C++ ecosystem:
For better, for worse

Anastasia Kazakova
JetBrains
@anastasiak2512
ACCU 2019

Agenda

The current state of C++ development
C++ In top areas. Needs and requests

What else is important? Unit testing & code analysis
Language evolution and tooling

N\

The State of Developer Ecosystem

Yearly: 2017, 2018, 2019
~15K respondents total
6 languages

Enough data from all over the world
Weighting

The State of Developer Ecosystem: C++

C or C++ used in the last 12 months - 5427
C used in the last 12 months - 3410

C++ used in the last 12 months - 4148
Primary C++ - 1698

C++ Developer Survey by CPP Foundation

2018

C++ used at work - 2884
Hobby/personal - 2380
>50% have >5 years in C++

The State of Developer Ecosystem: C++

70,0 %

60,0 %

50,0 %

40,0 %

30,0 %

20,0 %

10,0 %

0,0 %

Window

UNIX / Linux

Platforms distribution

macOS

all-3

any-2

The State of Developer Ecosystem: C++

36,0 %

32,0 %

28,0 %

24,0 %

20,0 %

16,0 %

12,0 %

8,0 %

4,0 %

0,0 %

Embedded

Games

Libraries/Frameworks

Mobile

Areas

35,1 %

Desktop

ML

Web Back-end Web Front-end

The State of Developer Ecosystem: C++

60,0 %
55,0 %
50,0 %
45,0 %
40,0 %
35,0 %
30,0 %
25,0 %
20,0 %
15,0 %
10,0 %

5,0 %

0,0 %

Student

3,7 %
Self-employed

retired

Employment status

3,2 %
partially employed

Fully employed

4,0 %

Freelancer

Other

Throwing a ball

C++ standards

C++ standards

C++ standards usage

60,0 %

59,8 %

55,0 %

50,0 %

45,0 %

40,0 %

35,0 %

30,0 %

25,0 %

20,0 %

15,0 %

10,0 %

9,4 %
5,0 %

0,0 %

B C++03

C++ standards

C++ standards 2019-2018
60,0 %

59,4 % 59,8 %

55,0 %
50,0 %
45,0 %
40,0 %
35,0 %
30,0 %
25,0 %
20,0 %
15,0 %
10,0 %

5,0 %

0,0 %
C++98 C++03 C++11 C++14 C++17

B 2018 W 2019

C++ standards

60,0 %
55,0 %
50,0 %
45,0 %
40,0 %
35,0 %
30,0 %
25,0 %
20,0 %
15,0 %
10,0 %
5,0 %
0,0 %

13,5 %

C++98

C++ standards 2019-2018

12,1 %

9,4 %

C++03

B 2018

59,4 %

C++11

59,8 %

C++14

W 2019

C++17

C++98/03
(e.g.,...

C++11 (e.g.,
auto, move...

C++14 (e.g.,

generic...

C++17 (e.g.,
if constexpr...

.Yes: Pretty much all features . Partial: Just a few selected features

0% 10% 20%

No: Not allowed

30%

40%

50%

60%

70%

80%

0% 100%

C++ standards

B C++11 (34%)
B C++03 (15%)
B C99 (13%)

B ANSI (13%)

B C++98 (13%)
B C11(7%)

! Embedded (4%)

C++ versions m

The most popular C++ version is currently
C++11, with a share of 34%.

The State of Developer Ecosystem: C++

Per platforms distribution
Per compiler distribution

Per area of development
Per employment group

C++ standards

C++ standards by platform

70,0 %

65,0 %

60,0 %

55,0 %

50,0 %

45,0 %

40,0 %

35,0 %

30,0 %

25,0 %

20,0 %

15,0 %

10,0 %

5,0 %

Window UNIX / Linux macQOS
B C++98 W C++03 . C++11 B C++14 B C++17

0,0 %

C++ standards

C++ standards by compiler

70,0 %

65,0 %

60,0 %

55,0 %

50,0 %

45,0 %

40,0 %

35,0 %

30,0 %

25,0 %

20,0 %

15,0 %

10,0 %
5,0 %

0,0 %
GCC Clang MSVC

B C++98 W C++03 | C++11 B C++14 B C++17

C++ standards

- C++ Standards by areas of development
70,0 %

65,0 %
60,0 %
55,0 %
50,0 %
45,0 %
40,0 %
35,0 %
30,0 %
25,0 %
20,0 %
15,0 %
10,0 %

