
1/59

Taming Dynamic Memory
An Introduction to Custom Allocators

Andreas Weis

BMW AG

ACCU, April 12, 2019



2/59

About me

ComicSansMS

@DerGhulbus

Co-organizer of the Munich C++ User Group

Currently working as a Software Architect for BMW

https://stackoverflow.com/users/577603/comicsansms
https://github.com/ComicSansMS
https://twitter.com/DerGhulbus/
https://www.meetup.com/MUCplusplus/


3/59

Overview

What’s wrong with global new and delete?

Local allocators

Alternative allocation strategies

Allocator support in C++



4/59

General purpose allocator

auto p1 = allocate(3);

auto p2 = allocate(4);

auto p3 = allocate(1);

auto p4 = allocate(3);

auto p5 = allocate(2);



4/59

General purpose allocator

auto p1 = allocate(3);

auto p2 = allocate(4);

auto p3 = allocate(1);

auto p4 = allocate(3);

auto p5 = allocate(2);



4/59

General purpose allocator

auto p1 = allocate(3);

auto p2 = allocate(4);

auto p3 = allocate(1);

auto p4 = allocate(3);

auto p5 = allocate(2);



4/59

General purpose allocator

auto p1 = allocate(3);

auto p2 = allocate(4);

auto p3 = allocate(1);

auto p4 = allocate(3);

auto p5 = allocate(2);



5/59

General purpose allocator

deallocate(p2);

auto p6 = allocate(2);



5/59

General purpose allocator

deallocate(p2);

auto p6 = allocate(2);



5/59

General purpose allocator

deallocate(p2);

auto p6 = allocate(2);



5/59

General purpose allocator

deallocate(p2);

auto p6 = allocate(2);



6/59

Fragmentation

auto p7 = allocate(4);

Runtime Error!



6/59

Fragmentation

auto p7 = allocate(4);

Runtime Error!



7/59

Coalescing

deallocate(p4);

deallocate(p3);



7/59

Coalescing

deallocate(p4);

deallocate(p3);



7/59

Coalescing

deallocate(p4);

deallocate(p3);



7/59

Coalescing

deallocate(p4);

deallocate(p3);



7/59

Coalescing

deallocate(p4);

deallocate(p3);



8/59

Problems with default allocator

Complex runtime behavior

What is the maximum memory usage?
What is the worst-case execution time for an allocation or deallocation?

Shared global state

Reasoning about allocator behavior requires global knowledge of the whole program
The singular resource global allocator is a potential bottleneck

It’s not just about performance!



9/59

From Global to Local

auto p1 = allocate (42);

deallocate(p1);



10/59

From Global to Local

Allocator alloc;

auto p1 = alloc.allocate (42);

alloc.deallocate(p1);



11/59

Problems with default allocator

Complex runtime behavior

What is the maximum memory usage?
What is the worst-case execution time for an allocation or deallocation?

Shared global state X1

1John Lakos - Allocator-Aware Software, ACCU 2019



12/59

Monotonic Allocator

auto p1 = monot.allocate(3);

auto p2 = monot.allocate(2);

auto p3 = monot.allocate(4);



12/59

Monotonic Allocator

auto p1 = monot.allocate(3);

auto p2 = monot.allocate(2);

auto p3 = monot.allocate(4);



12/59

Monotonic Allocator

auto p1 = monot.allocate(3);

auto p2 = monot.allocate(2);

auto p3 = monot.allocate(4);



12/59

Monotonic Allocator

auto p1 = monot.allocate(3);

auto p2 = monot.allocate(2);

auto p3 = monot.allocate(4);



13/59

Monotonic Allocator

monot.deallocate(p2);

monot.deallocate(p1);

monot.deallocate(p3);

auto p4 = allocate(2);



13/59

Monotonic Allocator

monot.deallocate(p2);

monot.deallocate(p1);

monot.deallocate(p3);

auto p4 = allocate(2);



