
Here’s my number; call me, maybe. Callbacks
in a multithreaded world

Anthony Williams

Just Software Solutions Ltd
https://www.justsoftwaresolutions.co.uk

11th April 2019

https://www.justsoftwaresolutions.co.uk

Here’s my number; call me, maybe. Callbacks in a
multithreaded world

Task based programming
Potential issues and solutions
Guidelines

Task based programming

Task based programming

What is task-based programming?

Work is divided into small chunks, “tasks”
Tasks are submitted to a thread pool or other
executor to run
No explicit thread management

Thread pools

Thread pool properties vary widely:

Multiple tasks per thread
May be able to wait for task to finish
May be able to obtain result from task
May be able to cancel task via handle
Tasks cannot (in general) wait for other tasks
May be able to chain continuations

Executors

Thread pools are a special case of Executors.

Executor An object that controls how, where
and when a task is executed

The standardization proposal (P0443) allows
properties to be queried.

P1244 specifies properties for retrieving a result
(execution::twoway) and for chaining a
continuation (execution::then).

http://wg21.link/p0443
http://wg21.link/p1244

Building blocks

A basic executor with a submit function with a
void return is enough for anyone!

We can build:

Task waiting
Task cancellation
Task results
Task chaining

Building blocks

A basic executor with a submit function with a
void return is enough for anyone!

We can build:

Task waiting
Task cancellation
Task results
Task chaining

Executors and callbacks

If you register callbacks with an external library
you may not be in charge of the executor.

You can always wrap your callback to schedule
a task on your chosen executor:

void foo(){
x.register_callback([]{

my_executor.submit(real_callback);
});

}

Issues with asynchronous tasks

Issues with asynchronous tasks

Race conditions
Reentrancy
Lifetimes
Safe shutdown

Race conditions

Race conditions are ubiquitous in concurrent
code.

Task-based code is no different.

Plus, submitted tasks can race to be executed,
and order of task execution may have
consequences.

Reentrancy

Callbacks often want to perform operations on
the data structures that trigger them.

SomeClass my_object;
my_object.register_callback([&](){
my_object.do_something();

});

Reentrancy II

Reentrancy is particularly a problem with
concurrent code as you need to protect from
other threads too.

void SomeClass::some_method(){
std::lock_guard guard(m_mutex);
// ...

}
void SomeClass::do_something(){

std::lock_guard guard(m_mutex);
}

Reentrancy II

Reentrancy is particularly a problem with
concurrent code as you need to protect from
other threads too.

void SomeClass::some_method(){
std::lock_guard guard(m_mutex);
// ...
run_callbacks();

}
void SomeClass::do_something(){

std::lock_guard guard(m_mutex);
}

Reentrancy II

Reentrancy is particularly a problem with
concurrent code as you need to protect from
other threads too.

void SomeClass::some_method(){
std::lock_guard guard(m_mutex);
// ...
run_callbacks();

} my_object.do_something();
void SomeClass::do_something(){

std::lock_guard guard(m_mutex);
}

Guideline

Never run user-supplied code while
holding a mutex

Reentrancy III

Simple solution:

void SomeClass::some_method(){
std::vector<CallbackType> local_callbacks;
std::unique_lock guard(m_mutex);
do_stuff();
local_callbacks=callbacks;
guard.unlock();
run_callbacks(local_callbacks);

}

Reentrancy IV

The simple solution has downsides:

Multiple sets of callbacks could be invoked
concurrently
Callbacks for later updates may run before
those for earlier ones
Unregistering callbacks is race-prone

Queued Callbacks

Rather than running the callbacks in
some_method, add them to a queue.

A separate thread then runs the callbacks one
at a time, in order.

Unregistering callbacks is now easier too.

Queued Callbacks

Rather than running the callbacks in
some_method, add them to a queue.

A separate thread then runs the callbacks one
at a time, in order.

Unregistering callbacks is now easier too.