5,0 %

0,0 %

Embedded Games Libraries/Frameworks Mobile Desktop ML Web Front-end Web Back-end

B C++98 B C++03 | C++11 B C++14 B C++17

C++ standards

Standards distribution inside each employment group
50,0 %

45,0 %
40,0 %
35,0 %
30,0 %
25,0 %
20,0 %
15,0 %
10,0 %

5,0 %

0,0 %

Student Self-employed Partially employed Fully employed Freelancer
B % at C++98 B % at C++03 . % at C++11 B % atC++14 B % at C++17

C++ standards

Standards usage for two biggest employment groups

90,0 %
80,0 %
70,0 %
60,0 %
50,0 %
40,0 %
30,0 %
20,0 %
0,0 %
C++98 C++03 C++11 C++14 C++17
B Student B Fully employed

Throwing a ball

Upgrading

C++ standards: upgrade

60,0 %
55,0 %
50,0 %
45,0 %
40,0 %
35,0 %
30,0 %
25,0 %
20,0 %
15,0 %
10,0 %

5,0 %

0,0 %

% to C++17

Plans to upgrade

% to C++14

% to C++11

% to C++03

% no upgrade

C++ standards: upgrade

Willing to upgrade to newer standard per current standard in use

100 %
90 %
80 %
70 %
60 %
= B
e

40 %
30 %
20 %

10 %

0%
All respondents C++98 C++03 C++11 C++14 C++17

B % to C++17 B % to C++14 % to C++11 B % to C++03 B % no upgrade

Throwing a ball

C++ per areas

C++ per areas

Finances / Banking / Trading
Embedded
Games

C++ in Banking and Trading

) « BURLSD- L S37. 00000 14 pn EESD
FALED S Tom £ X8/ Xe

’ e "o

C++ in Banking and Trading

Language choices:
Java for the big enterprise systems, back end trading platforms etc.
C++ for the low latency / high performance stuff
C# for front-end / desktop apps
Python for various scripting
C++ Is a primary choice
Especially low latency trading and quantitive analytics
Performance

C++ in Banking and Trading

Performance:
Low latency, not quick throughput
And safety
Requires understanding of the compiler output

Carl Cook “When a Microsecond Is an Eternity: High Performance Trading Systems in C++" (CppCon 2017)

C++ in Banking and Trading

C++ usage:
Allocations are important
Exceptions are fine, if they don’t throw and not in the control flow
Templates over virtual functions and branches
Usage of low-level CPU instructions

Related ecosystem:
Huge infrastructure, learning materials, wide expertise
Lots of SDKs (CUDA, QuantLib)
High cost of moving to the new technologies
Affects clients

C++ in Embedded

M
4

1%
mz

0
s
=
=
I~ T
—
—
O
-
o

-
=
=

L e

xxmms ARDUINO

ANALOG IN

C++ in Embedded

Controlled by MCUs vendors
Testing / Standards compliance / Certification tools
Language choices:

C and C++, often more C than C++

Python, Lua, etc. for scripting, configurations, etc.
Vendor’s compilers / debuggers / etc.

C++ in Embedded

C++ usage:
Classes are C structs with function pointers
Macros are everywhere

Direct memory/registers access

Data structures in memory are specifically packed

C++ in Games

C++ in Games

Language choices:
Unity/C# takes the biggest part of the market
AAA is mostly C++, Unreal Engine, Lumberyard, CryEngine and custom in-house engines
Rendering is mostly in C

Console SDKs in binaries

Performance (latency)

C++ in Games

C++ usage
C++03 and C++11
In-house reflection implementations
No Boost or STL because of the allocations
Minimal template usage
No exceptions because of their cost

C++ in Games

Reflection
For serialization
For GC
For network replication
For various characteristics

