
010 Tricks that only Library Implementers Know!

Marshall Clow1, Jonathan Wakely2

1Qualcomm

2Red Hat

April 14, 2018

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 1 / 41

About Jonathan and Marshall

Jonathan Wakely is the lead developer for libstdc++, the standard library
implementation that ships with GCC.

Marshall Clow is the lead developer for libc++, the standard library
implementation that ships with Clang.

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 2 / 41

About Jonathan and Marshall

Jonathan Wakely is the lead developer for libstdc++, the standard library
implementation that ships with GCC.

Marshall Clow is the lead developer for libc++, the standard library
implementation that ships with Clang.

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 3 / 41

What do we mean ’tricks’?

Techniques that we don’t see commonly used, but we think are generally
useful.

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 4 / 41

Empty Base class optimizations

When you’re writing generic code, you often need to store objects whose
types you don’t know until later.

Sometimes these objects are small - so small, in fact, that they have no
state.

1 unique ptr and shared ptr have a deleter,
std::default deleter by default.

2 set and map, as well as many algorithms, use std::less by default.

3 All the containers (except array) have an allocator -
std::allocator by default.

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 5 / 41

Empty Base class optimizations (2)

If these objects are empty (have no state), there’s no reason to store them.
You can just construct one whenever you need it - they’re all the same.

All of the standard library implementations that I’ve checked have an
internal class (or facility) named (something like) compressed pair,
which holds two objects. The difference between this and std::pair is
that compressed pair doesn’t actually store the objects if they are
empty.

in C++2a, we will have the attribute [[no unique address]] as a
compiler-based solution.

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 6 / 41

Why is this important?

If you store them, they take up space in the object - every member has a
unique address.

This could double the size of a unique ptr, for example.

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 7 / 41

Constraining “greedy templates”

Some types can be constructed from nearly anything:

struct any {

template <typename T>

any(T&&);

...

};

But we don’t want it to accept anything :

any a1;

any a2 = a1;

Here a1 is a non-const lvalue, so overload resolution chooses
any(T&&) over any(const any&).

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 8 / 41

Constraining “greedy templates”

Some types can be constructed from nearly anything:

struct any {

template <typename T>

any(T&&);

...

};

But we don’t want it to accept anything :

any a1;

any a2 = a1;

Here a1 is a non-const lvalue, so overload resolution chooses
any(T&&) over any(const any&).

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 8 / 41

Constraining “greedy templates”

Some types can be constructed from nearly anything:

struct any {

template <typename T>

any(T&&);

...

};

But we don’t want it to accept anything :

any a1;

any a2 = a1;

Here a1 is a non-const lvalue, so overload resolution chooses
any(T&&) over any(const any&).

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 8 / 41

Constraining “greedy templates”

Put a SFINAE constraint on it!

struct any {

template <typename T,

typename = enable_if_t </*???*/>>

any(T&&);

...

};

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 9 / 41

Constraining “greedy templates”

Put a SFINAE constraint on it!

struct any {

template <typename T,

typename = enable_if_t <!is_same_v <decay_t <T>, any >>>

any(T&&);

...

};

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 10 / 41

Constraining “greedy templates”

Put a SFINAE constraint on it!

struct any {

template <typename T, typename = enable_if_t <

!is_same_v <decay_t <T>, any >>>

any(T&&);

...

};

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 11 / 41

Constraining “greedy templates”

Slightly better to use C++2a’s remove cvref instead of decay:

struct any {

template <typename T, typename = enable_if_t <

!is_same_v <remove_cvref_t <T>, any >>>

any(T&&);

...

};

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 12 / 41

Using common type t<T> as an identity meta-function
If you have some template metaprogramming that wants to apply a
transformation:

template <T, template <typename ...> class F>

using transformed_t = typename F<T>:: type;

template <typename T>

struct second {

using type = typename T:: second_type;

};

static_assert(std::is_same_v <char ,

transformed_t <std::pair <int , char >, second >>);

. . . an “identity” meta-function is useful for cases where nothing needs
transforming:

template <typename T>

struct identity { using type = T; };

static_assert(std::is_same_v <char ,

transformed_t <char , identity >>);

