

Nothing is Better than Copy or Move

Roger Orr

OR/2 Limited

Handling the cost of copies of objects

– ACCU 2018 –

How did we get here?

● At the Jun 2016 meeting of WG21 in Oulu
we approved P0135R1 ("Wording for
guaranteed copy elision through simplified
value categories") for C++17

● This paper removed the oddity that, for a
copy to be elided, the elided copy or move
constructor had to be valid

 It may also have been a good excuse for
adding a new term to the standard: “tem-
porary materialization”

● But to explain it we need some context...

How did we get here?
C++ is of course based on C.

This first edition (1978) says:

6.2 Structures and Functions

"There are a number of restrictions
on C structures. The essential rules
are that the only operations that you
can perform on a structure are take
its address with &, and access one of
its members.

This implies that structures may not
be assigned to or copied as a unit,
and that they can not be passed to or
returned from functions."

How did we get here?

● So in K&R C the only option for argument
passing and return was to use pointers.

● This is mapping into a high level language
the assembly language model of passing
and returning addresses of data structures
in registers

● Some of the C runtime functions still follow
this model

 struct tm *localtime(const time_t *timer);

● And of course this is still valid in C++

How did we get here?

● Some benefits using pointers-to-objects
 Efficiency, since pointer values can be

passed in registers

 Only one object, so transfer cost is inde-
pendent of size

 Can use opaque (incomplete) types, such as
FILE*, where the client need not know the
full type

 Simple call/return interface, typically one
machine word per argument and a register
return value. Note that K&R declarations
didn't include arguments

How did we get here?

● Some problems using pointers-to-objects
 Where does the object live (and how to tell?)

 Local objects should not be returned or you
get a so-called dangling pointer

 Heap objects have to be managed to ensure
their deletion - who owns the object?

 Static objects cause problems with reuse in
multiple calls (can usually be controlled, with
care, in a single-threaded program – much
harder to manage with threads)

 Pointers might be invalid

 Pointers might be null – whether or not the
semantics allow this

How did we get here?
The first edition (1978) also said:

“These restrictions will be removed in
forthcoming versions”

So, when ANSI C arrived in 1989:

“The main change made by the ANSI
standard is to define structure
assignment - structures may be
copied and assigned to, passed to
functions, and returned by functions.

This has been supported by most
compilers for many years, but the
properties are now precisely defined.
Automatic structures and arrays may
now also be initialized.”

(Many C programmers didn't appear
to notice this enhancement...)

How does this magic work?

● We're used to passing structures by value
but we may not think about how it works

● Passing in an argument is the easier one
 Reserve stack space

 Copy the argument into the reserved space

● The copy is created before calling the
function, in stack space to be used by the
called function

 In some calling conventions the called func-
tion finds the structure on the stack, others
explicitly pass in the address

How does this magic work?

● For example, with a simple stack based
calling convention:
void foo(int arg1, example arg2, int arg3);

void bar()
{
 example ex = { /* … */ };
 foo(1, ex, 2);
}

 push '2'
 reserve sizeof(example) bytes on the stack
 copy in 'ex'
 push 1
 call foo

How does this magic work?

● Most 64bit calling conventions use
registers for the first few arguments
 foo(1, ex, 2);

 reserve sizeof(example) bytes on the stack
 copy in 'ex'
 load 1 into regA
 load address of the reserved bytes into regB
 Load 2 into regC
 call foo

How does this magic work?

● You can easily see this in action by printing
the relative addresses of the arguments:
 void foo(int arg1, example arg2, int arg3);

● 32-bit:

addresses relative to argument 1:
argument 2: 4
argument 3: 28

● 64-bit:

addresses relative to argument 1:
argument 2: 32
argument 3: 16

How does this magic work?

● Returning a structure is more difficult
● You are typically returning a local variable,

existing on the stack of the called function
● By the time the function has returned the

local variable has gone!
● Typically an implementation:

 Reserves stack space in the caller for the
return value

 Passes the address of this space to the
called function as a (hidden) argument

How does this magic work?

