
Herb Sutter

2

 JF Bastien

 Charley Bay

 Vicente Botet

 Paul Bendixen

 Jonathan Caves

 Alex Christensen

 Ben Craig

 Pavel Curtis

 Guy Davidson

 Gabriel Dos Reis

 Niall Douglas

 Chris Guzak

 Howard Hinnant

 Odin Holmes

 Ben Kuhn

 Stephan T. Lavavej

 Phil Nash

 Gor Nishanov

 Michael Novak

 Arthur O’Dwyer

 Andreas Pokorny

 Ryan Shepherd

 Bjarne Stroustrup

 Tony Tye

 Tony Van Eerd

 Ville Voutilainen

 Titus Winters

 Michael Wong

3

status_code pathological(widget& a, gadget& b) {

...

if (!process(a)) return widget_error();

if (!dbwrite(b)) throw db_exception();

...

return good_result();

}

 Q: What do you think of this code?

4

status_code pathological(widget& a, gadget& b) {

...

if (!process(a)) return widget_error();

if (!dbwrite(b)) throw db_exception();

...

return good_result();

}

 Q: What do you think of this code?

 A: “Pick a lane!”

 Q2: What’s harder than getting callers to do decent error handling?

 A2: Getting them to do it twice, two different ways.

5

 But this is “normal” in today’s bifurcated world:

 “Pity the poor call site that uses A and B” – including all generic code:

template<typename T>
auto some_func(T& t) {

… process(t) … // ??? error handling ???
}

status_code process(widget& a) {
if (...) return widget_error();
...

}

Library A

void process(gadget& b) {
if (...) throw db_exception();
...

}

Library B

6

 Establishing the problem: Today’s EH violates the zero-overhead principle

“I can’t afford to enable exception handling”  paying for what you don’t use

“I can’t afford to throw an exception”  can write it more efficiently by hand

Bonus “I can’t throw through this code”  lack of control, invisible vs. automatic propagation

 Key definition: What is an “error”?

Recoverable error != programming bug != abstract machine corruption

Exceptions/codes != pre/post contracts != stack and heap overflow

 4 coordinated proposals

1. Enable zero-overhead exception handling

2&3.Throw fewer exceptions (~95% of all exceptions should not be)

4. Support explicit “try” for visible propagation

7

 Most “C++” projects ban
exceptions in whole or in part.

  Not really using Standard C++,
which requires exceptions.

 Using a divergent incompatible
language dialect with different
idioms (e.g., factory functions
instead of constructors).

 Using a divergent incompatible
std:: library dialect (e.g., EASTL,
_HAS_EXCEPTIONS=0), or none at
all (e.g., Epic).

20%

32%

48%

Q7: [Are exceptions] allowed in
your current project? (N=3,240)

No: Not allowed

Partial: Allowed in
some parts of the
code

Yes: Allowed
pretty much
everywhere

8

 Most “C++” projects ban
exceptions in whole or in part.

  Not really using Standard C++,
which requires exceptions.

 Using a divergent incompatible
language dialect with different
idioms (e.g., factory functions
instead of constructors).

 Using a divergent incompatible
std:: library dialect (e.g., EASTL,
_HAS_EXCEPTIONS=0), or none at
all (e.g., Epic).

19%

32%

49%

Q: [Are exceptions] allowed in
your current project? (N=437)

No: Not allowed

Partial: Allowed in
some parts of the
code

Yes: Allowed
pretty much
everywhere

9

 Most “C++” projects ban
exceptions in whole or in part.

  Not really using Standard C++,
which requires exceptions.

 Using a divergent incompatible
language dialect with different
idioms (e.g., factory functions
instead of constructors).

 Using a divergent incompatible
std:: library dialect (e.g., EASTL,
_HAS_EXCEPTIONS=0), or none at
all (e.g., Epic).

12%

29%
59%

Q: [Are exceptions] allowed in
your current project? (N=81)

No: Not allowed

Partial: Allowed in
some parts of the
code

Yes: Allowed
pretty much
everywhere

10

 Error codes have strongest
support of any error reporting
method.

 Expected/Outcome types are
“allowed everywhere” almost
equally to exceptions.

 Every method is banned outright
in >10% of projects.

 A measure of fragmentation into
dialects.

0
10
20
30
40
50
60
70

No: Not allowed Partial: Allowed in
some parts of the

code

Yes: Allowed
pretty much
everywhere

Q7: What error reporting
methods are allowed on your

current project? (N=3,255)

Exceptions Numeric error codes

Expected/Outcome types

11

 Error codes have strongest
support of any error reporting
method.

