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Clean(er) Code for Large Scale Legacy
C++ Applications

"What do you mean?”
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Legacy
C++ Applications
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Quote

"Legacy code" is a term often used derogatorily to characterize code that is written in a
language or style that

(1) ...the speaker/writer consider outdated and/or
(2) ...is competing with something sold/promoted by the speaker/writer.

"Legacy code" often differs from its suggested alternative by actually working and scaling.

Bjarne Stroustrup
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Large Scale Legacy
C++ Applications

@arne_mertz






Clean(er) Code
Ca+
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Clean(er) Code
C++

"I've read the book, but there is not much in it that we can use for
C++. [/}
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Underlying principles are language independent

o KISS
e S.0.LID.
e DRY
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Make use of C++ features that make the code more readable,
reliable, and secure

@arne_mertz



"But performance!"
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"But performance!"

Performance is important.

But that does not mean we have to optimize every little piece of code.
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Before you manually optimize...

e ... use the right data structures and algorithms.
e ... trust the optimizer.
e ... find the actual bottleneck.
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After you manually optimize...

e ... check what you have achieved
o ... (or whether you acutually have achieved anything)
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Use. A. Profiler.
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</OptimizationRant>

@arne_mertz



Bringing Clean Code to Large Scale
Legacy Applications

Means fighting for maintainability and against code rot in a sea of old code,
usually while simultaneously fixing bugs and adding new features.
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It's a team game

You can't fight a dragon alone
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When we have legacy code now, it's
because we let it happen in the past
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Make it a team decision
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"Legacy knowledge"
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Start to learn and care

e Trainings and workshops
e In-house presentations
e Wiki or blog articles

e Informative emails
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Practice and learn together
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Build awareness for code and habits
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Meeting resistance
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"That's MY Code!"
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"Leave testing to the testers!"
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Legacy processes and estimates
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It's about people!
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Refactoring

Refactoring ist the process of restructuring existing computer code
without changing its external behavior.
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Good refactoring is the key to legacy
code
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Planned refactoring: Where?

Determine the "hot spots" of the codebase
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Planned refactoring: Where?

Determine the "hot spots" of the codebase

Adam Tornhill: Your Code as a Crime Scene
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Planned refactoring: Pick a goal

There is still more than enough to do. Pick a goal and work towards it.

e Determine main pain points

e No cosmetic refactoring

 No sidetracking

e Timebox or narrow down the goal
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Possible goals

e (More) automated testing
e Less bugs

e Faster development

e Faster onboarding

e Shorter compile times

e Scaling architecture
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Separate refactoring from daily
maintenance
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Safe refactoring

e Safe refactoring needs test coverage
e Unit tests need modularization
e Modularization is achieved through refactoring
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Integration and system tests

@arne_mertz



Small, provably correct steps
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Start with large scale decoupling

1. Bring a larger part of code under test
2. Refactor for decoupling using small steps
3. Repeat with finer granularity
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Approval tests for components

1. Wrap a component with a "recording layer"
2. Add approval tests for the recorded values
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Refactoring historically grown spaghetti
code

The legacy codebase may have grown without refactoring the architecture

e High coupling
e Original architecture is only present as misleading names
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Make the mess complete

e If there are no modules, don't pretend to have them

e Remove misleading artificial boundaries

e Take apart collections of functionality that is not related
 Disassemble before reassembling the parts
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Reassemble

e Consciously design a new architecture
e Fit the previously decoupled classes into that architecture
o Grow core(s) around which the new architecture can be evolved
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Rewriting instead of refactoring

Can be an option, but there are pros and cons.
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Cons

e Errors that had been removed in the old version can be committed
again

e Double maintenance while the old component is in place

o Complete decoupling of the component needed first
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Pros

e Can start with clean code practices from scratch
e No legacy design to cope with, only the interface matters
e Can use other techniques (e.g. DSLs)
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Tooling

e Builtin IDE tooling
e Static analyzers
e Refactoring aides

Problem: Tools may not be present for older compilers/IDEs.
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Consider using a newer IDE and compiler

Apart from the tooling they also support modern C++ standards
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Switching the compiler

e A refactoring goal on its own
e Usually smaller refactorings
e ... unless you have to get rid of proprietary frameworks
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Get help from the compiler

 E.g. when renaming functions and variables
e override & final

e Strong types with explicit conversions

e Warnings and errors
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shared_ptr<Node> createTree(TreeData const& data) {
auto rootData = data.root();
auto newNode = make_shared<Node>();
newNode->configure(rootData);
for (auto const& subTreeData : data.children()) {
newNode->add(createTree(subTreeData);

}

return newNode;
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shared_ptr<Node> createTree(TreeData const& data) {

{

auto rootData = data.root();
auto newNode = make_shared<Node>();
newNode->configure(rootData);

}

for (auto&& subTreeData : data.children()) {
newNode->add(createTree(subTreeData);

}

return newNode;

}
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shared_ptr<Node> createTree(TreeData const& data) {

auto createNode = [&](){
auto rootData = data.root();
auto newNode = make_shared<Node>();
newNode->configure(rootData);
return newNode;

s

auto newNode = createNode();

for (auto&& subTreeData : data.children()) {
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shared_ptr<Node> createTree(TreeData const& data) {

auto createNode = [](){
auto rootData = data.root();
auto newNode = make_shared<Node>( );
newNode->configure(rootData);
return newNode;
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auto newNode = createNode();

for (auto&& subTreeData : data.children()) {
newNode->add(createTree(subTreeData);

}

return newNode;

}
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shared_ptr<Node> createTree(TreeData const& data) {

auto createNode = [](TreeData const& data){
auto rootData = data.root();
auto newNode = make_shared<Node>();
newNode->configure(rootData);
return newNode;
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auto newNode = createNode(data);

for (auto&& subTreeData : data.children()) {
newNode->add(createTree(subTreeData);

}

return newNode;

}
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auto createNode(TreeData const& data) {
auto rootData = data.root();
auto newNode = make_shared<Node>( );
newNode->configure(rootData);
return newNode;

}

shared_ptr<Node> createTree(TreeData const& data) {
auto newNode = createNode(data);
for (auto&& subTreeData : data.children()) {
newNode->add(createTree(subTreeData);

}

return newNode;

}



auto createNode(NodeData const& data) {
auto newNode = make_shared<Node>();
newNode->configure(data);
return newNode;

}

shared_ptr<Node> createTree(TreeData const& data) {
auto newNode = createNode(data.root());
for (auto&& subTreeData : data.children()) {
newNode->add(createTree(subTreeData);

}

return newNode;



Wrap up

e Costly and long term
e [ests are important
e Team is even more important

@arne_mertz



Questions?
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Blog: Simplify C++! - www.arne-mertz.de

Twitter: @arne_mertz

Mail: arne.mertz@zuehlke.com

Chat: #include<C++> Discord (www.includecpp.org)
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