● Made-up pseudo-code for:
 T foo(int arg) { /*...*/ return local_var; }

● Caller:

● Callee:

T x = foo(42);

char __return_udt[sizeof(T)];
foo(__return_udt, 42);
T x;
memcpy(&x, __return_udt, sizeof(T));

void foo(void * __return_udt, int arg)
{
 /* … */
 memcpy(__return_udt, &local_var, sizeof(T));
}

Early days of C++

● C++ was originally called “C with Classes”
● Of particular interest here structures and

classes could have special member
functions:

 Constructor

 Copy constructor

 Assignment operator

 Destructor

● These user-defined functions replaced the
default memcpy-like behaviour of ANSI C

Early days of C++

● While the member functions enable the
preservation of invariants, they can make
copying and assigning objects considerably
more expensive

● Additionally, while the compiler might be
able to remove the calls to the functions
during optimization this is often not possible

● In particular, if the calls have (or might
have) side effects the optimiser cannot
remove them

Early days of C++

● In the ARM (1990) “Temporary Elimination”:

 The fundamental rule is that the intro-
duction of a temporary object and the
calls of its constructor/destructor pair
may be eliminated if the only way the
user can detect its elimination or in-
troduction is by observing side ef-
fects generated by the calls.

Early days of C++

● In the ARM (1990) “Temporary Elimination”:

 The fundamental rule is that the intro-
duction of a temporary object and the
calls of its constructor/destructor pair
may be eliminated if the only way
the user can detect its elimination or
introduction is by observing side ef-
fects generated by the calls.

Let's have a C++98 example...

--- lifecycle.h ---
#pragma once

// each method simply logs that it was called
struct lifecycle
{
 lifecycle();
 lifecycle(lifecycle const&);
 lifecycle& operator=(lifecycle const&);
 ~lifecycle();
};

--- main program ---
#include "lifecycle.h"

int main()
{
 lifecycle x = lifecycle(); // default ctor and copy ctor
 return 0;
}

What do you expect this program to print?

Let's have a C++98 example...

--- main program ---
#include "lifecycle.h"

int main()
{
 lifecycle x = lifecycle();
 return 0;
}

What do you expect this program to print?

From the wording of the standard you expect to see
something like this:

0018FF44 default ctor
0018FF43 copy ctor (where this might be elided)
0018FF44 dtor
0018FF43 dtor (where this might be elided)

Let's have a C++98 example...

--- main program ---
#include "lifecycle.h"

int main()
{
 lifecycle x = lifecycle();
 return 0;
}

What do you expect this program to print?

Every C++ compiler*, even without optimisation, prints
something like this:

0018FF44 default ctor
0018FF44 dtor

(*that I have tested...)

However C++ did not mandate this

--- main program ---

struct A
{
 A(std::string v) {}
 lifecycle l;
};

int main()
{
 A x = A("s");
}

With an earlier version of MSVC I obtained:

0095F8BE default ctor
0095F8BF copy ctor
0095F8BE dtor
0095F8BF dtor

Another C++98 example...

#include "lifecycle.h"

struct A
{
 A(int) {}
 lifecycle logger;
};

A source()
{ return 42; } // create a temporary, return by copy

int main()
{
 A x = source();
 return 0;
}

How about this one?
Would it be different with optimisation on?

Another C++98 example...

A source()
{ return 42; } // create a temporary, return by copy

int main()
{
 A x = source(); // copy-construct 'x'
 return 0;
}

Every compiler I've tried, with or without optimisation,
prints:

0xffffcbdf default ctor
0xffffcbdf dtor

A third C++98 example...

// struct A as before

A source()
{ return A(42); } // create temporary, return by copy

void sink(A a)
{ return; }

int main()
{
 sink(source()); // pass copy of returned value to 'sink'
 return 0;
}

How about this one?
Would it be different with optimisation on?

A third C++98 example...

// struct A as before

A source()
{ return A(42); } // create temporary, return by copy

void sink(A a)
{ return; }

int main()
{
 sink(source()); // pass copy of returned value to 'sink'
 return 0;
}

Even un-optimised VC 6 (I still have a copy!) gives:

0018FF3C default ctor
0018FF3C dtor

Named Return Value

// struct A as before

A source()
{
 A result(42); // create object
 return result; // return by copy
}

int main()
{
 A x = source(); // copy-construct x
 return 0;
}

How about this one?
Would it be different with optimisation on?

Named Return Value

This one depends …

MSVC 6, even with /Ox optimisation:

0018FF30 default ctor
0018FF44 copy ctor
0018FF30 dtor
0018FF44 dtor

Gcc 5.4 -std=c++98, even with no optimisation:

0xffffcbff default ctor
0xffffcbff dtor

Why the difference?

Named Return Value

● The earlier examples all eliminated an un-
named object. The temporary objects have
no identifier and their addresses could not
be taken: the only way to detect if a
separate object was or was not used is by
examining the constructor and destructor
side-effects

● This example eliminates a named object
and we can detect this by comparing the
addresses of the named objects

Named Return Value Optimisation

● C++ explicitly allows a compiler to use the
named return value as the actual return
value:

“if the expression in the return statement is
the name of a local object, …, an
implementation is permitted to omit
creating the temporary object to hold the
function return value”

● NRVO (as it is known) is optional – and it
may not be obvious whether or not it has
been invoked

What about now?

