

Debugging is most underestimated part of programming.

4

But surely it’s better not to write the bugs in the first place?

Well.. duh! Of course, but there will always be bugs.

Everyone knows that debugging is twice as hard as writing a program in the first place.
So if you're as clever as you can be when you write it, how will you ever debug it?

Brian Kernighan

This has profound implications - it means debuggability is the limiting factor.

5

There are many tools, use them.

The most effective debugging tool is still careful thought, coupled with judiciously
placed print statements.

 Brian Kernighan

6

, 1979

Two main classes of debugging tool today:

Checkers (static and dynamic)
“Did my code do bad thing x, y, z?”
Examples: Address Sanitizer, Valgrind, Coverity

Debuggers
“What exactly did my code do?”
Examples: GDB, LLDB, rr, UndoDB, Live Recorder.

Tools we’ll look at today

GDB - 15 mins

Valgrind & Sanitizers - 10 mins

strace - 5 mins

ltrace - 5 mins

ftrace - 10 mins

perf trace - 10 mins

GDB + rr/Undo - 10 mins

GDB + Valgrind - 5 mins

GDB + Asan - 10 mins

7

GDB - more than you knew

GDB may not be intuitive but it is very powerful

▪ Easy to use, just not so easy to learn

TUI: Text User Interface

▪ As useful as it is poorly named!

8

GDB TUI (Test User Interface) top tips

ctrl-x-a: toggle to/from TUI mode

ctrl-l: refresh the screen

ctrl-p / ctrl-n: prev, next, commands

ctrl-x-2: second window; cycle through

9

GDB has Python!

Full Python interpreter with access to standard modules

(Unless your gdb installation is messed up!)

The gdb python module gives most access to gdb

(gdb) python gdb.execute() to do gdb commands

(gdb) python gdb.parse_and_eval() to get data from inferior

(gdb) python help('gdb') to see online help

10

Python Pretty Printers

class MyPrinter(object):

 def __init__(self,val):

 self.val = val

 def to_string(self):

 return (self.val[‘member’])

import gdb.printing

pp = gdb.printing.RegexpCollectionPrettyPrinter('mystruct')

pp.add_printer('mystruct', '^mystruct$', MyPrinter)

gdb.printing.register_pretty_printer(gdb.current_objfile(), pp)

11

In-built pretty printers for STL

GDB will (try to) pretty-print most STL container classes (std::vector, std::string, etc), e.g.

10 vec.push_back(5);
(gdb) next
12 return 0;
(gdb) print vec
$6 = std::vector of length 3, capacity 4 = {3, 4, 5}
(gdb)

Note that this relies on Python pretty printers installed on the target system.
Compiling/linking with a different version of libstdc++ (e.g. executable built on a different host than the one being
used to debug), then pretty printing might give strange results.

There are many (list with info pretty-printers), including:
std::string, std::bitset, std::list, std::multimap, std::queue, std::set, std::shared_ptr,
std::stack, std::tuple, std::unique_ptr, std::vector, std::weak_ptr, and iterators.

12

.gdbinit

My ~/.gdbinit is nice and simple:
set history save on
set print pretty on
set pagination off
set confirm off

If you’re funky, it’s easy for weird stuff to happen.

Hint: have a project gdbinit with lots of stuff in it, and source that.

13

GDB is built on ptrace and signals

GDB is built atop ptrace.

When a program being traced receives a signal, it is suspended and the tracer gets notified (via waitpid)

So when the inferior receives a signal, it stops and gdb gets control.

Usually gdb returns to the prompt, but what it will do depends on the signal and how it is configured.

Two signals are special:

● SIGINT is generated when you hit ^C
● SIGTRAP is generated when the inferior hits a breakpoint or is single stepped.

Actually, not so special - these signals are treated no differently to any others

14

GDB - terminal problems

15

Breakpoints and watchpoints

watch foo stop when foo is modified

watch -l foo watch location

rwatch foo stop when foo is read

watch foo thread 3 stop when thread 3 modifies foo

watch foo if foo > 10 stop when foo is > 10

16

thread apply

thread apply 1-4 print $sp

thread apply all backtrace

Thread apply all backtrace full

17

Dynamic Printf

Use dprintf to put printf’s in your code without recompiling, e.g.

dprintf mutex_lock,"m is %p m->magic is %u\n",m,m->magic

control how the printfs happen:

set dprintf-style gdb|call|agent

set dprintf-function fprintf

set dprintf-channel mylog

18

Calling inferior functions

call foo() will call foo in your inferior

But beware, print may well do too, e.g.