 Expected/Outcome types are
“allowed everywhere” almost
equally to exceptions.

 Every method is banned outright
in >10% of projects.

 A measure of fragmentation into
dialects.

0
10
20
30
40
50
60
70

No: Not allowed Partial: Allowed in
some parts of the

code

Yes: Allowed
pretty much
everywhere

Q: What error reporting
methods are allowed on your

current project? (N=437)

Exceptions Numeric error codes

Expected/Outcome types

12

 Error codes have strongest
support of any error reporting
method.

 Expected/Outcome types are
“allowed everywhere” almost
equally to exceptions.

 Every method is banned outright
in >10% of projects.

 A measure of fragmentation into
dialects.

0
10
20
30
40
50
60
70

No: Not allowed Partial: Allowed in
some parts of the

code

Yes: Allowed
pretty much
everywhere

Q: What error reporting
methods are allowed on your

current project? (N=81)

Exceptions Numeric error codes

Expected/Outcome types

13

 Standard C++  Dialects

Exceptions enabled

Constructors and
operators

(especially) report
failure by throwing

-f-no-exceptions

errno

result<>

Boost
expected

std::
experimental::

expected

etc. …

Boost
Outcome

std::
error_code

14

 Standard C++  Dialects

Exceptions enabled

Constructors and
operators

(especially) report
failure by throwing

-f-no-exceptions

errno

result<>

Boost
expected

std::
experimental::

expected

etc. …

Boost
Outcome

std::
error_code

15

 Standard C++  Dialects

Exceptions enabled

Constructors and
operators

(especially) report
failure by throwing

-f-no-exceptions

errno

result<>

Boost
expected

std::
experimental::

expected

etc. …

Boost
Outcome

std::
error_code

16

Today @6:45am:

Me: “So, what do you work on?”

Björn Fahller: “High-end embedded systems. Not the ones with
constrained memory, but network switches, that sort of thing.”

Me: “Cool. …

17

Today @6:45am:

Me: “So, what do you work on?”

Björn Fahller: “High-end embedded systems. Not the ones with
constrained memory, but network switches, that sort of thing.”

Me: “Cool. Say, on your current project, are exceptions enab—”

BF: “No.”

Me: “—ed? …

18

Today @6:45am:

Me: “So, what do you work on?”

Björn Fahller: “High-end embedded systems. Not the ones with
constrained memory, but network switches, that sort of thing.”

Me: “Cool. Say, on your current project, are exceptions enab—”

BF: “No.”

Me: “—ed? … Oh. So, do you use the standard library?”

BF: “No. Well, we cheat. Algorithms don’t throw…”

19

 Violates C++’s zero-overhead principle in two ways.

1. “I can’t afford to enable exception handling.”

 Just turning on EH incurs space overhead.

 Zero overhead principle, part 1: “Don’t pay for what you don’t use.”

2. “I can’t afford to throw an exception.”

 Throwing an exception incurs not-statically-boundable space and time overhead.

 Throwing an exception usually less efficient than returning code/expected<> by hand.

 Zero overhead principle, part 2: “When you do use it you can’t reasonably write it better
by hand” including by using alternatives.

 Bonus problem: “I can’t throw through this code.”

 Lack of control: Automatic propagation is great, but invisible control flow makes writing
exception-safe code harder. More on this later…

20

 Establishing the problem: Today’s EH violates the zero-overhead principle

“I can’t afford to enable exception handling”  paying for what you don’t use

“I can’t afford to throw an exception”  can write it more efficiently by hand

Bonus “I can’t throw through this code”  lack of control, invisible vs. automatic propagation

 Key definition: What is an “error”?

Recoverable error != programming bug != abstract machine corruption

Exceptions/codes != pre/post contracts != stack and heap overflow

 4 coordinated proposals

1. Enable zero-overhead exception handling

2&3.Throw fewer exceptions (~95% of all exceptions should not be)

4. Support explicit “try” for visible propagation

21

error: “an act that … fails to achieve what should be done.”

— [Merriam-Webster]

 P0709: “recoverable error” ≡ “a function couldn’t do what it advertised.”
 Its preconditions were met.

 It could not achieve its successful-return postconditions.

 The calling code can be told and can programmatically recover.