13/59

Monotonic Allocator

monot.deallocate(p2);

monot.deallocate(p1);

monot.deallocate(p3);

auto p4 = allocate(2);



13/59

Monotonic Allocator

monot.deallocate(p2);

monot.deallocate(p1);

monot.deallocate(p3);

auto p4 = allocate(2);



13/59

Monotonic Allocator

monot.deallocate(p2);

monot.deallocate(p1);

monot.deallocate(p3);

auto p4 = allocate(2);



14/59

Monotonic Allocator - Reclamation

monot.deallocate(p4);

monot.release();



14/59

Monotonic Allocator - Reclamation

monot.deallocate(p4);

monot.release();



14/59

Monotonic Allocator - Reclamation

monot.deallocate(p4);

monot.release();



14/59

Monotonic Allocator - Reclamation

monot.deallocate(p4);

monot.release();



15/59

Monotonic Allocator

Deterministic runtime cost

Extremely efficient

No fragmentation

Easy to implement

Trivial to make thread-safe

But:

Memory can only be reclaimed all at once



16/59

Where is this actually useful?

Frames in a video game

Handling of a single event in an event-driven system

Cyclic execution in a real-time system

Containers that are initialized but not changed after

static state - Objects that will never be destroyed



17/59

Monotonic Allocator - std::vector



17/59

Monotonic Allocator - std::vector



17/59

Monotonic Allocator - std::vector



18/59

Monotonic Allocator - STL containers

vector should reserve final size upfront

list and map work fine, but deleted elements are not reclaimed individually

deque works really well

unordered map deserves a closer look. . .



19/59

unordered map

Exact layout depends on hash function and inserted values



19/59

unordered map

Exact layout depends on hash function and inserted values



19/59

unordered map

Exact layout depends on hash function and inserted values



19/59

unordered map

Exact layout depends on hash function and inserted values



20/59

unordered map – Rehashing

Allocation behavior is a hybrid between vector and list



20/59

unordered map – Rehashing

Allocation behavior is a hybrid between vector and list



20/59

unordered map – Rehashing

Allocation behavior is a hybrid between vector and list



21/59

Stack Allocator

monot.deallocate(p3);



21/59

Stack Allocator

monot.deallocate(p3);



21/59

Stack Allocator

monot.deallocate(p3);



21/59

Stack Allocator

monot.deallocate(p3);



22/59

Stack Allocator

Strict LIFO-ordering of allocations and deallocations

No way for the implementation to check whether the deallocation order is correct!



23/59

Stack Allocator

monot.deallocate(p3);

p3 == top X
top = ???



23/59

Stack Allocator

monot.deallocate(p3);

p3 == top X

top = ???



23/59

Stack Allocator

monot.deallocate(p3);

p3 == top X
top = ???



23/59

Stack Allocator

monot.deallocate(p3);

p3 == top X

top = ???



24/59

Stack Allocator

Strict LIFO-ordering of allocations and deallocations.

No way for the implementation to check whether the deallocation order is correct!

Free-pointer is reset to the same pointer passed to the deallocate call

Padding bytes may be lost to internal fragmentation



24/59

Stack Allocator

Strict LIFO-ordering of allocations and deallocations.

No way for the implementation to check whether the deallocation order is correct!

Free-pointer is reset to the same pointer passed to the deallocate call

Padding bytes may be lost to internal fragmentation



24/59

Stack Allocator

Strict LIFO-ordering of allocations and deallocations.

No way for the implementation to check whether the deallocation order is correct!

Free-pointer is reset to the same pointer passed to the deallocate call

Padding bytes may be lost to internal fragmentation



25/59

Padding



25/59

Padding



26/59

Alignment

0xdeadbeef =

d e a d b e e f

1101 1110 1010 1101 1011 1110 1110 1111



27/59

Alignment

0xdeadbeef =

d e a d b e e f

1101 1110 1010 1101 1011 1110 1110 1111

No alignment (1-byte aligned).