● C++11 introduced move semantics into the
language – how does this change things?

● Named return values are effectively r-values

struct lifecycle
{
 lifecycle();
 lifecycle(lifecycle const&);
 lifecycle& operator=(lifecycle const&);
 ~lifecycle();

 lifecycle(lifecycle &&); // move-construction
 lifecycle& operator=(lifecycle &&); // move-assignment
};

Let's revisit an example, for C++11

// struct A as before

A source()
{
 A result(42); // create object
 return result; // can return by move
}

int main()
{
 A x = source();
 return 0;
}

The named returned value is now an r-value*

*effectively: its copy can become a move operation,
so the copy construction in C++03 becomes move
construction in C++11 (assuming no NRVO)

Can actually break C++03 code

struct foo
{
 foo(std::string& str) : _str(str) {}

 ~foo() { std::cout << "Ending \"" << _str << "\"." << std::endl; }

 std::string& _str;
};

std::string foobar()
{
 std::string s("foobar");
 foo f(s);

 return (s); // We may get NRVO
}

The order of events without NRVO is: move from s,
destroy f, destroy s. So the moved-from s is printed...

This can be a problem with scope-guard like helpers

Temporary Materialization

● In C++14 and before 'copy elision' was used
to describe the permission to directly
construct an object in cases where the
syntax implied a copy/move construction
from a temporary object

● As we've seen, general existing practice of
most compilers was to perform copy elision
even when not optimising (this is because a
syntactic analysis is needed to determine
whether it is valid to perform it)

● However, the wording still made it optional

Temporary Materialization

● C++17 instead talks about prvalues* and
describes the rules for when these are used
to initialise an actual object

● Converting such a prvalue into an object is
called a temporary materialization
conversion

● The new wording on these conversions
makes it clear what behaviour is required

*A prvalue (“pure r-value”) is an expression whose evaluation
initializes an object

Temporary Materialization

● These rules also cover temporary objects
generated during expression evaluation.
Common examples of when a prvalue
materializes into an object are:

 1. Initialisation of a variable

 2. Binding to a reference

 3. Performing member access

● For example in this contrived example:

auto a = string("A") + string("B").c_str();

● 1^ 2^ 3^

C++17 does now mandate this

--- main program ---

struct A
{
 A(std::string v) {}
 lifecycle l;
};

int main()
{
 A x = A("s"); // temporary materialization: no actual copy or move
}

A C++17 compiler must produce output
similar to this:

0095F8BE default ctor
0095F8BE dtor

A simplification

struct noncopyable
{
 noncopyable() = default;
 noncopyable(noncopyable const &) = delete;
 };

int main()
{
 noncopyable anObject = noncopyable();
}

In C++14 and before this was an error as the copy
constructor was marked as deleted – even though the
compiler was going to elide the call to it!
The materialization conversion to form anObject does
not require an accessible copy constructor – direct
construction is required

Let's revisit that example...

// struct A as before

A source()
{
 A result(42); // create object
 return result; // can return by move
}

int main()
{
 A x = source(); // temporary materialization conversion into x
 return 0;
}

There is a second change in up-to-date C++:
- the materialization conversion to form x does not
permit copy/move from a temporary

Don't be too clever!

// struct A as before

A source()
{
 A result(42); // create object
 return std::move(result);
}

int main()
{
 A x = source(); // temporary materialization into x
 return 0;
}

We've added an explicit move to the named return
value. What does this change?

Don't be too clever!

// struct A as before

A source()
{
 A result(42); // create object
 return std::move(result); // Bad: NRVO is disabled by use of std::move
}

int main()
{
 A x = source(); // temporary materialization into x
 return 0;
}

Nothing is better than move

Without std::move in the worst case we get the move
constructor called, in the best case we invoke NRVO
and don't need to move – std::move here means we
must move!

Another example...

A source()
{ return 42; } // create an un-materialized temporary

int main()
{
 A x = source(); // materialization conversion into 'x'
 return 0;
}

C++17 guarantees this prints:

0xffffcbdf default ctor
0xffffcbdf dtor

Syntactically you no longer need the copy-constructor

In implementation, this was mostly just standardising
existing practice by compiler vendors

One bad object poisons the move
struct copyable
{
 copyable() = default;
 copyable(copyable const &) {}
};

struct A
{
 A(int) {}
 lifecycle logger;
 copyable c;
};

How about this one? The copyable structure is trivial
– there's no obvious reason to write move constructor

However, this disables the automatically generated
move constructor for types, such as A, that hold a
member of this type

What are the rules?

