~—+ | n

This sentence
no verb.

™

. ’

e
A‘\

green

green

Agile Software
Development
with Scrum

red

yellow
green

blue

red

blue
yellow
green

blue

Color Test

value

business value

prioritise by
business value

prioritise by
estimated
business value

“Yes, the planet got destroyed, but for a beautiful moment in
time we created a lot of value for shareholders.”

httpy/tomtoro.com/cartoons/

S-Programs
P-Programs
E-Programs

Meir M Lehman

“Programs, Life Cycles, and Laws of Software Evolution”

S-Programs

Programs whose function is formally
defined by and derivable from a
specification.

Meir M Lehman

“Programs, Life Cycles, and Laws of Software Evolution”

P-Programs

Despite the fact that the problem to be
solved can be precisely defined, the
acceptability of a solution is
determined by the environment in

which it is embedded.

Meir M Lehman

"Programs, Life Cycles, and Laws of Software Evolution"

E-Programs

Programs that mechanize a human or
societal activity.

The program has become a part of the
world it models, it is embedded in it.

Meir M Lehman

"Programs, Life Cycles, and Laws of Software Evolution"

The Making of a Fly: The Genetics of Animal Design (Paperback)
by Peter A, Lawrence

< Baturn te product infermatien

Always pay T.HI'EIUQ]"I AMAZON.COM'S Ehﬂﬂlﬂlﬁﬂ Cart or 1=-Click.
Learn more about Safe Onling Shopping and owr gafe buying guarantee.

[AN | Mew 2iomsmomssy | Used (i5fem gissey |
Show (D New () Prime oifers only (0}

Price at a Glance
List §70.00
Price:)
Used: from $35.54
New: from
%1,730,045.91

Have g 1 5607 | Sell yours here |

Sorted by | Price + shipping |

Mew 1-2 of 2 offers
Price + Shipping Condition Seller Information

Buying Options
$1,730,040.91 mew seer: profnath o Assman
* 5199 shipping Seller Rating: Prirfinl’ 3% positive cver the past 12 mentha, or

(8,193 total ratings)

Im Stock. Ships from B, Undted States.
Dt ghipping rates and reburs solicy.
Brand new, Perfect condition, Satisfaction Guaranteed.

$2,198,177.95 New Sever: bordeebook

* 5399 shipping
{125,801 totnl ratings)

Im Stock, Ships from Unibed States.
i and

Mew ibem n excellent condition, Not used. May be a publisher
owerstock or have slight shelf wear. Satsfaction guaranteed!

Seler Rating: WErfrin” 93% positive cver the past 12 months.

Sign in to tum on 1-Click
andering

-

ar
Sign im i e on D-Click
oIEerng.

8-Apr
S-Apr
10-Apr
11-Apr
12-Apr
13-Apr

profnath
51,730,045.91
52,194,443.04
52,783,493.00
53,530,663.65
54,478,395.76
55,680,526.66

bordeebook
52,198,177.95
52,788,233.00
53,536,675.57
54,486,021.69
55,600,199.43
57,217,612 38

profnath
over
previous
bordeebook

0.99830
0.59830
0.99830
0.59830
0.99830

bordeebook
over
profnath
1.270549
1.27059
1.270549
1.27059
1.27058
1.27059

The Making of a Fly: The Genetics of Animal Design {Paperback) Prica st s Glanca

by Peter A Lawrenee Ligk
Prica;
“ Bgturn bo product infermation Wpad: from S42.56
" Mesrl from
Alwiyl pay Bhreugh Amaran.coen's Shopping Cart & 1:Click.
Lessm more about Safe Onling Shopping snd our gafe buying QUSrsses, R, ..o L

i e () baw $1BES1 T 1EEE) Uit 13 dam $43 58] -

Blutw & Newi O i oifars onity (0] Sorted by (P + s 1)
Mew 5-2 of 2 oMers
|Price = Shigging Condition Seller Lnfarmation Buyirg Dptions
$18,651,718.08 New fater: profnath i
= B i -r
L] Sarller BpEreg B3 BOpR v cwer Bha el 12 mantba (B 27H Lobel rebingn] s o B
T B g Fam A, Uil Goates ardering.
Do shgora rfc e o
Bl o, T DR i, BT i o]
$23,608,655.93 New tote . BoTdusbook L sMmEn |
= ELE L inininirit
ERrg Sellor st S0 P v oo £ha pant 12 montta (127,302 iotsl ratinga) b“m-l-'r"m .
wrdasing.

17 Bach. B s LAla B
Domevic shicore rfiey and o

Hibw B i sl) i, Wl i, Fliry Dok & Sl im0 00k ' Pl WRIV1 0l il
Satndact ion guirirbiond!

http://www.michaeleisen.org/blog/?p=358

Sterling flash crash
£/$, 6-7 October

—
1.27
1.26
1.24
1.22

1.2

1.18
1.17

v N &

Source: Bloomberg EE

The pound has dived on Asian markets with automated trading being blamed
for the volatility.

Always design a thing by
considering it in its next
larger contexi.

Eliel Saarinen

Development needs to go further
than the technical stack; the full
stack includes the world and
people around the software.

Kevlin Henney

https://jaxlondon.com/blog/java-core-languages/the-error-of-our-ways-kevlin-henney/

Software
Requirements
& Specifications

a lexicon of practice, principles and prejudices

Too often we push the
problem into the
background because
we are in a hurry to
proceed to a solution.

It’s jJust semantics.

It’s just meaning.