 Errors (and only errors) should be reported to the calling code.
 Regardless of mechanism: “Prefer exceptions” but applies to any reporting style.

22

 Abstract machine corruption causes a corrupted state that cannot be
recovered from programmatically.

 So it should never be reported to calling code as an error (e.g., via exception).

 Example: Stack exhaustion is always an abstract machine corruption.

 It can happen to any function.
 If we tried to report it using an exception then every function could throw.

 We cannot continue running normal code. (NB: Destructors are “normal code.”)
 The callee can’t run code to report it to the caller…

… and the caller couldn’t run code to recover anyway.

 Conclusion: Reporting this as a runtime error would be a category error.

23

 A programming bug (e.g., out-of-bounds access, null dereference) causes a
corrupted state that cannot be recovered from programmatically.
 Therefore it should never be reported to the calling code as an error

(e.g., it should not be reported via an exception).

 Examples:

 A precondition (e.g., [[pre...]]) violation is always a bug in the caller (it shouldn’t
make the call).

 Corollary: std::logic_error and its derivatives should never be thrown (§4.2), its
existence is itself a “logic error”; use assertions/contracts/… instead.

 A postcondition (e.g., [[post...]]) violation on “success” return is always a bug in
the callee (it shouldn’t return success).

 Violating a noexcept declaration is also a form of postcondition violation.

 An assertion (e.g., [[assert...]]) failure is always a bug in the function.

24

What to use Report-to handler Handler species

A. Corruption of the
abstract machine (e.g.,
stack exhaustion)

Terminate User Human

B. Programming bug (e.g.,
precondition violation)

Asserts, log checks,
contracts, ...

Programmer Human

C. Recoverable error (e.g.,
host not found)

Throw exception,
error code, etc.

Calling code Code

25

 Establishing the problem: Today’s EH violates the zero-overhead principle

“I can’t afford to enable exception handling”  paying for what you don’t use

“I can’t afford to throw an exception”  can write it more efficiently by hand

Bonus “I can’t throw through this code”  lack of control, invisible vs. automatic propagation

 Key definition: What is an “error”?

Recoverable error != programming bug != abstract machine corruption

Exceptions/codes != pre/post contracts != stack and heap overflow

 4 coordinated proposals

1. Enable zero-overhead exception handling

2&3.Throw fewer exceptions (~95% of all exceptions should not be)

4. Support explicit “try” for visible propagation

26

 Exceptions are great: Distinct “error” paths, can’t ignore, auto propagation.

 But: Inherently not zero-overhead, not deterministic.

 “Throwing objects of dynamic types…  dynamic allocation + type erasure
… and catching using RTTI.”  dynamic casting (special)

 Proposal:

 “Throwing values of static types…  stack allocation, share return channel
… and catching by value.”  no dynamic casting, just value comparison

 Isomorphic to error codes, identical space/time overhead and predictability.

 Share return channel  potential for negative overhead abstraction.

 If a function agrees (opts in) that any exceptions it emits are values of one statically
known type, we can implement it with zero dynamic/non-local overheads.

not a breaking change

27

 As-if returning union{ Success; Error; } + bool, using the same
return channel (incl. registers + CPU flag for discriminant).

 Best of exceptions and error codes (and fully prior-art):
Exactly exceptions’ programming model (throw, try, catch).
Exactly error codes’ return-value implementation (w/o monopolizing channel).

 Doubles down on value semantics. (Cf: C++11 move semantics.)

 If you love:

 Exceptions: Can use them more widely, removing perf reasons to avoid/ban.

 Expected/Outcome: Gets language support, propagates automatically.

 Error codes: Doesn’t monopolize return channel, propagates automatically, and
the caller can’t forget to check it and gets distinct success/error paths.

 Termination (fail-fast): Hook the propagation notification (see §4.1.4).

28

 A static-exception-specification throws function can throw std::error,
an evolution of std::error_code + SG14-driven improvements already underway.

string f() throws {
if (flip_a_coin()) throw arithmetic_error::something;
return “xyzzy”s + “plover”; // bad_alloc → std::errc::ENOMEM

}

string g() throws { return f() + “plugh”; } // bad_alloc → std::errc::ENOMEM

int main() {
try {

auto result = g();
cout << “success, result is: ” << result;

} catch(error err) { // catch by value
cout << “failed, error is: ” << err.error();

}
}

29

 A static-exception-specification throws function can throw std::error,
an evolution of std::error_code + SG14-driven improvements already underway.

string f() throws {
if (flip_a_coin()) throw arithmetic_error::something;
return “xyzzy”s + “plover”; // bad_alloc → std::errc::ENOMEM

}

string g() throws { return f() + “plugh”; } // bad_alloc → std::errc::ENOMEM

int main() {
try {

auto result = g();
cout << “success, result is: ” << result;

} catch(error err) { // catch by value
cout << “failed, error is: ” << err.error();

}
}

Default and recommended std::error usage == purely local return values:

• Always allocated as an ordinary stack value

• Share (not waste) the return channel

• Statically known type, so never need RTTI

Zero-overhead: No extra static overhead in the binary image.
No dynamic allocation. No need for RTTI.

