
What are hash

trees and why

you should care

Ahto Truu

Cryptographic hash functions

A hash function takes

arbitrary-sized data as

input and generates a

unique fixed-size bit

sequence as output.

The output is known as the hash

value, message digest, or digital

fingerprint of the input.

A cryptographically secure hash

function is one-way.

2

ONE-WAY ONLY.

REVERSING IMPOSSIBLE

INPUT DATA HASH FUNCTION HASH VALUE

1.6 MB

PDF CONTRACT

SHA256 HASH

FUNCTION

256-BIT HASH VALUE
B338DEBD 4F4B2778 5C58EAEF

18239308 21EFC36E 2219B051

B5F16B83 97483049

2 GB

VM IMAGE

SHA256 HASH

FUNCTION

256-BIT HASH VALUE
229A1873 609B7BE8 CD3F33B7

65D59EE5 74444949 32507D24

B4E6508E 49D4BC86

168 BYTES

LOG FILE

ENTRY

SHA256 HASH

FUNCTION

256-BIT HASH VALUE
90FB62D0 25454A54 93437CC9

B6507192 BE997D92 D31FF987

DC2B8780 E927BA57

#

Hashing and digital signatures I

Bob

• creates a contract X,

• signs it via h(X),

• gives to Alice.

Alice

• modifies X to X’

with h(X’) = h(X),

• claims Bob signed X’.

Forgery after signing.
h(X) = h(X’)

I OWE ALICE $10 I OWE ALICE $1000

X’X

3

Hashing and digital signatures II

Alice

• creates contracts X and X’

with h(X) = h(X’).

Bob

• signs X via h(X).

Alice

• claims Bob signed X’.

Forgery before signing.

h(X) = h(X’)

BOB OWES ME $10 BOB OWES ME $1000

X’X

4

Classical security properties

A secure hash function

has several properties

with non-obvious

relationships.

Different applications may rely on

different properties.

1. Pre-image resistance (one-wayness)

Hard to find a message matching a given hash value.

2. Second pre-image resistance

Hard to modify a message without changing its hash value.

3. Collision resistance (collision-freeness)

Hard to find different messages with the same hash.

Collision resistance is the strongest of the three, implies the others.

CRC32 does NOT meet any of the three requirements!

It is intended to guard against accidental errors, not malicious attacks.

Same for general hash functions in most standard libraries!

5

Aggregating hash values with hash trees

A hash tree takes hash

values as inputs and, via

repeated hash function

application, generates a

single root hash value.

On the figure:

• x1 to x8 are the input hash values

• h(x | y) is the hash value of the

concatenation of x and y

6

X1 X2 X3 X4 X5 X6 X7 X8

X12 = h(X1 | X2) X78 = h(X7 | X8)

X14 = h(X12 | X34) X58 = h(X56 | X78)

Xroot = h(X14 | X58)

X34 = h(X3 | X4)

INPUT VALUES

Hash chains as membership proofs

A hash chain contains all

the information needed to

regenerate the root hash

value from any particular

leaf of the tree.

Each leaf node in a hash tree with

N leaves needs log2(N) additional

hash values to regenerate the root.

7

In the example, if the owner of x3

knows {x4, x12, x58} then he can re-

create the root hash value, thus

proving that x3 participated in the

original computation that led to it.

If the data in question still hashes

to x3, then it must have been an

input to the original tree.

X3 X4

X34

X14

Xroot = h(X14 | X58)

X12

HASH TREE

HASH CHAIN

X1

X14 = h(X12 | X34)

X12 = h(X1 | X2)

X34 = h(X3 | X4)

X58 = h(X56 | X78)

Xroot = h(X14 | X58)

X2 X3 X4 X5 X6 X7 X8

X78 = h(X7 | X8)

Authenticated data structures

Data structures

• Operations carried out by an

untrusted prover.

• Results can be efficiently

verified.

Example: BitTorrent

• File hashed in chunks.

• Root hash in the torrent file.

• Each chunk comes with chain

linking it to the root.

8

Blockchain as append-only log

Each record contains the hash of

the previous one (in addition to the

new data).

Last record “seals” the whole chain.

9

Request: Append X.

Response: New “head hash”.

Client only keeps the “head hash”.

Can easily verify the new “head

hash” based on the old one and

appended data.

Hash trees for append-only logs

Request: Append X.

Response: Chain from added leaf

to the new root.

The chain has enough information

to check against the old root.

Membership of an entry verified like

with regular hash tree.

10

Sparse hash trees for authenticated dictionaries

• Virtual tree with a level for each

bit of hash function output.

• Each bit of hash of key gives a

left or right direction.

• Corresponding leaf contains the

hash of the value.

The chain linking the new value to

the updated root contains enough

information to check the old value

against the previous root.

Allows proofs of both inclusion and

omission (absence of a key).

11

Log-backed authenticated dictionaries

• Dictionary on sparse hash tree.

• Mutation log based on canonical

hash tree.

• Hash of the two root hashes

locks complete history.

• Client authentication of latest

update operation as before.

• Authentication of element

lookup as before.

12

• Option to implement persistent

dictionary using “copy-on-write”.

• Correctness of any individual

operation can be verified based

on old root, two hash chains,

new root.

• Queries against any historical

state of the dictionary.

Generic authenticated data structures

• Authenticated Data

Structures, Generically

• Andrew Miller, Michael

Hicks, Jonathan Katz,

Elaine Shi

• POPL 2014

13

• Extension to ML-like functional

language.

• One source compiles to client

and server implementations.

• If it compiles, it’s guaranteed to

be secure.

• Test implementations of naive

binary search trees, red-black

trees, skip lists, etc.

Questions?

Comments?

Heckles?

Ahto Truu

ahto.truu@guardtime.com

