zuhlke
empowering ideas

Clean(er) Code for Large Scale
Legacy Applications

@arne_mertz

zuhlke
empowering ideas

Clean(er) Code for Large Scale
Legacy C++ Applications

@arne_mertz

Clean(er) Code for Large Scale Legacy
C++ Applications

"What do you mean?”

@arne_mertz

Legacy
C++ Applications

@arne_mertz

Quote

"Legacy code" is a term often used derogatorily to characterize code that is written in a
language or style that

(1) ...the speaker/writer consider outdated and/or
(2) ...is competing with something sold/promoted by the speaker/writer.

"Legacy code" often differs from its suggested alternative by actually working and scaling.

Bjarne Stroustrup

@arne_mertz

Large Scale Legacy
C++ Applications

@arne_mertz

Clean(er) Code
Ca+

@arne_mertz

Clean(er) Code
C++

"I've read the book, but there is not much in it that we can use for
C++. [/}

@arne_mertz

Underlying principles are language independent

o KISS
e S.0.LID.
e DRY

@arne_mertz

Make use of C++ features that make the code more readable,
reliable, and secure

@arne_mertz

"But performance!"

@arne_mertz

"But performance!"

Performance is important.

But that does not mean we have to optimize every little piece of code.

@arne_mertz

Before you manually optimize...

e ... use the right data structures and algorithms.
e ... trust the optimizer.
e ... find the actual bottleneck.

@arne_mertz

After you manually optimize...

e ... check what you have achieved
o ... (or whether you acutually have achieved anything)

@arne_mertz

Use. A. Profiler.

@arne_mertz

</OptimizationRant>

@arne_mertz

Bringing Clean Code to Large Scale
Legacy Applications

Means fighting for maintainability and against code rot in a sea of old code,
usually while simultaneously fixing bugs and adding new features.

@arne_mertz

It's a team game

You can't fight a dragon alone

@arne mertz

When we have legacy code now, it's
because we let it happen in the past

@arne_mertz

Make it a team decision

@arne_mertz

"Legacy knowledge"

@arne_mertz

Start to learn and care

e Trainings and workshops
e In-house presentations
e Wiki or blog articles

e Informative emails

@arne_mertz

Practice and learn together

@arne_mertz

Build awareness for code and habits

@arne_mertz

Meeting resistance

@arne_mertz

"That's MY Code!"

@arne_mertz

"Leave testing to the testers!"

@arne_mertz

Legacy processes and estimates

@arne_mertz

It's about people!

@arne_mertz

__“_
__-____ I

1,._

Refactoring

Refactoring ist the process of restructuring existing computer code
without changing its external behavior.

@arne mertz

Good refactoring is the key to legacy
code

@arne_mertz

Planned refactoring: Where?

Determine the "hot spots" of the codebase

@arne_mertz

Planned refactoring: Where?

Determine the "hot spots" of the codebase

Adam Tornhill: Your Code as a Crime Scene

T el P & A

*EE!' 1] = fheckll-? .

' %?cj,:{ﬂﬁ 2 Eé H SR

.'..1; w5, lenath) { idle .
@arne_mertz RN TIRS

Planned refactoring: Pick a goal

There is still more than enough to do. Pick a goal and work towards it.

e Determine main pain points

e No cosmetic refactoring

 No sidetracking

e Timebox or narrow down the goal

@arne_mertz

Possible goals

e (More) automated testing
e Less bugs

e Faster development

e Faster onboarding

e Shorter compile times

e Scaling architecture

@arne_mertz

Separate refactoring from daily
maintenance

@arne_mertz

Safe refactoring

e Safe refactoring needs test coverage
e Unit tests need modularization
e Modularization is achieved through refactoring

@arne_mertz

Integration and system tests

@arne_mertz

Small, provably correct steps

@arne_mertz

Start with large scale decoupling

1. Bring a larger part of code under test
2. Refactor for decoupling using small steps
3. Repeat with finer granularity

@arne_mertz

Approval tests for components

1. Wrap a component with a "recording layer"
2. Add approval tests for the recorded values

@arne_mertz

Refactoring historically grown spaghetti
code

The legacy codebase may have grown without refactoring the architecture

e High coupling
e Original architecture is only present as misleading names

@arne_mertz

Make the mess complete

e If there are no modules, don't pretend to have them

e Remove misleading artificial boundaries

e Take apart collections of functionality that is not related
 Disassemble before reassembling the parts

@arne_mertz

Reassemble

e Consciously design a new architecture
e Fit the previously decoupled classes into that architecture
o Grow core(s) around which the new architecture can be evolved

@arne_mertz

Rewriting instead of refactoring

Can be an option, but there are pros and cons.