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 13 / 41

Using common type t<T> as an identity meta-function
If you have some template metaprogramming that wants to apply a
transformation:

template <T, template <typename ...> class F>

using transformed_t = typename F<T>:: type;

template <typename T>

struct second {

using type = typename T:: second_type;

};

static_assert(std::is_same_v <char ,

transformed_t <std::pair <int , char >, second >>);

. . . an “identity” meta-function is useful for cases where nothing needs
transforming:

template <typename T>

struct identity { using type = T; };

static_assert(std::is_same_v <char ,

transformed_t <char , identity >>);

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 13 / 41

Using common type t<T> as an identity meta-function

But it’s also useful to create a non-deduced context.

template <typename T>

void frob(std::vector <T>& a, T b)

{ for (auto& c : a) c *= b; }

std::vector <long > a{1, 2, 3};

frob(a, 5);

error: no matching function for call to

’frob(std::vector<long int>&, int)’

note: template argument deduction/substitution failed:

note: deduced conflicting types for parameter ’T’ (’long

int’ and ’int’)

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 14 / 41

Using common type t<T> as an identity meta-function

The problem is that the second function parameter participates in
argument deduction:

template <typename T>

void frob(std::vector <T>& a, T b);

So if you call it with vector<long> and int the compiler can’t deduce T,
because it deduces long from the first argument and int from the second.

note: deduced conflicting types for parameter ’T’ (’long

int’ and ’int’)

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 15 / 41

Using common type t<T> as an identity meta-function

The solution is to ensure the second argument is a non-deduced context:

template <typename T>

void frob(std::vector <T>& a,

typename identity <T>:: type b);

Here the second use of T is a non-deduced context, so only the first one
participates in argument deduction. That allows T to be deduced from
vector<long>, and then long is substituted into identity<T>::type,
which gives long.
The argument 5 can be converted to long, so the call compiles.

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 16 / 41

Using common type t<T> as an identity meta-function

Instead of defining a class template identity just for cases like these you
can use std::common type with a single template argument:

static_assert(std::is_same_v <char ,

transformed_t <char , std:: common_type >>);

template <typename T>

void frob(std::vector <T>& a,

std:: common_type_t <T> b);

template <typename T>

using identity = std:: common_type <T>;

template <typename T>

using identity_t = std:: common_type_t <T>;

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 17 / 41

Conditionally deleted special members

When you have a generic wrapper type like std::optional you want
the wrapper type to model the same interface as the object it
contains.

If is copy constructible<T> is false then you also want
is copy constructible<optional<T>> to be false.

If is default constructible<T> is false then you also want
is default constructible<optional<T>> to be false.

. . .

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 18 / 41

Conditionally deleted special members

When you have a generic wrapper type like std::optional you want
the wrapper type to model the same interface as the object it
contains.

If is copy constructible<T> is false then you also want
is copy constructible<optional<T>> to be false.

If is default constructible<T> is false then you also want
is default constructible<optional<T>> to be false.

. . .

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 18 / 41

Conditionally deleted special members

The usual trick for conditionally deleting functions is SFINAE, but
you can’t use that here.

template <typename T>

struct optional {

template <typename U,

typename = enable_if_t <

is_same_v <U, optional >

&& is_copy_constructible_v <U>>>

optional(const U&);

This template isn’t a copy constructor.

So the compiler will still generate a copy constructor implicitly!

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 19 / 41

Conditionally deleted special members

The usual trick for conditionally deleting functions is SFINAE, but
you can’t use that here.

template <typename T>

struct optional {

template <typename U,

typename = enable_if_t <

is_same_v <U, optional >

&& is_copy_constructible_v <U>>>

optional(const U&);

This template isn’t a copy constructor.

So the compiler will still generate a copy constructor implicitly!

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 19 / 41

Conditionally deleted special members

The usual trick for conditionally deleting functions is SFINAE, but
you can’t use that here.

template <typename T>

struct optional {

template <typename U,

typename = enable_if_t <

is_same_v <U, optional >

&& is_copy_constructible_v <U>>>

optional(const U&);

This template isn’t a copy constructor.

So the compiler will still generate a copy constructor implicitly!

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 19 / 41

Conditionally deleted special members

The solution is to define it as defaulted and get the compiler to delete
it for us when appropriate:

template <typename T>

struct optional {

optional(const optional &) = default;

But how do we get the compiler to delete it?

