API & ABI versioning

How to handle compatibility with
your C++ libraries

@

8

?

When I change my code,
what are the impacts?

5 About this talk

Changes and impacts on APl & ABI
Categorizing changes
Mitigating impacts

Handling change through versioning

Hello!

I am Mathieu Ropert

I'm a C++ developer at Murex and the co-organizer
and host of the Paris C++ User Group.

You can reach me at:
X mro@puchiko.net
¥ @MatRopert
@ https://mropert.github.io

1 Library lifecycle

Asking yourself the right questions

5% So you want to publish a library

Will all users” code belong to the same repo as
your library?

If yes, versioning is not mandatory

But even then, it will not hurt to think about the
iImpacts

5% So you want to publish a library

Will you ever break backward compatibility?

Remember that removing old / deprecated
features is still breaking compatibility

If you do it, even rarely, you need a way to
distinguish changes

5% So you want to publish a library

Do you want your users to be able to hotswap
your library in production?

Not an option for header-only libraries

If the answer is "yes”, you will have to monitor
ABI changes

5% Things to keep in mind

It's important to be careful when changing API
Even if you can patch all your clients at once

If binary compatibility is a concern, you also
need to keep an eye on ABI impacts

You'll need to inform your users about changes
and their impacts

fna

Versioning

Communication between maintainers and users
about the changes in a software

10

5> Reasonable use

Some users will expect unreasonable

guarantees from your code
Line numbers
Symbol addresses (and being able to get them)
Real type of auto types
Layout of private members

This talk is not about how to handle that

"

2

Changes in API

Contracts and how not to breach them

12

5> What’s an API?

An APl is a contract between the maintainer
and the user

It's divided in two parts
Pre-conditions: what the caller must provide
Post-conditions: what the callee will ensure if the
pre-conditions are met

13

std::SWap

Defined in header <algorithm> (until C++11)
Defined in header <utility> (since C++11)

template< class T >

void swap(T& a, T& b);

template< class T >

void swap(T& a, T& b) noexcept(/* see below */);

(until C++11)
(1)
(since C++11)

template< class T2, std::size_t N >

N
void swepl T2 (Ea)[Nl, T2 (6bIIN]) noexcept(/¥. sea hsiow #p): © CHEREEEH)

| Exchanges the given values.|

|1) Swaps the values a and b. |This overload does not participate in overload resolution unless
std::1is_move_constructible_v<T> && std::is_move_assignable_v<T> is true . (since C++17)

|2) Swaps the arrays a and b. |n effect calls std::swap_ranges(a, a+N, b) . This overload does not participate
in overload resolution unless std::is_swappable_v<T2> is true . (since C++17)

Parameters

a, b - thevalues to be swapped

Type requirements

- T must meet the requirements of MoveAssignable and MoveConstructible.
- T2 must meet the requirements of Swappable.

Return value

(none)

source: http://en.cppreference.com/w/cpp/algorithm/swap

14

5 API in C++ terms

Internal

Names
Signatures
Declarations locations

External

Pre-conditions
Post-conditions
Misc guarantees

15

5 API in C++ terms

Not all parts of an API are part of the language
are seen by the compiler

You must rely on some form of documentation
to express the rest

Caution is advised when changing parts not
covered by the language itself

16

5% API changes by impacts

API| breaking change
Clients must adapt their code

APl non-breaking change
Guaranteed to be backward compatible, but not
always forward compatible

No change to API
Guaranteed to be both backward and forward
compatible

17

% Changes with no impact

Any change that does not add, remove or
change a contract

Changes to implementation
Performance tuning
Refactoring
Bugfixes

18

% Changes with no impact

No name or signature has changed or moved
Defined behaviour is still the same...

..including specific guarantees
Complexity
lterator validity

19

X API non-breaking changes

Adding a new contract
New function
New overload(*)
New type
New namespace

20

X API non-breaking changes

Relaxing an existing contract
New default argument to a function(*) or template
New struct member
Relaxing pre-conditions
Narrowing post-conditions
Narrowing guarantees
Defining undefined behaviour

21

5> API breaking changes

Changing a signature
Argument types or order
Return type

Renaming
Moving declaration to another header file

22

5> API breaking changes

Narrowing a contract
Narrowing pre-conditions
Relaxing post-conditions
Relaxing existing guarantees

23

5> API breaking changes

Narrowing a contract
Narrowing pre-conditions
Relaxing post-conditions
Relaxing existing guarantees

Evill

24

5> API breaking changes

Narrowing a contract
Narrowing pre-conditions
Relaxing post-conditions
Relaxing existing guarantees

Evill

Seriously, don’t do that

25

Invisible breaking change

Before

// Sorts a vector of integers
// Complexity: O (n * log n)
void foo(std::vector<int>& v) {

std::sort (begin(v), end(v));

After

// Sorts a vector of integers

// Complexity: O(n!)

vold foo(std::vector<int>& v)

while (!std::is_sorted(begin(v), end(v)))

std::random shuffle (begin(v), end(v));

{

26

3

Changes in ABI

Compeatibility between binaries

27

X What is ABI?

