
WHAT DO WE MEAN
WHEN WE SAY

NOTHING AT ALL?

Kate Gregory

kate@gregcons.com

@gregcons

Who Do We Write For?

■ The compiler?

– A little

– But compilers don’t care whether things are called Foo or

UpdateOrders

■ Ourselves right now?

– Sure

■ Ourselves later?

– Definitely

■ Others later?

– Whether we like it or not

April 2019, ACCU 2019
Kate Gregory @gregcons

2

Writing Code is a Form of
Communication

■ We’re primarily communicating with the future

■ With ourselves, and with some strangers

■ We’re leaving what trail markers we can for those who follow us

■ It’s not enough for the code to compile

■ It’s not enough for the code to run without error

■ It has to be understood, by humans

April 2019, ACCU 2019
Kate Gregory @gregcons

3

Reading Code

■ What the heck does this do?

■ Why is it doing that?

■ Are we sure this actually works?

■ What no-talent sad beginner wrote this?

– Oh, right, me

■ I bet that silly goose never considered …

April 2019, ACCU 2019
Kate Gregory @gregcons

4

Well Written Code

■ Has considered those questions and pre-answers them

■ Expressive

■ Transparent

■ Communicative

/*

orders.cpp

Purpose: Calculates the total of all orders
Author: Jo Programmer

Last Modified: 4/10/06

*/

April 2019, ACCU 2019
Kate Gregory @gregcons

5

Roger Orr’s Favourite Code Snippet

April 2019, ACCU 2019
Kate Gregory @gregcons

6

Introducing

April 2019, ACCU 2019
Kate Gregory @gregcons

7

Saying Nothing Sometimes Means
Nothing
class Holder

{

private:

int number;

public:

Holder(int i);

Holder();

void inc() { number++; }

int getNumber() { return number; }

std::string to_string();

};

April 2019, ACCU 2019
Kate Gregory @gregcons

8

Saying Nothing Sometimes Speaks
Volumes
class Holder

{

private:

int number;

public:

explicit Holder(int i);

Holder();

void inc() { number++; }

int getNumber() const { return number; }

virtual std::string to_string() const;

};

April 2019, ACCU 2019
Kate Gregory @gregcons

9

Some things in C++ are paired with
their opposites
■ Operators

– + -

– * /

– * &

■ Brackets

– ()

– {}

– []

– <>

■ Keywords

– if else

– noexcept noexcept(false)

April 2019, ACCU 2019
Kate Gregory @gregcons

10

Most things don’t really have opposites

■ break

■ continue

■ return

■ UpdateBalance(x)

■ while, for, switch

April 2019, ACCU 2019
Kate Gregory @gregcons

11

Let’s talk about these…

■ virtual, override

■ explicit

■ const

– mutable? Not always

■ mutable

– On a lambda

■ public, private

– In a struct vs in a class

■ Ref-qualifiers on a function or on function parameters

■ New C++ 17 attributes

April 2019, ACCU 2019
Kate Gregory @gregcons

12

Fallthrough

switch (i)

{

case 1:

case 2:

msg += "case 1 or case 2. ";

break;

case 3:

msg += "case 3 or ";

case 4:

msg += "case 4.";

default:

break;

}
April 2019, ACCU 2019

Kate Gregory @gregcons
13

Fallthrough

switch (i)

{

case 1:

case 2:

msg += "case 1 or case 2. ";

break;

case 3:

msg += "case 3 or ";

//fallthrough

case 4:

msg += "case 4.";

default:

break;

}
April 2019, ACCU 2019

Kate Gregory @gregcons
14

Fallthrough

switch (i)

{

case 1:

case 2:

msg += "case 1 or case 2. ";

break;

case 3:

msg += "case 3 or ";

[[fallthrough]];

case 4:

msg += "case 4.";

default:

break;

}
April 2019, ACCU 2019

Kate Gregory @gregcons
15

Maybe Unused

int j = FunctionWithSideEffects();

assert(j > 0);

[[maybe_unused]] int j = FunctionWithSideEffects();

assert(j > 0);

April 2019, ACCU 2019
Kate Gregory @gregcons

16

No Discard

int getNumber() { return 42; }

auto num = getNumber();

getNumber();

[[nodiscard]] int getNumber() { return 42; }

auto num = getNumber();

getNumber();

discarding return value of function with
'nodiscard' attribute

April 2019, ACCU 2019
Kate Gregory @gregcons

17

How Can You Be Clearer About Intent?

■ Avoid defaults

– In a class or struct, always include public: and private:

■ Yes, even in a two-element struct like Point

– Add a return at the end of your void function

■ Use those optional things

– Mark overrides of virtual functions with override

– Use noexcept(false) if you’ve thought about it

■ Sure, they’re not needed, but using them carries meaning

– Saves others guessing about whether you considered it

April 2019, ACCU 2019
Kate Gregory @gregcons

18

How Can You Be Clearer About Intent?

■ There is a limit to how verbose you can be

■ We do not have these keywords

– implicit

– const(false)

– nonvirtual

– ByVal

■ What should you do?