C++ in Games #include "MyObject.generated.h"

UCLASS(Blueprintable)
class UMyObject : public UObject

{
GENERATED_BODY()
Reflection in Unreal Engine: oublics
- Serves for interaction between C++/Blueprint MyUObject();
- Implemented with macros | |
UPROPERTY(BlueprintReadOnly, EditAnywhere)
- RPC methods float ExampleProperty;
UFUNCTION(BlueprintCallable)
void ExampleFunction();
460 /** [server] remove all weapons from inventory and destroy them */ I;
&= 461 void DestroyInventory();
462
463 /** equip weapon */
, 464 UFUNCTION(reliable, server, WithValidation)
& | 465 void SerfverEquipWeapon(class AShooterWeapon* NewWeapon);

-

% AShooterCharacter:ServerEquipWeapon_Implementation(AShooterWeapon* Weapon) -> void

¥ AShooterCharacter::ServerEquipWeapon_Validate(AShooterWeapon* Weapon) -> bool

& 469 | volid ServerSetTargeting(bool bNewTargeting);
470
471 /** update targeting state */
472 UFUNCTION(reliable, server, WithValidation)

&= 473 void ServerSetRunning(bool bNewRunning, bool bToggle);

C++ in Games

Custom STL & Allocations
No STL, custom structures, plain arrays
Non-default memory alignment requirements
Newly constructed or reset container allocates no memory
Avoiding heap
Temporal allocators with the life-time of the frame

Sample: InplaceArray<ubi32, 8>

Nicolas Fleury "C++ in Huge AAA Games” (CppCon 2014)

Scott Wardle "Memory and C++ debugging at Electronic Arts” (CppCon 2015)
EASTL — Electronic Arts Standard Template Library

"Among game developers the most fundamental weakness [of the STL] is the std allocator design, and it is
this weakness that was the largest contributing factor to the creation of EASTL.”

Throwing a ball

Unit testing

Unit testing

Regularly used unit testing framework

40,0 %

35,0 %

30,0 %

25,0 %

20,0 %

15,0 %

10,0 %

6,8 %

5,0 % 6,0 %

0,0 %
None Boost.Test Google Test CppUnit Catch Custom

B 2018 W 2019

Unit testing

~70 in the list: https://en.wikipedia.org/wiki/List of unit_testing_frameworks#C++
Reddit discussions:
Most Popular C++ Unit Testing Frameworks
https://www.reddit.com/r/cpp/comments/4e9afx/most_popular_c _unit_testing_frameworks/
Best way to do unit testing in c++?
https://www.reddit.com/r/cpp/comments/36pru0/best way to_do_unit testing_in_c/
Is there a de-facto standard "framework" for unit testing in C++7
https://www.reddit.com/r/cpp/comments/1zh0Op1/is_there a_ defacto_standard framework for unit/
Recommendations: Google Test (with Google Mock), Catch

https://en.wikipedia.org/wiki/List_of_unit_testing_frameworks#C++
https://www.reddit.com/r/cpp/comments/4e9afx/most_popular_c_unit_testing_frameworks/
https://www.reddit.com/r/cpp/comments/36pru0/best_way_to_do_unit_testing_in_c/
https://www.reddit.com/r/cpp/comments/1zh0p1/is_there_a_defacto_standard_framework_for_unit/

Unit testing

Criteria Framework

Feature rich Google Test, Boost.Test
Easy-to-start Catch

Integrations Google Test

Unit testing

Embedded market:

- tests running on hardware

- tests are required for certifications according to the standards
- no home-made products because of the certification

- no integration into IDEs (Eclipse)