Application Binary Interface

Defines how binary components talk to each
others

Not covered by the C++ Standard(*)

28

5 ABI in C++ terms

Infrastructure

Calling convention
Exception handling
Mangling

C++ runtime

Code

Symbol names

Binary representation of
API types

vtable layout

29

Symbol names

Each exported symbol has an id:

Name + Signature => id

volid foo(int) => 7Z3fooi
volid foo (double) => Z3food

30

5 Symbol names

Changing the id of any public symbol will
break ABI

Public symbols are all APl symbols and all
symbols used by inline functions in public
headers

31

Implementation changes

Before

namespace details {
MY EXPORT void bar () ;
}i

inline void foo () {

details::bar();

After

namespace details {

|MY7EXPORT void bar (int) ;

b

inline void foo () {

details::bar(0);

32

pNg

vtable Layout

How pointers to virtual methods are stored

Depends on the compiler
Usually one standard per OS

Breaks when you reorder virtual methods
Or when you add a new one

33

X Binary representation

Each public structure has a particular layout in
the ABI

Structure size
Size of each member
Starting offset of each member

Actual layout depends on various platform
rules

34

struct A {

int ml; /

0x0: m1 (4 bytes)

bool m2; -

0x4: m2 (1 byte)

char* m3; —)

0x8: m3 (8 bytes)

double m4; \

}s

0x10: m4 (8 bytes)

0x0

0x8

0x10

m1

m2

padding

m3

m4

35

struct A {

}s

int
bool
char*
double

short

ml;
m2;

m3;

m5;

0x0: m1 (4 bytes)

0x4: m2 (1 byte)

0x8: m3 (8 bytes)

0x10: m4 (8 bytes)

LA

0x18: m5 (2 bytes)

0x0

0x8

0x10

0x18

m1

m2

padding

m3

m4

m5

36

X Binary representation

Changing the type or the order of members in
a struct will break ABI

Adding a new member will break it too

Changing a member visibility may also break
ABI

37

4

C++ Versioning

Semver reloaded

38

5% The two schools of versioning

Semantic versioning Live at Head
Parallel releases Serial releases
Complex scheme Source based
Asynchronous upgrade No diamond conflicts
Binary compatibility Automated client code

migration

39

5% Semantic Versioning

A formal convention to express compatibility
between versions

Published in 2011 by Tom Preston-Werner
3 numbers sequence: X.Y.Z

X is major release

Y is minor release

Z is patch release

40

5% Semantic Versioning

Major releases break API
Minor releases change APl without breaking
Patch release have no impact on API

Says nothing about ABI!

But we can fix that

41

5> Semver reloaded

APl or ABI breaking change: major revision
APl or ABI non-breaking change: minor revision

No change: patch revision

42

5> Semver reloaded

Offers a degree of binary compatibility
Both upgrades and rollbacks

Can work around the diamond inheritance
problem as long as the major is the same

Most common scheme today

43

5 Live at Head

Coined by Titus Winters at CppCon 2017
Each change simply increments a serial
number

Clients must use the same version across a
binary

Each breaking change comes with an
automatic refactoring script

44

5 Live at Head

Guarantees no diamond problem can occur

Facilitates upgrade and ensure clients stay at
"head”

No binary compatibility

No support on older releases

45

How to include API in
versioning?

Pick a versioning convention

Tell clients which guarantees you offer
Maintain a changelog

Document your contracts

Avoid invisible breaking changes

46

pNg

How to include ABI in
versioning?

Don't!
If your clients always recompile, don’t bother
If your library is header only, also don’t bother
But make it clear in your documentation

47

pNg

How to include ABI in
versioning?

Don't!
If your clients always recompile, don’t bother
If your library is header only
But make it clear in your documentation

Or go for revised semver

48

pNg

Inline namespaces

Available since C++11

Make names available through the parent
namespace in the API, but not in the ABI

Can be used to version symbols

49

pNg

Inline namespaces

namespace mylib {

namespace vl {

}

inline namespace v2

{

volid foo(int) ;

volid foo(int) ;

References to

mylib: :foo() will alias
tomylib::v2::foo() in
ABI

Older clients will still be

able to use
mylib::vl::foo()

50

5 What about dependencies?

Breaking changes on public dependencies also

break your API
.. and possibly your ABI too

Breaking changes on private dependencies
break your ABI

51

% What the future may hold

Contracts TS should help you detect changes
to your APl more easily

Modules TS should help you enforce which
parts of your library are public API

52

Quizz

Did you follow everything?

Quizz #1

Before After

void foo (int); void foo (int, bool);

Breaking API change
& breaking ABI change

&

54

Quizz #2

Before

int foo (int);

After

int foo(long);

API change
& breaking ABI change

&

55

Quizz #3

Before After

struct A { struct A {
int 1i; char *s;

char *s; int 1i;

Breaking API change (*)
& breaking ABI change

56

Quizz #4

Before

struct A {

void foo() ;

void bar () ;

After

struct A {

void bar () ;

void foo();

No change

57

Quizz #5

Before After
int foo(int a, int b) { int foo(int a, int b) {
return a + b; return a > b ? a : b;

} }

Invisible breaking API change

58

Quizz #6

Before After

struct A { struct A {
virtual void foo () ; virtual void bar();
virtual void bar(); virtual void foo();

Breaking ABI change

59

Quizz #7

Before After

struct A { struct A {
int i; int i;
bool b; bool b;
char *s; char t[2];

}i char *s;

}i

Breaking API change(*)
& ABI change(*)

&

60

X Quizz #8

Before After

void foo (int); void foo (int, bool = false);

API change @
& breaking ABI change

61

X Quizz #9

Before After

void foo (int); void bar (int) ;

Breaking API
& breaking ABI change

&

62

Quizz #10

Before

struct A {
int 1i;

char *s;

After

struct A {
int 1i;
char *str;

}i

Breaking API change @

63

Quizz #10 and half

Before After

namespace details { namespace details {

int bar (int);

}

int bazz (int);

}

inline int foo (int x) { inline int foo(int x) {

return details::bar (x);

}

Breaking ABI change

return details::bazz (x);

64

No system became successful by
breaking backward
compatibility...

... espectally without warning or
automatic mgration

66

65

fna

Versioning

Communication between maintainers and users
about the changes in a software

66

75 Thanks!

Any questions ?

You can reach me at
(R mro@puchiko.net
¥ @MatRopert

¢) @mropert
@ https://mropert.github.io

67

