
API & ABI versioning
How to handle compatibility with
your C++ libraries

When I change my code,
what are the impacts?

?

2

About this talk

◉ Changes and impacts on API & ABI

◉ Categorizing changes

◉ Mitigating impacts

◉ Handling change through versioning

3

I am Mathieu Ropert
I’m a C++ developer at Murex and the co-organizer
and host of the Paris C++ User Group.

You can reach me at:

mro@puchiko.net

@MatRopert

https://mropert.github.io

Hello!

4

Asking yourself the right questions

Library lifecycle1

5

So you want to publish a library

◉ Will all users’ code belong to the same repo as
your library?

◉ If yes, versioning is not mandatory

◉ But even then, it will not hurt to think about the
impacts

6

So you want to publish a library

◉ Will you ever break backward compatibility?

◉ Remember that removing old / deprecated
features is still breaking compatibility

◉ If you do it, even rarely, you need a way to
distinguish changes

7

So you want to publish a library

◉ Do you want your users to be able to hotswap
your library in production?

◉ Not an option for header-only libraries

◉ If the answer is “yes”, you will have to monitor
ABI changes

8

Things to keep in mind

◉ It’s important to be careful when changing API
○ Even if you can patch all your clients at once

◉ If binary compatibility is a concern, you also
need to keep an eye on ABI impacts

◉ You’ll need to inform your users about changes
and their impacts

9

Versioning
Communication between maintainers and users

about the changes in a software

10

Reasonable use

◉ Some users will expect unreasonable
guarantees from your code
○ Line numbers
○ Symbol addresses (and being able to get them)
○ Real type of auto types
○ Layout of private members

◉ This talk is not about how to handle that

11

Contracts and how not to breach them

Changes in API2

12

What’s an API?

◉ An API is a contract between the maintainer
and the user

◉ It’s divided in two parts
○ Pre-conditions: what the caller must provide
○ Post-conditions: what the callee will ensure if the

pre-conditions are met

13

14

source: http://en.cppreference.com/w/cpp/algorithm/swap

15

API in C++ terms

Internal

◉ Names
◉ Signatures
◉ Declarations locations

External

◉ Pre-conditions
◉ Post-conditions
◉ Misc guarantees

API in C++ terms

◉ Not all parts of an API are part of the language
are seen by the compiler

◉ You must rely on some form of documentation
to express the rest

◉ Caution is advised when changing parts not
covered by the language itself

16

API changes by impacts

◉ API breaking change
○ Clients must adapt their code

◉ API non-breaking change
○ Guaranteed to be backward compatible, but not

always forward compatible

◉ No change to API
○ Guaranteed to be both backward and forward

compatible

17

Changes with no impact

◉ Any change that does not add, remove or
change a contract

◉ Changes to implementation
○ Performance tuning

○ Refactoring

○ Bugfixes

18

Changes with no impact

◉ No name or signature has changed or moved

◉ Defined behaviour is still the same...

◉ ...including specific guarantees
○ Complexity
○ Iterator validity

19

API non-breaking changes

◉ Adding a new contract
○ New function
○ New overload(*)
○ New type
○ New namespace

20

API non-breaking changes

◉ Relaxing an existing contract
○ New default argument to a function(*) or template
○ New struct member
○ Relaxing pre-conditions
○ Narrowing post-conditions
○ Narrowing guarantees
○ Defining undefined behaviour

21

API breaking changes

◉ Changing a signature
○ Argument types or order
○ Return type

◉ Renaming
◉ Moving declaration to another header file

22

API breaking changes

◉ Narrowing a contract
○ Narrowing pre-conditions
○ Relaxing post-conditions
○ Relaxing existing guarantees

23

API breaking changes

◉ Narrowing a contract
○ Narrowing pre-conditions
○ Relaxing post-conditions
○ Relaxing existing guarantees

◉ Evil!

24

API breaking changes

◉ Narrowing a contract
○ Narrowing pre-conditions
○ Relaxing post-conditions
○ Relaxing existing guarantees

◉ Evil!

◉ Seriously, don’t do that

25

Before

// Sorts a vector of integers

// Complexity: O (n * log n)

void foo(std::vector<int>& v) {

 std::sort(begin(v), end(v));

}

Invisible breaking change

After

// Sorts a vector of integers

// Complexity: O(n!)

void foo(std::vector<int>& v) {

 while (!std::is_sorted(begin(v), end(v)))

 std::random_shuffle(begin(v), end(v));

}

26

Compatibility between binaries

Changes in ABI3

27

What is ABI?

◉ Application Binary Interface

◉ Defines how binary components talk to each
others

◉ Not covered by the C++ Standard(*)

28

29

ABI in C++ terms

Infrastructure

◉ Calling convention
◉ Exception handling
◉ Mangling
◉ C++ runtime

Code

◉ Symbol names
◉ Binary representation of

API types
◉ vtable layout

Symbol names

◉ Each exported symbol has an id:

Name + Signature => id

void foo(int) => _Z3fooi

void foo(double) => _Z3food

30

Symbol names

◉ Changing the id of any public symbol will
break ABI

◉ Public symbols are all API symbols and all
symbols used by inline functions in public
headers

31

Before

namespace details {

 MY_EXPORT void bar();

};

inline void foo() {

 details::bar();

}

Implementation changes

After

namespace details {

 MY_EXPORT void bar(int);

};

inline void foo() {

 details::bar(0);