28/59

Alignment

0xdeadbeef =

d e a d b e e c

1101 1110 1010 1101 1011 1110 1110 1100

4-byte aligned.



29/59

Alignment

0xdeadbeef =

d e a d b e e 8

1101 1110 1010 1101 1011 1110 1110 1000

8-byte aligned.



30/59

Alignment

Alignment refers to the least-significant bits of the object address being 0

Alignment requirements are always specified in powers of 2

Each built-in C++ type has a natural alignment requirement (typically
alignof(T) == sizeof(T))

This is why structs sometimes insert padding bytes between members



31/59

Alignment

Default allocator typically returns addresses aligned to alignof(max align t),
which is big enough for all built-in types

Users may extend the alignment requirement for custom data types using
alignas

void* allocate(std:: size_t bytes ,

std:: size_t alignment );



32/59

Padding



32/59

Padding



32/59

Padding



33/59

Monotonic Allocator - Extensions

extpool.deallocate(p2);

extpool.deallocate(p3);



33/59

Monotonic Allocator - Extensions

extpool.deallocate(p2);

extpool.deallocate(p3);



33/59

Monotonic Allocator - Extensions

extpool.deallocate(p2);

extpool.deallocate(p3);



33/59

Monotonic Allocator - Extensions

extpool.deallocate(p2);

extpool.deallocate(p3);



33/59

Monotonic Allocator - Extensions

extpool.deallocate(p2);

extpool.deallocate(p3);



33/59

Monotonic Allocator - Extensions

extpool.deallocate(p2);

extpool.deallocate(p3);



33/59

Monotonic Allocator - Extensions

extpool.deallocate(p2);

extpool.deallocate(p3);



33/59

Monotonic Allocator - Extensions

extpool.deallocate(p2);

extpool.deallocate(p3);



33/59

Monotonic Allocator - Extensions

extpool.deallocate(p2);

extpool.deallocate(p3);



34/59

Monotonic Allocator - Extensions

Auxiliary data structure required

Runtime cost of deallocation now linear in number of allocations (amortized O(1))

Auxiliary nodes have their own alignment requirements

Where to store the auxiliary nodes?



35/59

Monotonic Allocator - Extensions



35/59

Monotonic Allocator - Extensions



36/59

Internal or External?

External headers have better cache behavior when iterating the list

External headers might have stricter alignment requirements than data

Internal headers have better cache behavior when adjacent data is hot

Internal headers require managed memory to be readable (think GPUs)

Where does the storage for external headers come from? Same buffer? Different
buffer? How big?

⇒ No easy answers.



37/59

The Bottom Line. . .

Even seemingly simple extensions get complicated very quickly.

Don’t try to increase generality through clever extensions.
Only consider modifications if it’s a perfect fit for your use case.



38/59

But what if I need to reclaim memory?

−→ Pool Allocator



39/59

Pool Allocator



40/59

Pool Allocator

auto p1 = pool.allocate(2);

auto p2 = pool.allocate(4);

auto p3 = pool.allocate(3);

pool.deallocate(p1);

auto p4 = pool.allocate(1);



40/59

Pool Allocator

auto p1 = pool.allocate(2);

auto p2 = pool.allocate(4);

auto p3 = pool.allocate(3);

pool.deallocate(p1);

auto p4 = pool.allocate(1);



40/59

Pool Allocator

auto p1 = pool.allocate(2);

auto p2 = pool.allocate(4);

auto p3 = pool.allocate(3);

pool.deallocate(p1);

auto p4 = pool.allocate(1);



40/59

Pool Allocator

auto p1 = pool.allocate(2);

auto p2 = pool.allocate(4);

auto p3 = pool.allocate(3);

pool.deallocate(p1);

auto p4 = pool.allocate(1);



40/59

Pool Allocator

auto p1 = pool.allocate(2);

auto p2 = pool.allocate(4);

auto p3 = pool.allocate(3);

pool.deallocate(p1);

auto p4 = pool.allocate(1);