. pricy External channels N: 227 Internal channels N: 276
values shares lower CI upper Cl shares lower Cl upperCl
No, | don't use any 89% 84% 92% 89% 84% 92%
Other - Write In 7% 4% 11% 8% 5% 12%
VectorCAST 1% 0% 4% 1% 1% 4%
TestPlant 1% 0% 3% 0% 0% 3%
Parasoft DTP 1% 0% 3%
RogueWave KlockWork 1% 0% 3% 2% 1% 4%
QA Systems CANTATA 1% 0% 4% 0% 0% 3%
Elvior TTCN-3 0% 0% 3%

hitex TESSY 0% 0% 3% 0% 0% 3%

Throwing a ball

Code analysis /
guidelines enforcement

Code analysis

Code analysis / guideline enforcement tools
50,0 %

45,0 %
40,0 %
35,0 %
30,0 %
25,0 %
20,0 %
15,0 %
10,0 %

8,2 %
5,0 %

3,8 %

3,2 %
None Clang-analyzer Clang-Tidy CppCheck Coverity Cpplint PVS-Studio IDE

0,0 %

Not throwing a ball

How C++ committee
and tooling can help?

Language evolution & tooling

Compatibility and reduced cost of the integration
C++ mostly never breaks the compatibility
Redesigning modules
New exceptions

Language evolution & tooling

Support in tooling
Compilers adopting new features quickly
IDEs providing support for features
Features are toolable

Language evolution & tooling

2

Examp|e: 3 template<typename ITER> <T>

. . 4 void kadane(

Templates |nte”|39nse 5 const ITER& input _begin,

6 const ITER& input_end,
_ _ 7 std: :pair<ITER, ITER>& output_range,

Visual Studio 8 =] typename std::iterator traits<ITER>::value_type& output_value)
9 {
10 typedef typename std::iterator_traits<ITER>::value_ type
11 ValueType;
12
13 ITER begin, begin_temp, end;
14 ValueType max_so_far{};
15 ValueType max_ending_here{};
16 1
17 begin = input_begin;
18 begin_temp = input begin;
19 end = input_begin;
20
21 // Holds the frontier value of K[i-1].

100% ~ 4

Ln 16 Col 5

Language evolution & tooling

=1/// @brief Add function
/// @tparam T Type of the element to add
/// @tparam C Container type
“template <typename T = int, typename C = std::vector<T>>

Example: _ _ —lvoid add(T ¢, C)
Templates intellisense {
//--.
ReSharper C++ y
-lvoid t <typename T = int, typename C = std:ivector<T>>
{ T: Type of the element to add
add<},>() 3
2

-1/// @brief Add function

/// @tparam T Type of the element to add

/// @tparam C Container type

template <typename T = int, typename C = std::vector<T>> <«T>
-lvoid add(T t, C container)

{

container.pb

AANAANAAANANAANNAANN

} ¥ push_back Function void std:vector<int>::push_back(const int& _Val)

W pop_back

References

C++ Foundation Developer Survey

[2018-2] https://isocpp.org/files/papers/CppDevSurvey-2018-02-summary.pdf
The State of Developer Ecosystem Survey

[2017] https://www.]etbrains.com/research/devecosystem-2017/cpp/

[2018] https://www.]etbrains.com/research/devecosystem-2018/cpp/

[2019] https://www.|etbrains.com/research/devecosystem-2019 — results are not yet available!
C/C++ Infographics

[collected 2013] https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/
Nicolas Fleury "C++ in Huge AAA Games"
[CppCon 2014] https://www.youtube.com/watch?v=qYN6edulUQ06s
Scott Wardle "Memory and C++ debugging at Electronic Arts”
[CppCon 2015] https://www.youtube.com/watch?v=8KIVWJUYDbDA
EASTL - Electronic Arts Standard Template Library
[2007] http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2271.html
[GitHub] https://github.com/electronicarts/EASTL
Carl Cook “When a Microsecond Is an Eternity: High Performance Trading Systems in C++”
[CppCon 2017] https://www.youtube.com/watch?v=NH1Tta7purM

https://isocpp.org/files/papers/CppDevSurvey-2018-02-summary.pdf
https://www.jetbrains.com/research/devecosystem-2017/cpp/
https://www.jetbrains.com/research/devecosystem-2018/cpp/
https://www.jetbrains.com/research/devecosystem-2019
https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/
https://www.youtube.com/watch?v=qYN6eduU06s
https://www.youtube.com/watch?v=8KIvWJUYbDA
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2271.html
https://www.youtube.com/watch?v=NH1Tta7purM

Thank you
for your attention

Questions?