● Those who attended ACCU 2014 may recall
Howard Hinnant's closing keynote which
was:

Everything You Ever Wanted To Know
About Move Semantics (and then some)

● I commend his presentation to you for a
summary “from the horse's mouth.”

● He produced one summary slide which I
reproduce on the next slide, summarising in
a matrix the rules about the effect of
declaring special members on the defaults

What are the rules?

● The simplest rule applies when you don't
declare any special member functions but
are able to use the defaults, generated from
the special member functions of the
members and bases of your class

● If you have some data needing manual
management can you use composition with
a helper object?

● The next simplest rule is to either =default
or =delete all the special members you don't
explicitly declare

Comparison of copy and move

● Many people incorrectly think of move as
effectively 'free'

● The performance difference between copy
and move varies widely

● For a primitive type, such as int, copying or
moving are effectively identical

int i = 5;
j = i;
k = std::move(i);

● If i has any value other than 5 after the last
line, move is costlier than copy!

Comparison of copy and move

● So for a data structure with primitive fields
copy and move are basically the same

 std::array<int, 1000> s;

● Move is faster than copy when only part of
the object needs to be transferred to
transfer the whole value

● Typical examples of this are fields that are
 Pointers

 Handles

● Copying means allocating memory or an OS
call

Comparison of copy and move

● However even when using a move
constructor or assignment, the pointer value
and possibly some other control data, must
still be copied which involves memory
access

● Hence the desire to improve the wording in
C++17 to make it explicit when temporary
objects are actually instantiated

How do I recognise copy and move?

● The C++ standard can seem quite
complicated, but fortunately in many cases
a few simple rules can help with copying
and moving

● For example, Abseil “tip of the week” #77:
● Two Names: It’s a Copy

 a second name for the same data
● One Name (at once!): It’s a Move

 you can’t refer to a name any more
● Zero Names: It’s a Temporary

Avoiding copy and move

● The older style of passing and returning
pointers can be more efficient for objects
that don't need modifying

● Passing a larger object by const reference
may well be better than copying it

● Smaller, trivially copyable objects may be
optimal already – let's look at the special
rules to allow this

Small trivial objects

● There are special rules in C++17 for
passing arguments that are trivially
copyable and deletable allowing the
compiler to create copies

● This exception from the rules of temporary
materialization (which would otherwise
forbid such additional copies) is to allow
such objects to passed to, or returned from,
functions in registers

● Each ABI will have its own restrictions on
when this applies

MSVC x86/x64 convention

● The Microsoft 32-bit calling convention
allows suitable structures up to 8 bytes wide
to be returned in EAX and EDX (if needed)

● The Microsoft 64-bit calling convention
allows suitable structures of 1, 2, 4 or 8
bytes to be both supplied and returned in
registers

● (The 64-bit calling convention prefers the
use of registers over the stack, for speed)

Linux x86/x64 convention

● The 32-bit calling convention allows suitable
structures up to 4 bytes in size to be
returned in registers

● The 64-bit calling convention allows suitable
structures of 1, 2, 4, 8 or 16 bytes to be both
supplied and returned in registers

● (Again, the 64-bit calling convention prefers
the use of registers over the stack, for
speed)

Should I care?

● For most programmers, most of the time,
this is not very relevant

● However, if you are trying to squeeze out
the last bit of performance the extra
indirection of passing the address of an
argument in memory rather than directly in a
register may matter

● Check the ABI for your chosen platform(s)
carefully

Passing arguments to functions

● When passing input-only arguments to
functions in C++ there are two choices:

 Pass by value

 Pass by const reference

Passing arguments to functions

● When passing input-only arguments to
functions in C++ there are three choices:

 Pass by value

 Pass by const reference

 Pass by pointer

Passing arguments to functions

● When passing input-only arguments to
functions in C++ there are four choices:

 Pass by value

 Pass by const reference

 Pass by pointer

 Pass by accessor, such as a smart pointer

● How do I choose ???

Returning or passing a reference?