Determinism: Identical space and time cost as if returning an error code by hand.

Note: For compatibility, std::error can also wrap an exception_ptr, but this is a compatibility
mode where the overheads come from using today’s model, which are just passed through

Today (pseudocode) Proposed (pseudocode)
// throw site: “throw MyException(value)”

return (void*) new MyException(value);

// …

// propagate

// …

// catch site: “catch (EBase& e) {/*…*/}” by reference

if (auto e = special_dynamic_cast<EBase*>(pvoid); e)
{/*…*/}

// throw site: “throw std::error(domain,value)”

return std::error(domain,value); // no alloc

// …

// propagate

// …

// catch site: “catch (std::error e)” by value

if (e.failed) {/*…*/} // no RTTI

3030

31

 What are the benefits?

 Unification: All projects can turn on exception handling.

 Zero overhead principle, part 1: “Don’t pay for what you don’t use.”

 Unification: All code can report errors using exceptions.

 Zero overhead principle, part 2: “When you do use it you can’t reasonably write it
better by hand” including by using alternatives.

 Even space- and time-constrained code that need statically boundable costs.

 Simplification: Can teach “every function should be declared with
exactly one of noexcept or throws.”

 Just like we now can teach “every virtual function should be declared with exactly
one of virtual, override, or final.”

32

 Establishing the problem: Today’s EH violates the zero-overhead principle

“I can’t afford to enable exception handling”  paying for what you don’t use

“I can’t afford to throw an exception”  can write it more efficiently by hand

Bonus “I can’t throw through this code”  lack of control, invisible vs. automatic propagation

 Key definition: What is an “error”?

Recoverable error != programming bug != abstract machine corruption

Exceptions/codes != pre/post contracts != stack and heap overflow

 4 coordinated proposals

1. Enable zero-overhead exception handling

2&3.Throw fewer exceptions (~95% of all exceptions should not be)

4. Support explicit “try” for visible propagation

33

“[With contracts,] 90-something% of the typical uses of exceptions in

.NET and Java became preconditions. All of the ArgumentNullException,

ArgumentOutOfRangeException, and related types and, more importantly,

the manual checks and throws were gone.”

— [Duffy 2016]

Summary Status / Proposal

34

 Precondition violations are bugs, not
program-recoverable errors

 Don’t report them using error handling
(exceptions or codes)

 Calling code can’t recover programmatically

 Shared state must already be presumed
corrupt

 Use assertions, contracts, or similar instead

 Report to a human programmer who can fix
the bug

 WG21:
 Supported by standard library maintainers

 Migration planned to move logic_error &
derived types to not be exceptions

 When used as preconditions

 Multi-release migration period

35

36

 Today:
 1. Exceptions must be dynamically allocated.

 3. Dynamic allocation failures are reported
using exceptions.

 Q: How does this statement describe two
independent issues?
 1. (see prev) Exceptions shouldn’t need to be

dynamically allocated.

 3. (see next) Allocation failures shouldn’t be
reported as program-recoverable errors
(exceptions or otherwise)…

37

 Today:
 1. Exceptions must be dynamically allocated.

 3. Dynamic allocation failures are reported
using exceptions.

 Q: How does this statement describe two
independent issues?
 1. (see prev) Exceptions shouldn’t need to be

dynamically allocated.

 3. (see next) Allocation failures shouldn’t be
reported as program-recoverable errors
(exceptions or otherwise)…

38

Q: If I hit stack overflow, can I continue running ordinary code?

A: No.

We have exhausted/corrupted the abstract machine.

39

Q: If I hit a memory allocation failure, can I continue running ordinary code?

A: No, if it’s a “small” allocation failure…

We have exhausted/corrupted the abstract machine.