40/59

Pool Allocator

auto p1 = pool.allocate(2);

auto p2 = pool.allocate(4);

auto p3 = pool.allocate(3);

pool.deallocate(p1);

auto p4 = pool.allocate(1);



41/59

Pool Allocator - Reclamation

auto p1 = pool.allocate(2);

auto p2 = pool.allocate(4);

pool.deallocate(p1);

pool.deallocate(p2);



41/59

Pool Allocator - Reclamation

auto p1 = pool.allocate(2);

auto p2 = pool.allocate(4);

pool.deallocate(p1);

pool.deallocate(p2);



41/59

Pool Allocator - Reclamation

auto p1 = pool.allocate(2);

auto p2 = pool.allocate(4);

pool.deallocate(p1);

pool.deallocate(p2);



41/59

Pool Allocator - Reclamation

auto p1 = pool.allocate(2);

auto p2 = pool.allocate(4);

pool.deallocate(p1);

pool.deallocate(p2);



41/59

Pool Allocator - Reclamation

auto p1 = pool.allocate(2);

auto p2 = pool.allocate(4);

pool.deallocate(p1);

pool.deallocate(p2);



41/59

Pool Allocator - Reclamation

auto p1 = pool.allocate(2);

auto p2 = pool.allocate(4);

pool.deallocate(p1);

pool.deallocate(p2);



42/59

Pool Allocator - Diffusion



43/59

Pool Allocator

Deterministic runtime cost

No external fragmentation

Easy to make thread-safe

But:

Cannot serve allocations bigger than chunk size

High waste through internal fragmentation if sizes of objects vary a lot



44/59

Pool Allocator - STL containers

vector only if chunk sizes match vector size

list and map are a perfect fit, as the size of each node is known beforehand
(though this knowledge is implementation-specific)

Similar for deque

unordered map again deserves a closer look...



45/59

unordered map



46/59

But what if I do need different sizes?

−→ Multipool Allocator



47/59

Multipool Allocator

auto p1 = multipool.allocate(6);

auto p2 = multipool.allocate(2);



47/59

Multipool Allocator

auto p1 = multipool.allocate(6);

auto p2 = multipool.allocate(2);



47/59

Multipool Allocator

auto p1 = multipool.allocate(6);

auto p2 = multipool.allocate(2);



47/59

Multipool Allocator

auto p1 = multipool.allocate(6);

auto p2 = multipool.allocate(2);



47/59

Multipool Allocator

auto p1 = multipool.allocate(6);

auto p2 = multipool.allocate(2);



48/59

Multipool Allocator

Very powerful allocator

Runtime is still deterministic if number of pools is known beforehand

Maximum amount of waste through internal fragmentation can be controlled
precisely

Difficult to set up: How many pools do I need? What chunk sizes? What pool
sizes?

Solid building block for a general purpose allocator



49/59

Allocator support in C++

std::vector<T, Allocator<T>> v;

v.push back(...);

This is not the class allocating the memory.



49/59

Allocator support in C++

std::vector<T, Allocator<T>> v;

v.push back(...);

This is not the class allocating the memory.



50/59

Allocator support in C++

Historically, C++ used Allocators to abstract over different models of addressing
memory.
As such, Allocators in C++ are “stateless”.

In C++ an Allocator is merely a handle to a memory resource.2

2Arthur O’Dwyer - An Allocator is a Handle to the Heap

https://www.youtube.com/watch?v=0MdSJsCTRkY


50/59

Allocator support in C++

Historically, C++ used Allocators to abstract over different models of addressing
memory.
As such, Allocators in C++ are “stateless”.

In C++ an Allocator is merely a handle to a memory resource.2

2Arthur O’Dwyer - An Allocator is a Handle to the Heap

https://www.youtube.com/watch?v=0MdSJsCTRkY


51/59

Allocator support in C++

std::pmr::memory resource& mr = ...;

std::vector<T, std::pmr::polymorphic allocator> v(&mr);

std::pmr::vector<T> v(&mr);

v.push back(...);

Enable custom allocators for the object.