● Before C++11 this idiom was common:
void foo(std::vector<std::string> &result);

● Since C++11 this is more normal:
std::vector<std::string> foo();

● The first idiom can still be useful if the object
to return is expensive to move, although in
that case using a unique_ptr<> may be
another approach

● A drawback of the first approach is the
preconditions on 'result' are unclear

Avoiding copy and move

● When a method takes a copy of an
argument it may be better to take the
argument by value and move it into the
target

● void addName1(std::string const &name) {
 collection.add(name); // Takes a copy
}

● void addName2(std::string name) {
 collection.add(std::move(name));
}

Avoiding copy and move

● If the call site needs to construct the
argument the second call can avoid a copy:

● a.addName1("Rectilinear")

 Create an std::string and pass it into
addName, which then copies it

● a.addName2("Rectilinear")

 Create an string and pass it into
addName2, which then moves it

● Note: with the small string optimisation, the
cost of copy and move may be the same...

Avoiding copy and move

● Alternatively, you can provide overloads
taking const& and &&

● void addName1(std::string const &name) {
 collection.add(name); // Copies
}

● void addName2(std::string &&name) {
 collection.add(std::move(name)); // Moves
}

● This is optimal, but for 'n' arguments you'll
need 2n overloads each with very subtly
different code...so only do it if the need is
really there

Avoiding copy and move

● Passing shared pointers as arguments can
result in extra copies

● While this doesn't copy the payload it does
mean extra calls to (atomically) increment
and decrement the use count

● Core guidelines R.30: “Take smart pointers
as parameters only to explicitly express
lifetime semantics”

 For example, the method takes a copy
of the shared pointer for use later

Avoiding copy and move

● void action1(std::shared_ptr<foo> arg) {
 arg->do_something();
}

● void action2(foo &arg) {
 arg.do_something();
}

● The first case needs code to create and
destroy the supplied arg, and also needs
state management to ensure clean stack
unwinding in the presence of an exception

● The second case also expresses intent
directly (arg should not be null)

Avoiding copy and move

● void test1(std::shared_ptr<foo> &p) {
 action1(p);
}

● void test2(std::shared_ptr<foo> &p) {
 action2(*p);
}

● With clang 6.0.0 and -O2, test1 produces 94
assembler instructions …

Avoiding copy and move

● void test1(std::shared_ptr<foo> &p) {
 action1(p);
}

● void test2(std::shared_ptr<foo> &p) {
 action2(*p);
}

● With clang 6.0.0 and -O2, test1 produces 94
assembler instructions

● But test2 produces just two instructions

 mov rdi, qword ptr [rdi]
 jmp action2(foo&) # TAILCALL

More on NRVO

● NRVO is quite fragile – but there are
reasons for that which are clearer once you
have some understanding of how it works

● Multiple return values are one example:
● std::string foo(int i) {
 std:string result("X");
 if (i < 0) return {};
 // ...
 return result; // No NRVO
}

● The first return constructs into the target, so
result cannot also be constructed there

More on NRVO

● Function arguments are not available for
NRVO:

● A foo(A input) {
 return input; // No NRVO
}

● The reason for this restriction is because of
the implementation.

● The caller constructs input, but cannot in
general know whether or not the target
returns this argument, so it must use a
distinct location from the return object

More on NRVO

● Function arguments are not available for
NRVO:

● A foo(A input) {
 return input; // move construction
}

● However, C++17 does move the argument
(if a move constructor is accessible)

Conclusion
● Since C++11 there has, rightly, been much

focus on adding support for move to code
● However, C++ was already quite good at

eliminating copies in various cases and this
has improved further with C++17

● While move is often faster than copy, it is
not usually free

● Doing nothing is better than either copy or
move

● Check the number of objects being created
before simply adding std::move()

	Title
	Intro
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	C-9
	C-10
	C-11
	C++98-1
	C++98-2
	C++98-3
	C++98-4
	C++98-5
	C++98-6
	C++98-7
	C++98-8
	C++98-9
	C++98-10
	C++98-11
	C++98-12
	NRVO-1
	NRVO-2
	NRVO-3
	NRVO-4
	C++11-1
	C++11-2
	C++11-3
	Materialization-1
	Materialization-2
	Materialization-3
	Materialization-4
	Materialization-5
	C++17-1
	C++17-2
	C++17-3
	C++17-4
	C++17-5
	Special-1
	Special-2
	Special-3
	Special-4
	Special-5
	Special-6
	CopyMove-1
	CopyMove-2
	CopyMove-3
	CopyMove-4
	CopyMove-5
	CopyMove-6
	Args-1
	Args-2
	Args-3
	Args-4
	Args-5
	Args-6
	Args-7
	Args-8
	Args-9
	Args-10
	Args-11
	MoreNRVO-1
	MoreNRVO-2
	More-NRVO-3
	Conclusion