40

 Many heap allocation failures (aka out of memory, OOM) are unrecoverable

 Appears to be inherent: e.g., impossible to thoroughly test, or must be written carefully

 But some current/future code is OOM-safe, and we don’t want to lose that

 Case 1: Failure to allocate big buffer || opt-in allocator (e.g., new[100000], MyAlloc)

 Causes: Optimistic or unsanitized size input

 Unwinding+recovering by running “normal code” is possible: Throwing/returning is OK

 Recovery possible: Fall back to smaller buffer, or fail requested operation

 Case 2: Failure to perform “small” allocation && default allocator (e.g., new int)

 Cause: Resource limit (actual exhaustion or fragmentation): So like stack exhaustion

 Unwinding+recovering) by running “normal code” not possible: Throwing/returning not OK

  By default: Don’t throw, terminate (with terminate_handler support to opt out)

Summary Status / Proposal

41

 “Small” allocation failure:
 Not testable: Too pervasive

 Nonportable: Requires OS-specific
settings to enable on common OSes

 Not unwindable: Can’t run “normal code”

 “Large” failure can write fallback:
 Texture load, big work buffer…

 Proposal
 For “99%”: Terminate by default, treat

same as abstract machine failure

 For “1%”: Use new(nothrow) + provide
try_reserve/…

 WG21:
 Change default new_handler from

“throw bad_alloc” to “terminate”

 Groundswell of support, but some
opposition

 What to do:
 Texture load, big buffer unavailable:

Explicitly test, implement fallback
(e.g., don’t show texture, use smaller
buffer)

 File|Open: Do all the work off to the
side in an isolated arena, commit
using nofail operations only

42

What to use Report-to handler Handler species

A. Corruption of the
abstract machine (e.g.,
stack or heap exhaustion)

Terminate User Human

B. Programming bug (e.g.,
precondition violation)

Asserts, log checks,
contracts, ...

Programmer Human

C. Recoverable error (e.g.,
host not found, large
allocation failure)

Throw exception,
error code, etc.

Calling code Code

43

 What are the benefits?

 Correctness: Exceptions are not appropriate for reporting non-errors.

 Bugs (e.g., preconditions) and corruption (e.g., abstract machine failures).

 Correctness and performance: Eliminate ~95% of all exceptions.

 The vast majority of the standard library would not throw.

 (Recall: Language-independent. Also true of Java and C#.)

 Simplification: Eliminate ~95% of the invisible control flow paths.

 (Which today dominate the visible ones.)

 Clear code is easier to write correctly and reason about.

 Example: See GotW #20, a 4-line function with 3 normal (and visible) control flow
paths and 20 exceptional (and invisible) control flow paths.

44

 Establishing the problem: Today’s EH violates the zero-overhead principle

“I can’t afford to enable exception handling”  paying for what you don’t use

“I can’t afford to throw an exception”  can write it more efficiently by hand

Bonus “I can’t throw through this code”  lack of control, invisible vs. automatic propagation

 Key definition: What is an “error”?

Recoverable error != programming bug != abstract machine corruption

Exceptions/codes != pre/post contracts != stack and heap overflow

 4 coordinated proposals

1. Enable zero-overhead exception handling

2&3.Throw fewer exceptions (~95% of all exceptions should not be)

4. Support explicit “try” for visible propagation

45

 Good news: Exceptional control flow is automatic.

 Bad news: Exception control flow is invisible.

 Hard to reason about exceptions, especially in legacy code.

 Proposal: try before an expression/statement where a subexpression can throw.

 Makes exceptional paths visible.

 If we required it in new code: Compile-time guarantees (e.g., no “throw”  noexcept).

string f() throws {
if (flip_a_coin()) throw arithmetic_error::something;
return try “xyzzy”s + “plover”; // greppable

try string s(“xyzzy”); // same, just showing statement form too
try return s + “plover”;

}

string g() throws { return try f() + “plugh”; }

46

 What are the benefits?

 Convenience (as today): Automatic exception propagation.

 Correctness (new): Visible (still convenient) propagation.

47

 “One more thing”… Sets the stage for a potential new world:

 1: Enables “declare every function either noexcept or throws.”

 2+3: Enables “~95% of all functions are noexcept.”

 1+2+3+4: Enables “require try on every expression that can throw.”

 Simplification: Enables using C code in C++ projects with confidence.

 Can take any C code, compile it as C++, and (automatically) add try on

every expression that could throw  feasible to inspect and validate the

code is exception-safe.

Herb Sutter