@arne_mertz

Cons

e Errors that had been removed in the old version can be committed
again

e Double maintenance while the old component is in place

o Complete decoupling of the component needed first

@arne_mertz

Pros

e Can start with clean code practices from scratch
e No legacy design to cope with, only the interface matters
e Can use other techniques (e.g. DSLs)

@arne_mertz

Tooling

e Builtin IDE tooling
e Static analyzers
e Refactoring aides

Problem: Tools may not be present for older compilers/IDEs.

@arne_mertz

Consider using a newer IDE and compiler

Apart from the tooling they also support modern C++ standards

@arne_mertz

ONE DOES NOT'SIMPLYa, +

(-

SWITCHTOA

F]
\ i

Switching the compiler

e A refactoring goal on its own
e Usually smaller refactorings
e ... unless you have to get rid of proprietary frameworks

@arne_mertz

Get help from the compiler

 E.g. when renaming functions and variables
e override & final

e Strong types with explicit conversions

e Warnings and errors

@arne_mertz

shared_ptr<Node> createTree(TreeData const& data) {
auto rootData = data.root();
auto newNode = make_shared<Node>();
newNode->configure(rootData);
for (auto const& subTreeData : data.children()) {
newNode->add(createTree(subTreeData);

}

return newNode;

@arne_mertz

shared_ptr<Node> createTree(TreeData const& data) {

{

auto rootData = data.root();
auto newNode = make_shared<Node>();
newNode->configure(rootData);

}

for (auto&& subTreeData : data.children()) {
newNode->add(createTree(subTreeData);

}

return newNode;

}

@arne_mertz

shared_ptr<Node> createTree(TreeData const& data) {

auto createNode = [&](){
auto rootData = data.root();
auto newNode = make_shared<Node>();
newNode->configure(rootData);
return newNode;

s

auto newNode = createNode();

for (auto&& subTreeData : data.children()) {
newNode->add(createTree(subTreeData);

}

return newNode;

}

@arne_mertz

shared_ptr<Node> createTree(TreeData const& data) {

auto createNode = [](){
auto rootData = data.root();
auto newNode = make_shared<Node>();
newNode->configure(rootData);
return newNode;

175

auto newNode = createNode();

for (auto&& subTreeData : data.children()) {
newNode->add(createTree(subTreeData);

}

return newNode;

}

@arne_mertz

shared_ptr<Node> createTree(TreeData const& data) {

auto createNode = [](TreeData const& data){
auto rootData = data.root();
auto newNode = make_shared<Node>();
newNode->configure(rootData);
return newNode;

175

auto newNode = createNode(data);

for (auto&& subTreeData : data.children()) {
newNode->add(createTree(subTreeData);

}

return newNode;

}

@arne_mertz

auto createNode(TreeData const& data) {
auto rootData = data.root();
auto newNode = make_shared<Node>();
newNode->configure(rootData);
return newNode;

}

shared_ptr<Node> createTree(TreeData const& data) {
auto newNode = createNode(data);
for (auto&& subTreeData : data.children()) {
newNode->add(createTree(subTreeData);

}

return newNode;

}

auto createNode(NodeData const& data) {
auto newNode = make_shared<Node>();
newNode->configure(data);
return newNode;

}

shared_ptr<Node> createTree(TreeData const& data) {
auto newNode = createNode(data.root());
for (auto&& subTreeData : data.children()) {
newNode->add(createTree(subTreeData);

}

return newNode;

Wrap up

e Costly and long term
e [ests are important
e Team is even more important

@arne_mertz

Questions?

N\

\

Blog: Simplify C++! - www.arne-mertz.de

Twitter: @arne_mertz

Mail: arne.mertz@zuehlke.com

Chat: #include<C++> Discord (www.includecpp.org)

@arne_mertz

http://emojione.com/