Queued Callbacks II

void SomeClass::some_method(){
std::lock_guard guard(m_mutex);
do_stuff();
for(auto& entry: callbacks){

callback_queue.push_back(entry);
}
ensure_cb_task_scheduled();

}

Queued Callbacks III

void SomeClass::ensure_cb_task_scheduled(){
if(!cb_task_scheduled){

pool.submit([this]{
run_cb_queue();

});
cb_task_scheduled=true;

}
}

Queued Callbacks IV

void SomeClass::run_cb_queue(){
std::unique_lock lock(m_mutex);
while(true){

if(callback_queue.empty()){
cb_task_scheduled=false;
return;

}
auto entry=callback_queue.front();
callback_queue.pop();
lock.unlock();
entry();
lock.lock();

}
}

Queued Callbacks IV

void SomeClass::run_cb_queue(){
std::unique_lock lock(m_mutex);
while(true){

if(callback_queue.empty()){
cb_task_scheduled=false;
return;

}
auto entry=callback_queue.front();
callback_queue.pop();
lock.unlock();
entry(); // check if still registered
lock.lock();

}
}

Lifetimes

Dangling pointers and references cause
undefined behaviour.

Easy to get with multithreaded code.

Lifetimes II

thread_pool tp;
void launch_tasks(){

for(unsigned i=0;i<num_tasks;++i){
tp.submit([&]{run_task(i);});

}
}

Lifetimes II

thread_pool tp;
void launch_tasks(){

for(unsigned i=0;i<num_tasks;++i){
tp.submit([&]{run_task(i);});

}
}

Lifetimes III

thread_pool tp;
void launch_tasks(){

for(unsigned i=0;i<num_tasks;++i){
tp.submit([=]{run_task(i);});

}
}

Guideline

Capture by value when passing data
to tasks if possible to avoid

accidental data races and dangling
references or pointers

Lifetimes IV

Sometimes you need a reference or pointer.

class SomeClass{
FileHandle file;

void async_load_data(){
if(file.at_eof()) return;
file.async_read([this](auto block){

process_chunk(block);
async_load_data();

});
}

};

Lifetimes V

Consider

void foo(){
SomeClass x;
x.async_load_data();

}

Unless the destructor does something, the async
tasks will outlive x, and have dangling pointers

Lifetimes V

Consider

void foo(){
SomeClass x;
x.async_load_data();

}

Unless the destructor does something, the async
tasks will outlive x, and have dangling pointers

Lifetimes VI

If your tasks hold a pointer or reference, you
need to keep the data alive

Give the tasks ownership of the data

Wait for all tasks
Set a “shutting down” flag to stop new tasks

Lifetimes VI

If your tasks hold a pointer or reference, you
need to keep the data alive

Give the tasks ownership of the data

Wait for all tasks
Set a “shutting down” flag to stop new tasks

Lifetimes VI

If your tasks hold a pointer or reference, you
need to keep the data alive

Give the tasks ownership of the data
Wait for all tasks

Set a “shutting down” flag to stop new tasks

Lifetimes VI

If your tasks hold a pointer or reference, you
need to keep the data alive

Give the tasks ownership of the data
Wait for all tasks
Set a “shutting down” flag to stop new tasks

Sharing ownership with tasks

If the tasks own the data they refer to then there
are no dangling pointers or references

Use std::shared_ptr<T> to manage the
data

Sharing ownership with tasks II

class SomeClass{
struct Data:

std::enable_shared_from_this<Data> {
FileHandle file;
void async_load_data();

};
std::shared_ptr<Data> impl;

void async_load_data(){
impl->async_load_data();

}
};

Sharing ownership with tasks III

void SomeClass::Data::async_load_data(){
if(file.at_eof()) return;
auto self=shared_from_this();
file.async_read([self](auto block){

self->process_chunk(block);
self->async_load_data();

});
}

Sharing ownership with tasks IV

This avoids dangling pointers, but we can still
get dangling tasks.

⇒ We still need to wait for our tasks and do an
orderly shutdown.

Sharing ownership with tasks IV

This avoids dangling pointers, but we can still
get dangling tasks.

⇒ We still need to wait for our tasks and do an
orderly shutdown.