}

32

vtable Layout

◉ How pointers to virtual methods are stored
◉ Depends on the compiler

○ Usually one standard per OS

◉ Breaks when you reorder virtual methods
◉ Or when you add a new one

33

Binary representation

◉ Each public structure has a particular layout in
the ABI
○ Structure size
○ Size of each member
○ Starting offset of each member

◉ Actual layout depends on various platform
rules

34

35

36

Binary representation

◉ Changing the type or the order of members in
a struct will break ABI

◉ Adding a new member will break it too

◉ Changing a member visibility may also break
ABI

37

Semver reloaded

C++ Versioning4

38

39

The two schools of versioning

Semantic versioning

◉ Parallel releases
◉ Complex scheme
◉ Asynchronous upgrade
◉ Binary compatibility

Live at Head

◉ Serial releases
◉ Source based
◉ No diamond conflicts
◉ Automated client code

migration

Semantic Versioning

◉ A formal convention to express compatibility
between versions

◉ Published in 2011 by Tom Preston-Werner
◉ 3 numbers sequence: X.Y.Z

○ X is major release
○ Y is minor release
○ Z is patch release

40

Semantic Versioning

◉ Major releases break API

◉ Minor releases change API without breaking

◉ Patch release have no impact on API

◉ Says nothing about ABI!
○ But we can fix that

41

Semver reloaded

◉ API or ABI breaking change: major revision

◉ API or ABI non-breaking change: minor revision

◉ No change: patch revision

42

Semver reloaded

◉ Offers a degree of binary compatibility
○ Both upgrades and rollbacks

◉ Can work around the diamond inheritance
problem as long as the major is the same

◉ Most common scheme today

43

Live at Head

◉ Coined by Titus Winters at CppCon 2017
◉ Each change simply increments a serial

number
◉ Clients must use the same version across a

binary
◉ Each breaking change comes with an

automatic refactoring script

44

Live at Head

◉ Guarantees no diamond problem can occur

◉ Facilitates upgrade and ensure clients stay at
“head”

◉ No binary compatibility

◉ No support on older releases
45

How to include API in
versioning?

◉ Pick a versioning convention

◉ Tell clients which guarantees you offer

◉ Maintain a changelog

◉ Document your contracts

◉ Avoid invisible breaking changes

46

How to include ABI in
versioning?

◉ Don’t!
○ If your clients always recompile, don’t bother
○ If your library is header only, also don’t bother
○ But make it clear in your documentation

47

How to include ABI in
versioning?

◉ Don’t!
○ If your clients always recompile, don’t bother
○ If your library is header only
○ But make it clear in your documentation

◉ Or go for revised semver

48

Inline namespaces

◉ Available since C++11

◉ Make names available through the parent
namespace in the API, but not in the ABI

◉ Can be used to version symbols

49

50

Inline namespaces

namespace mylib {

namespace v1 {

void foo(int);

}

inline namespace v2
{

void foo(int) ;

}

}

● References to
mylib::foo() will alias
to mylib::v2::foo() in
ABI

● Older clients will still be
able to use
mylib::v1::foo()

What about dependencies?

◉ Breaking changes on public dependencies also
break your API
○ … and possibly your ABI too

◉ Breaking changes on private dependencies
break your ABI

51

What the future may hold

◉ Contracts TS should help you detect changes
to your API more easily

◉ Modules TS should help you enforce which
parts of your library are public API

52

Quizz
Did you follow everything?

53

Before

void foo(int);

Quizz #1

After

void foo(int, bool);

Breaking API change
& breaking ABI change

54

Before

int foo(int);

Quizz #2

After

int foo(long);

55

API change
& breaking ABI change

Before

struct A {

 int i;

 char *s;

};

Quizz #3

After

struct A {

 char *s;

 int i;

};

Breaking API change (*)
& breaking ABI change

56

Before

struct A {

 void foo();

 void bar();

};

Quizz #4

After

struct A {

 void bar();

 void foo();

};

No change

57

Before

int foo(int a, int b) {

 return a + b;

}

Quizz #5

After

int foo(int a, int b) {

 return a > b ? a : b;

}

Invisible breaking API change

58

Before

struct A {

 virtual void foo();

 virtual void bar();

};

Quizz #6

After

struct A {

 virtual void bar();

 virtual void foo();

};

Breaking ABI change

59

Before

struct A {

 int i;

 bool b;

 char *s;

};

Quizz #7

After

struct A {

 int i;

 bool b;

 char t[2];

 char *s;

};

Breaking API change(*)
& ABI change(*)

60

Before

void foo(int);

Quizz #8

After

void foo(int, bool = false);

API change
& breaking ABI change

61

Before

void foo(int);

Quizz #9

After

void bar(int);

Breaking API
& breaking ABI change

62

Before

struct A {

 int i;

 char *s;

};

Quizz #10

After

struct A {

 int i;

 char *str;

};

Breaking API change

63

Before

namespace details {

int bar(int);

}

inline int foo(int x) {

 return details::bar(x);

}

Quizz #10 and half

After

namespace details {

int bazz(int);

}

inline int foo(int x) {

 return details::bazz(x);

}

Breaking ABI change

64

“

No system became successful by
breaking backward

compatibility...

65

… especially without warning or
automatic migration

Versioning
Communication between maintainers and users

about the changes in a software

66

Any questions ?
You can reach me at

mro@puchiko.net

@MatRopert

@mropert

https://mropert.github.io

Thanks!

67