// I know what I’m doing, don’t change this

// note: passing by value

April 2019, ACCU 2019
Kate Gregory @gregcons

19

Context

■ Absence of a keyword means one of two things

– I’ve thought about it and I don’t need keyword here

– I have never heard of keyword, or at least haven’t considered

whether or not to use it here

■ If you use it routinely and consistently throughout the codebase,

readers can (possibly? With some certainty?) rule out that second

option

■ Comments?

– Only for cases that deceive

// I know this looks like it might be an override
// of ship() but it’s actually a different signature

April 2019, ACCU 2019
Kate Gregory @gregcons

20

Optional Return Statements

void Thimbule(int robbit)

{

robbit ++;

if (robbit)

return;

robbit --;

}

void Sprial(int oob, int boo)

{

oob ++;

while (true)

{

if (++oob > boo)

return;

}

}

April 2019, ACCU 2019
Kate Gregory @gregcons

21

return;
}

Ranged For
for (auto emp : department)

{

// ...

}

for (auto& emp : department)

{

// ...

}

for (auto const & emp : department)

{

// ...

}

April 2019, ACCU 2019
Kate Gregory @gregcons

22

Parameter Passing

■ Order createOrder(Customer c, OrderItem oi);

– Are you sure?

■ Order createOrder(Customer& c, OrderItem oi);

– Pass the order item by value, then move? Copy?

■ Order createOrder(Customer const & c,
OrderItem oi);

– Oh, Customer objects don’t know their orders?

April 2019, ACCU 2019
Kate Gregory @gregcons

23

Omitting Parameter Names

■ You can in the declaration

– Compiler etc don’t care

– Humans care, so don’t

■ You also can in the definition

– If it’s an unused parameter

– (virtual function, api drift, whatever)

– Suppresses compiler warning

– Big signal to humans

■ So, why not follow the same pattern in declaration?

int DetermineTotalTaxes(int, int, int);

int DetermineTotalTaxes(int ProvRate, int FedRate, int)

{

//whatever

return 42;

}

int DetermineTotalTaxes(int ProvRate, int FedRate, int);

April 2019, ACCU 2019
Kate Gregory @gregcons

24

WHAT OTHER CHOICES
CAN SPEAK VOLUMES?

April 2019, ACCU 2019 Kate Gregory @gregcons 25

Is A Raw Pointer Always A Non-owning
Pointer?

■ Does this code use smart pointers?

■ Is there a lot of new and delete? Rule of 3 or 5?

– Are there any destructors anywhere?

bool sendEmails(Employee* pe)

Message* sendEmails(Employee* pe)

April 2019, ACCU 2019
Kate Gregory @gregcons

26

What Does & Mean? *?

■ Is something passed by address or reference as non-const

always changed?

■ Is there any meta-meaning to passing by address vs by

reference?

– Many style guides suggest pass-by-address to transfer

ownership

– This isn’t about what the compiler thinks

– You have nothing in the code that mentions owning, yet

maybe you’re speaking about owning anyway?

April 2019, ACCU 2019
Kate Gregory @gregcons

27

Is A Traditional for Loop Always Doing
Something Odd?

■ Why did I choose that loop?

– Does it touch every element?

– Was there a reason not to use a ranged for?

■ Isn’t there an algorithm for that?

– Is this something without a name we all know

■ find, count, all_of, sort, …

– If you use algorithms when you can, then your choice of a loop

gets my attention

April 2019, ACCU 2019
Kate Gregory @gregcons

28

Initializing

■ If a constructor doesn’t set a member variable after :, perhaps:

– There’s a nonstatic member initializer that does

– It gets set in the body

■ Why?

– It was forgotten when the member was added to the class

■ Bonus points: forgotten in only one of the 5 constructors

■ What does it mean when I initialize something to its default value?

– string s = "";

– vector<Employee> department(0);

April 2019, ACCU 2019
Kate Gregory @gregcons

29

Could The Language Help Us?

■ Should we add keywords or attributes? Would you use them?

– implicit [or explicit(false)]

– const(false)

– nonvirtual

– ByVal

■ Are you using fallthrough,

no_discard, and

maybe_unused?

– Why not?

April 2019, ACCU 2019
Kate Gregory @gregcons

30

CALL TO ACTION

April 2019, ACCU 2019 Kate Gregory @gregcons 31

Communicate

■ Clear code involves thinking about what you are

telling the future reader

■ Show them why you did this

■ No puzzles or mysteries

■ No chance to think you were foolish

or ill-informed

April 2019, ACCU 2019
Kate Gregory @gregcons

32

What is Not in Your Code?

■ Think about what you’re not including or doing

■ The other ways you could have done this

■ The other choices you could have made

■ Can people learn from a seemingly arbitrary

choice?

April 2019, ACCU 2019
Kate Gregory @gregcons

33

Nothingness

■ Can you express your choice without nothingness?

– A little verbosity goes a long way

■ If the only way to express yourself is with

nothingness, then fine, but make that nothingness

speak

– Context

– Show your colours

April 2019, ACCU 2019
Kate Gregory @gregcons

34

Use Nothing In a Generous Way

■ Give that future reader all they need

■ Make sure your nothing speaks volumes

■ Ensure that they will understand

April 2019, ACCU 2019
Kate Gregory @gregcons

35