print foo()

print foo+bar (if C++)

print errno

And beware, below will call strcpy() and malloc()!

call strcpy(buffer, “Hello, world!\n”)

19

Catchpoints

Catchpoints are like breakpoints but catch certain events, such as C++ exceptions

e.g. catch catch to stop when C++ exceptions are caught

e.g. catch syscall nanosleep to stop at nanosleep system call

e.g. catch syscall 100 to stop at system call number 100

20

Remote debugging

Debug over serial/sockets to a remote server

Start gdbserver localhost:2000 ./a.out

Then connect from a gdb with e.g. target remote localhost:2000

21

Multiprocess Debugging

Debug multiple ‘inferiors’ simultaneously

Add new inferiors

Follow fork/exec

22

Multiprocess Debugging

set follow-fork-mode child|parent

set detach-on-fork off

info inferiors

inferior N

set follow-exec-mode new|same

add-inferior <count> <name> [attach PID]

remove-inferior N

clone-inferior

print $_inferior

23

More Python

Create your own commands

 class my_command(gdb.Command):

 '''doc string'''

 def __init__(self):

 gdb.Command.__init__(self, 'my-command', gdb.COMMAND_NONE)

 def invoke(self, args, from_tty):

 do_bunch_of_python()

 my_command()

24

Yet More Python

Hook certain kinds of events

def stop_handler(ev):
 print('stop event!')
 if isinstance(ev, gdb.SignalEvent):
 print('its a signal: ' + ev.stop_signal)

gdb.events.stop.connect(stop_handler)

25

Other cool things...

▪ tbreak temporary breakpoint
▪ rbreak reg-ex breakpoint
▪ command list of commands to be executed when breakpoint hit
▪ silent special command to suppress output on breakpoint hit
▪ save breakpoints save a list of breakpoints to a script
▪ save history save history of executed gdb commands
▪ info line foo.c:42 show PC for line
▪ info line * $pc show line begin/end for current program counter

And finally...

▪ gcc’s -g and -O are orthogonal; gcc -Og is optimised but doesn’t mess up debug
▪ -ggdb3 is better than -g

26

Valgrind

Valgrind is actually a platform, on which many different checkers are built.
memcheck is the default and the most used/known.
Also there is: cachegrind, callgrind, helgrind, drd, massif, lackey, none

Can be a bit slow, but very easy to use -- it generally just works.
Can be as simple as valgrind ./a.out

Can be used in conjunction with gdb
valgrind --vgdb --vgdb-error 0 ./a.out

27

Valgrind tools

Cachegrind: cache profiler, simulates I1, D1, L2 caches

Callgrind: like cachegrind, but also with call-graphs

Massif: heap profiler

Helgrind: find race conditions in multithreaded programs

DRD: Data Race Detector. Like Helgrind, but uses less memory.

Lackey / None: demo/unit test of valgrind itself.

28

Valgrind memcheck - pros + cons

Pros:

No need to recompile or otherwise modify binaries

Good at spotting uninitialised accesses, and heap problems (buffer overrun, uninit data, etc)

Good at spotting (simple) memory leaks.

Cons:

Slow

Not good for static/local buffer overruns.

29

Sanitizers

AddressSanitizer, MemorySanitizer, ThreadSanitizer, LeakSanitizer

Requires a special build of your program using clang, but faster and more powerful.

clang -g -fsanitize=address foo.c
./a.out

Or with gcc, like:
gcc -g -fsanitize=address -static-libasan out_bounds.c
./a.out

30

Address sanitizer pros and cons

Pros:

Fast

Good at static and local buffer overruns (incl stack smashing)

Compatible with other tools

Cons:

Recompile

Uses lots of memory

False positives with ‘fortification’

See also: Memory Sanitizer, Thread Sanitizer

See also: __attribute__((no_sanitize_address)) 31

_FORTIFY_SOURCE

Compile with -D_FORTIFY_SOURCE={0,1,2}

Adds checks to:

memcpy, mempcpy, memmove, memset,

strcpy, stpcpy, strncpy, strcat, strncat,

sprintf, vsprintf, snprintf, vsnprintf, gets.

-D_FORTIFY_SOURCE=2 is the default on many modern distros.

gcc -D_FORTIFY_SOURCE=2 -Wall -g -O2 fortify_test.c && ./a.out $(python -c 'print "\x41" * 360')

32

ftrace

“Function tracer” - a fast way to trace various kernel functions.