Pass a memory resource to handle allocation/deallocation.



51/59

Allocator support in C++

std::pmr::memory resource& mr = ...;

std::vector<T, std::pmr::polymorphic allocator> v(&mr);

std::pmr::vector<T> v(&mr);

v.push back(...);

Enable custom allocators for the object.

Pass a memory resource to handle allocation/deallocation.



51/59

Allocator support in C++

std::pmr::memory resource& mr = ...;

std::vector<T, std::pmr::polymorphic allocator> v(&mr);

std::pmr::vector<T> v(&mr);

v.push back(...);

Enable custom allocators for the object.

Pass a memory resource to handle allocation/deallocation.



51/59

Allocator support in C++

std::pmr::memory resource& mr = ...;

std::vector<T, std::pmr::polymorphic allocator> v(&mr);

std::pmr::vector<T> v(&mr);

v.push back(...);

Enable custom allocators for the object.

Pass a memory resource to handle allocation/deallocation.



52/59

C++ Memory Resources3

std::pmr::memory resource - Abstract base class for all resources that can be
wrapped in a std::pmr::polymorphic allocator

std::pmr::new delete resource() - Global allocator

std::pmr::monotonic buffer resource - Monotonic allocator

std::pmr::unsynchronized pool resource/ synchronized pool resource

- Multipool

std::pmr::null memory resource() - Allocation always fails

3Pablo Halpern - Allocators: The Good Parts

https://www.youtube.com/watch?v=v3dz-AKOVL8


53/59

Chaining

explicit monotonic_buffer_resource(

std::pmr:: memory_resource* upstream );

Each memory resource has an upstream counterpart.

If the resource runs out of memory, it tries to allocate more memory from upstream.



54/59

Chaining

// fixed size buffer

std:: aligned_storage_t <42> buffer;

std::pmr:: monotonic_buffer_resource alloc(&buffer , 42,

std::pmr:: null_memory_resource ()

);

// dynamically growing

std:: aligned_storage_t <42> buffer;

std::pmr:: monotonic_buffer_resource alloc(&buffer , 42,

std::pmr:: new_delete_resource ()

);



54/59

Chaining

// fixed size buffer

std:: aligned_storage_t <42> buffer;

std::pmr:: monotonic_buffer_resource alloc(&buffer , 42,

std::pmr:: null_memory_resource ()

);

// dynamically growing

std:: aligned_storage_t <42> buffer;

std::pmr:: monotonic_buffer_resource alloc(&buffer , 42,

std::pmr:: new_delete_resource ()

);



55/59

Chaining

Possible uses of Chaining:

Fixed-size vs. dynamic storage for allocators

Customization of error-handling

Combination of different allocation strategies

Injection points for special purpose allocators for debugging and profiling



56/59

There’s no universal interface for allocators

Are size and alignment parameters passed to deallocate?

Is realloc supported?

How are out-of-memory errors reported?

Is extended alignment supported?

What is the return value for an allocation of size 0?

Different memory regions for internal data structures and allocated memory?



57/59

Don’t underestimate the global allocator

Competitive performance in the general case

Security features (ASLR, secure erase of freed memory)

Debugging & Profiling (Valgrind, Windows Debug Runtime)

Cache Coloring

Local allocators are no free lunch!



58/59

Wrapping up

No one-size-fits-all — Each allocator has its Achilles heel

Global allocator is a good solution for the general case

But you can do better with special allocators for special use cases, in terms of
performance4 as well as reliability

C++ has good support for local allocators, but the terminology is a bit off

Different libraries have different concepts of allocators

No free lunch: You need to understand your use case before you can chose the
right allocator

4John Lakos - Local (Arena) Allocators

https://www.youtube.com/watch?v=ko6uyw0C8r0


59/59

Thanks for your attention.

ComicSansMS / @DerGhulbus

https://stackoverflow.com/users/577603/comicsansms
https://github.com/ComicSansMS
https://twitter.com/DerGhulbus/