Delegate the decision to a base class:

template <typename T>

struct optional

: maybe_copyable <is_copy_constructible_v <T>>

{

optional(const optional &) = default;

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 20 / 41

Conditionally deleted special members

The solution is to define it as defaulted and get the compiler to delete
it for us when appropriate:

template <typename T>

struct optional {

optional(const optional &) = default;

But how do we get the compiler to delete it?

Delegate the decision to a base class:

template <typename T>

struct optional

: maybe_copyable <is_copy_constructible_v <T>>

{

optional(const optional &) = default;

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 20 / 41

Conditionally deleted special members

The solution is to define it as defaulted and get the compiler to delete
it for us when appropriate:

template <typename T>

struct optional {

optional(const optional &) = default;

But how do we get the compiler to delete it?

Delegate the decision to a base class:

template <typename T>

struct optional

: maybe_copyable <is_copy_constructible_v <T>>

{

optional(const optional &) = default;

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 20 / 41

Conditionally deleted special members

template <bool IsCopyable >

struct maybe_copyable { };

template <>

struct maybe_copyable <false > {

maybe_copyable(const maybe_copyable &) = delete;

};

template <typename T>

struct optional

: maybe_copyable <is_copy_constructible_v <T>>

{

optional(const optional &) = default;

...

};

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 21 / 41

Conditionally deleted special members

template <bool IsCopyable >

struct maybe_copyable { };

template <>

struct maybe_copyable <false > {

maybe_copyable(const maybe_copyable &) = delete;

// default the rest so they aren’t disabled:

maybe_copyable () = default;

maybe_copyable(maybe_copyable &&) = default;

maybe_copyable&

operator =(const maybe_copyable &) = default;

maybe_copyable&

operator =(maybe_copyable &&) = default;

};

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 22 / 41

Conditionally deleted special members

Then you simply repeat this for each special member:

template <typename T>

struct optional

: maybe_copyable <is_copy_constructible_v <T>>,

maybe_movable <is_move_constructible_v <T>>,

maybe_copy_assignable <is_copy_assignable_v <T>>,

maybe_move_assignable <is_move_assignable_v <T>>

{

optional(const optional &) = default;

optional(optional &&) = default;

...

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 23 / 41

Conditionally deleted special members

Then you “simply” repeat this for each special member:

template <typename T>

struct optional

: maybe_copyable <is_copy_constructible_v <T>>,

maybe_movable <is_move_constructible_v <T>>,

maybe_copy_assignable <is_copy_assignable_v <T>>,

maybe_move_assignable <is_move_assignable_v <T>>

{

optional(const optional &) = default;

optional(optional &&) = default;

...

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 24 / 41

Conditionally explicit constructors

Similar to the last topic, a generic wrapper wants to preserve the
“explicit-ness” of any converting constructors.

Otherwise you can get unsafe conversions to the wrapper where you don’t
want them:

void sink(unique_ptr <X>);

void bath(pair <unique_ptr <X>, int >);

X x;

sink(&x); // Won’t compile , explicit constructor

bath({ &x, 1 }); // uh-oh!

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 25 / 41

Conditionally explicit constructors

You don’t simply want to make all converting constructors explicit.

It’s safe (and convenient) for {1, 2} to convert to pair<int, int>.

So how do you make a constructor conditionally explicit, depending on
whether the member it’s constructing is explicit?

template <typename T1 , typename T2 >

struct pair {

template <typename U1 , typename U2 >

EXPLICIT pair(U1&&, U2&&);

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 26 / 41

Conditionally explicit constructors

Define two constructors, one explicit and one not, and use SFINAE so
at most one is enabled:

template <typename T1, typename T2 >

struct pair {

// Can only be constructed explicitly:

template <typename U1 , typename U2 ,

enable_if_t </*???*/, bool > = false >

explicit pair(U1&&, U2&&);

// Allows implicit conversions:

template <typename U1 , typename U2 ,

enable_if_t </*???*/, bool > = false >

pair(U1&&, U2&&);

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 27 / 41

Conditionally explicit constructors

// Can only be constructed explicitly:

template <typename U1, typename U2 , enable_if_t <

is_constructible <T1, U1>

&& is_constructible <T2 , U2 >

&& !(is_convertible <U1 , U1 >

&& is_convertible <U2 , T2 >), bool >=false >

explicit pair(U1&&, U2&&);