● Lots of predefined events (i.e. ‘trace-points’)
● Controlled through /sys/kernel/debug/tracing
● Or, use the trace-cmd utility

33

ftrace: a case study

Trying to get Live Recorder embedded into a large US software vendor’s test-suite.

Customer: Live Recorder keeps dying with SIGKILL
Undo: Are you sure you don’t have some kind of proces killer in your test-suite?
Customer: Totally sure, we have no such thing.
Undo: Hmm, ok, we’ll take a look.

….
Undo: Are you really sure you don’t have some kind of process killer?
Customer: Yep, 100%
Undo: Hmm, would you mind running this script for us and sending us the output?
Customer: Sure hang on…. Here you go!
Undo: Ummm, what’s this process you have called “watchdog”?
Customer: I don’t know, let me ask around….
Customer: That’s some kind of process killer!

34

ftrace: tracking all the signals

root@tommy:-# echo "sig>=0" > /sys/kernel/debug/tracing/events/signal/filter
root@tommy:-# echo 1 > /sys/kernel/debug/tracing/events/signal/enable
root@tommy:-# echo 1 > /sys/kernel/debug/tracing/tracing_on
...
root@tommy:-# cat /sys/kernel/debug/tracing/trace
tracer: nop
#
_-----=> irqs-off
/ _----=> need-resched
| / _---=> hardirq/softirq
|| / _--=> preempt-depth
||| / delay
TASK-PID CPU# |||| TIMESTAMP FUNCTION
| | | |||| | |
Chrome_ChildIOT-3774 [001] d.h. 94826.246904: signal_generate: sig=14 errno=0 code=128 comm
 Xorg-2565 [001] d... 94826.246949: signal_deliver: sig=14 errno=0 code=128 sa_ha
 cat-30948 [003] d... 94834.119664: signal_generate: sig=17 errno=0 code=1 comm=b
 bash-30873 [001] d... 94834.119824: signal_deliver: sig=17 errno=0 code=1 sa_hand
 Xorg-2565 [000] d.h. 94834.130078: signal_generate: sig=14 errno=0 code=128 comm
 Xorg-2565 [000] d... 94834.130105: signal_deliver: sig=14 errno=0 code=128 sa_ha

35

ftrace: trace-cmd

root@tommy:~# less /sys/kernel/debug/tracing/available_events

root@tommy:~# trace-cmd record -e tcp:tcp_destroy_sock

root@tommy:~# trace-cmd report

36

strace

Trace all the system calls of a process.

37

strace cmd Print all system calls issued by cmd

strace -k cmd Show backtrace for each syscall

strace -t cmd Prefix each syscall with wallclock time

strace -o file cmd Write traced syscalls to file

strace -D cmd strace process runs as detached grandchild of cmd

strace -f cmd Follow forks

strace -ff -o f cmd Follow forks, write output to f.%pid

strace -p 1234 Strace process-id 1234 (note: only the thread, not all threads in that process)

strace -p 1234 -f Attach to all threads in process-group 1234

ltrace

Trace all the dynamic library calls of a process.

38

ltrace cmd Print all library calls issued by cmd

ltrace -w=4 cmd Show backtrace (up to 4 frames) (but only if ltrace compiled with libunwind)

ltrace -t cmd Prefix each library call with wallclock time

ltrace -l libc.so* c Trace calls to libc library only

ltrace -e malloc+free-@libc.so* cmd only trace malloc and free symbols from libc

perf trace

Like strace but better (and worse).

39

perf trace Trace every syscall by every process

perf trace cmd Trace all syscalls issued by cmd

perf trace -p 1234 Trace all syscalls from process 1234

perf trace -e read* Trace all syscalls that start with ‘read’ (e.g. read, readlink, readdir)

perf trace -D 500 Wait 500ms before tracing (skip all the startup gumf)

perf trace record Record into perf.data (this is really for profiling, so won’t talk about it more!)

Better than strace: Much faster; more flexible.
Worse than strace: Needs privileges, doesn’t do as much decoding (e.g. strings look like pointers)

perf PT (Processor Trace)

perf record -e intel_pt//u ./a.out

perf script

Approx 1 bit per branch, can generate 100’s MB’s per second per core.

See also intel_bts (but requires no kpti boot).

40

Reversible Debugging - how did that happen?

GDB inbuilt reversible debugging: Works well, but is very slow

41

GDB in-build ‘record btrace’: Uses Intel branch trace.
Not really reversible, no data
Quite slow

rr: Very good at what it does, though somewhat limited features/platform support

UndoDB and Live Recorder: perfect!
But expensive :)

Other cool things

CLion

backtrace.io

42