Avoid std::weak_ptr in tasks

std::shared_ptr<Data> data;
void foo(){

std::weak_ptr<Data> data_ref=data;
pool.submit([data_ref]{

if(auto p=data_ref.lock()){
do_stuff(p);

}
});

}

Avoid std::weak_ptr in tasks II

Thread 1 Thread 2
Running task
p=data_ref.lock()
(Returns non-null)

data.reset()
do_stuff(p)
Destroys p
⇒ destroys Data object

Safe shutdown

To shutdown safely we must signal the tasks to
stop, and prevent new tasks being started.

C++20 will give us std::stop_source and
std::stop_token for this purpose.

Safe shutdown II

struct SomeClass::Data{
std::stop_source stop_flag;

};
void SomeClass::Data::async_load_data(){

if(stop_flag.stop_requested()) return;
//...

}
SomeClass::~SomeClass(){

impl->stop_flag.request_stop();
}

Safe shutdown III

std::stop_token also allows for callbacks to
interrupt tasks

struct SomeClass::Data{
std::optional<std::stop_callback> stop_cb;

};
void SomeClass::Data::async_load_data(){

stop_cb.emplace(stop_flag.get_token(),
[this]{

file.stop_async_task();
});
//...

}

Safe shutdown III

std::stop_token also allows for callbacks to
interrupt tasks

struct SomeClass::Data{
std::optional<std::stop_callback> stop_cb;

};
void SomeClass::Data::async_load_data(){

stop_cb.emplace(stop_flag.get_token(),
[this]{ // Outer callback keeps alive

file.stop_async_task();
});
//...

}

std::stop_source and std::stop_token

You can read the proposal online at
https://wg21.link/p0660

There is a sample implementation is on github:
https://github.com/josuttis/jthread

If you can’t use that, then a simple wrapper
around std::atomic<bool> works in most
cases.

https://wg21.link/p0660
https://github.com/josuttis/jthread

Waiting for tasks to finish

Orderly shutdown without dangling tasks
requires waiting for tasks to finish.

Waiting for tasks to finish II

Store futures for each task and wait for each
in turn.

Serial waiting is inefficient
Requires synchronization of container

Waiting for tasks to finish III

Count tasks and wait for the count to reach zero.

A counter needs synchronization
Waiting requires something else like a
std::condition_variable

Less overhead than futures

Waiting for tasks to finish IV

class counting_executor {
thread_pool &pool;
std::mutex mutex;
std::condition_variable cond;
unsigned active_tasks;
bool stop_requested;

public:
counting_executor(thread_pool &pool_);
~counting_executor();
template <typename Task>
bool submit(Task task_);

};

Waiting for tasks to finish V

counting_executor::~counting_executor() {
std::unique_lock guard(mutex);
stop_requested= true;
cond.wait(guard, [&] {

return active_tasks == 0;
});

}

Waiting for tasks to finish VI

template <typename Task>
bool counting_executor::submit(Task t) {

std::lock_guard guard(mutex);
if(stop_requested) return false;
++active_tasks;
pool.submit([task= std::move(t), this] {

task();
std::lock_guard guard(mutex);
if(!--active_tasks && stop_requested)

cond.notify_all();
});
return true;

}

Waiting for tasks to finish VII

If you wait for all tasks to finish, you may not
need shared ownership.

Guidelines

Guidelines

Do not call user-provided code while holding
a lock
Watch out for dangling pointers and
references
Prefer copying values where possible
Use std::shared_ptr to manage
lifetimes
Use std::stop_token and
std::stop_source to avoid dangling
tasks
Wait for tasks to finish to avoid dangling
tasks and pointers

Alternatives

Alternatives to task-based systems

Explicit threads
Actors and message-passing
Parallel algorithms
Coroutines with a multithreaded scheduler

My Book

C++ Concurrency in Action
Second Edition

Covers C++17 and the
Concurrency TS

Finally in print!

cplusplusconcurrencyinaction.com

https://www.cplusplusconcurrencyinaction.com

Just::Thread Pro

just::thread Pro provides an actor framework, a concurrent
hash map, a concurrent queue, synchronized values and a

complete implementation of the C++ Concurrency TS, including
a lock-free implementation of atomic_shared_ptr and RCU.

http://stdthread.co.uk

http://stdthread.co.uk

Questions?