// Allows implicit conversions:

template <typename U1, typename U2 , enable_if_t <

is_constructible <T1, U1>

&& is_constructible <T2 , U2 >

&& is_convertible <U1 , T1 >

&& is_convertible <U2 , T2 >, bool >=false >

pair(U1&&, U2&&);

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 28 / 41

Conditionally explicit constructors

This might get slightly easier in C++2a:

template <typename U1, typename U2 , enable_if_t <

is_constructible <T1, U1>

&& is_constructible <T2 , U2 >, bool >=false >

explicit(is_convertible <U1, T1>

&& is_convertible <U2 , T2 >)

pair(U1&&, U2&&);

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 29 / 41

Using unique ptr for exception safety

Somtimes, you have to perform two operations, either one of which might
fail. This leads to complicated error code.

do_something(new int (23), new int (34));

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 30 / 41

Using unique ptr for exception safety (2)

This is safe, but awkward.
Three cases is very awkward.

int *p1 = new int (23);

try {

int *p2 = new int (34);

do_something(p1 , p2);

}

catch (std:: bad_alloc &) {

delete p1;

throw ;

}

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 31 / 41

Using unique ptr for exception safety (2)

unique ptr makes writing exception-safe code easier.

std:: unique_ptr <int > up1(new int (23));

std:: unique_ptr <int > up2(new int (34));

do_something(up1.release(), up2.release ());

See https://cplusplusmusings.wordpress.com/2015/03/09/simplifying-
code-and-achieving-exception-safety-using-unique ptr for a real-world
example.

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 32 / 41

allocator construct

Allocators have (optional) calls to construct and destroy objects.

template <typename T>

struct Alloc {

typedef T value_type;

T* allocate (size_t sz, const T* = 0);

void deallocate (T *, size_t);

template <class U, class ... Args >

void construct(U* p, Args &&... args) {

::new ((void*)p)

U(std::forward <Args >(args)...);

}

void destroy(T *p) {p->~T();}

};

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 33 / 41

allocator construct (2)

You can provide your own implementation of construct and destroy.

1 You can log object creation and destruction.

2 You can register and deregister objects in some global registry.

3 You can insert/ignore/change/rearrange constructor arguments.

4 You can decide what the ”default value“ is for the objects created by
the allocator.

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 34 / 41

allocator construct (3)

vector <int , allocator <int >> v1(5);

vector <int , my_allocator <int >> v2(5);

for (int i : v1) cout << i << ’ ’;

cout << endl;

// prints: 0 0 0 0 0

for (int i : v2) cout << i << ’ ’;

cout << endl;

// prints: 3 3 3 3 3

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 35 / 41

tag dispatch

When implementing an algorithm, there are often different approaches you
can take, depending on the characteristics of the data that you have to
process.
There are different kinds of iterators: Input, Forward, Bidirectional and
Random access.

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 36 / 41

tag dispatch (2)

The algorithm find end takes two pairs of iterators, and returns the start
of the last occurrence of the of the pattern in the corpus.

The most general implementation is to search for the pattern repeatedly
until it fails, and then return the result of the last successful search.
If both the pattern and corpus are represented by bidirectional iterators (or
better), then you can run the search backwards, and look for the f irst
occurrence.
If both the pattern and corpus are represented by random-access iterators,
then you can limit the range of the search even further.

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 37 / 41

tag dispatch (3)

template <typename Iter >

Iter algo(Iter first , Iter last ,

random_access_iterator_tag)

{ return first; }

template <typename Iter >

Iter algo(Iter first , Iter last ,

input_iterator_tag)

{ return last; }

template <typename Iter >

Iter algo(Iter first , Iter last) {

return algo (first , last , typename

iterator_traits <Iter >:: iterator_category ());

}

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 38 / 41

tag dispatch (4)

template <typename Iter >

Iter algo2(Iter first , Iter last) {

if constexpr(is_same_v <

iterator_traits <Iter >:: iterator_category ,

random_access_iterator_tag >)

return first;

else

return last;

}

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 39 / 41

Questions?

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 40 / 41

Thank you

Marshall Clow, Jonathan Wakely (Qualcomm, Red Hat)010 Tricks that only Library Implementers Know! April 14, 2018 41 / 41

