
The Shape of a Program
Lisa Lippincott

ACCU, April 2018

Why don’t we routinely write down the reasoning
behind our programs in a formal way, and have
computers check it?

The mathematical tools we use for proofs present
a poor user interface for procedural programming.

Many people understand mathematics
as describing timeless, universal truths.

xkcd.com/263
© Randall Munroe
CC BY-NC 2.5

https://xkcd.com/263
https://creativecommons.org/licenses/by-nc/2.5/

Local

I’m going to be talking about things you already
know, perhaps with language you don’t know.

The code here is written in a fantasy C++, with
extensions that make proofs fit into the code.

Topology is about places.

And especially about the thresholds in between places.

Closed sets are meaningful
areas, including their edges.

Open sets are meaningful
areas, not including their edges.

The interior of a set is
the set minus its edges.

The closure of a set is
the set plus its edges.

Areas are adjacent if
they share an edge.

Chains of adjacency
connect areas together.

300

LoopBranchSequence

300

LoopBranchSequence

Backward closed sets
include their entrances.

Forward open sets do not
include their exits.

Backward open sets do not
include their entrances.

Forward closed sets
include their exits.

backward open
forward closed

backward closed
forward closed

backward closed
forward open

backward open
forward open

AdjacentNot adjacent Not adjacent

ⓐ immediately precedes ⓑ

ⓑ

ⓐ

LoopBranchSequence

ⓑ

ⓐ

ⓐ is before ⓑ:
there is a connection from ⓐ to ⓑ, but 
there is no connection from ⓑ to ⓐ.

ⓓ

ⓒ

ⓒ is both before and after ⓓ:
there is a connection from ⓒ to ⓓ, and
there is also a connection from ⓓ to ⓒ.

ⓓ

ⓒ

But in this smaller neighborhood, ⓒ is after ⓓ:
there is no connection from ⓒ to ⓓ, but
there is a connection from ⓓ to ⓒ.

ⓓ

ⓒ

ⓒ is both before and after ⓓ:
there is a connection from ⓒ to ⓓ, and
there is also a connection from ⓓ to ⓒ.

ⓕⓔ
ⓔ and ⓕ are alternative possibilities:
there is a connection neither
from ⓔ to ⓕ nor from ⓕ to ⓔ.

ⓕⓔ
If we expand ⓔ and ⓕ to share
entrances and exits, they remain
alternative possibilities.

ⓓ

ⓒ

ⓒ is both before and after ⓓ

ⓕⓔ

ⓔ is alternative to ⓕ

ⓑ

ⓐ

ⓐ is before ⓑ

Assertion edge

Assertions are experiments.

Successful assertions are repeatable,
and have no meaningful effect.

An assertion describes its edge, in
dimensions of space and possibility.

Some things need to be asserted, but not govern branches:

readable(const T&)
writable(T&)

destructible(T&)

deallocatable(void *, size_t)
array_deallocatable(void *, size_t)

exception_is_rethrowable()

dynamic_type_identifiable(T&)

dereferencable(Iterator)
reachable(Iterator, Iterator)

resizable(vector<T>&)
reallocatable(vector<T>&)

fclosable(int)

in_the_past(time_point<steady_clock>)

proper(T&)

readable(const T&)
writable(T&)

destructible(T&)

deallocatable(void *, size_t)
array_deallocatable(void *, size_t)

exception_is_rethrowable()

dynamic_type_identifiable(T&)

dereferencable(Iterator)
reachable(Iterator, Iterator)

resizable(vector<T>&)
reallocatable(vector<T>&)

fclosable(int)

in_the_past(time_point<steady_clock>)

proper(T&)

memorable(time_point<steady_clock>)

usable(T&)

Capabilities can be asserted, but can’t govern branches:

Assertion edge

Assertions are experiments.

Successful assertions are repeatable,
and have no meaningful effect.

An assertion describes its edge, in
dimensions of space and possibility.

Claimed assertion
(proof is local)

Posited assertion
(proof is elsewhere)

Map of the UK Map of Bristol

Far from Bristol Outskirts of Bristol Inside Bristol

Bristol
Places to visit
while in Bristol

Ways into Bristol

Ways out of Bristol

Calling neighborhood Implementation neighborhood

void bar()
{
…
…pre-call region
…
foo();
…
…post-call region
…

}

void foo() implementation
{
…
…implementation body
…

}

Calling function Interface Function implementation

void foo()
{
…
…prologue
…
…
implementation;
…
…
…epilogue
…

}

void foo()
{
…
…prologue
…
…
implementation;
…
…
…epilogue
…

}

void foo()
{
…
…prologue
…
…
implementation;
…
…
…epilogue
…

}

void foo()
{
…
…prologue
…
…
implementation;
…
…
…epilogue
…

}

A function interface is an experiment in two parts, nestable within itself.

Prologue edge

Epilogue edge

Implementation gap

Implementation’s
point of view

Calling function’s
point of view

Proved by caller,
posited by implementation

Proved by implementation,
posited by caller

void *operator new(size_t s)
{
…
implementation;
…
claim deallocatable(result, s);
…

}

void operator delete(void *p, size_t s)
{
…
claim deallocatable(p, s);
…
implementation;
…

}

p = new T;

delete p; operator delete

operator new

deallocatable
claimed in prologue

deallocatable
claimed in epilogue

operator delete

operator new

deallocatable
claimed in epilogue

deallocatable
claimed in prologue

Heap implementation
neighborhood

(partial)

bool b = a;

c = b; assignment

copy initialization

readable
claimed in prologue

readable
claimed in epilogue

if (b)

readable(b)

void readable(const bool& b)
{
claim addressable(b);
require implementation;

}

if (b)
(true)

if (b)
(false)

readable(b)
(true component)

readable(b)
(false component)

void readable(const bool& b)
{
claim addressable(b);
require implementation;

}

void foo(const bool& b)
{
claim usable(b);
implementation;
claim usable(b);

}

inline void usable(const bool& b)
{
require readable(b);

} foo(b)foo(b)

readable(b)

readable(b)

foo(b)
(true)

foo(b)
(false)

void foo(const bool& b)
{
claim usable(b);
implementation;
claim usable(b);

}

inline void usable(const bool& b)
{
require readable(b);

}

readable(b)
(true component)

readable(b)
(false component)

readable(b)
(true component)

readable(b)
(false component)

foo(b)
(true)

foo(b)
(false)

void foo(bool& b)
{
claim usable(b);
require implementation;
claim usable(b);

}

inline void usable(bool& b)
{
require readable(b);
require writable(b);

}

readable(b)
(true component)

readable(b)
(false component)

readable(b)
(true component)

readable(b)
(false component)

writable(bool&)

readable(const bool&)
(true component)

readable(const bool&)
(false component)

void writable(bool& b)
{
claim addressable(b);
require implementation;
require readable(b);

}

void readable(const bool& b)
{
claim addressable(b);
require implementation;

}

readable

writable

assignment

if
(false)

bool implementation
neighborhood

(partial)

if
(true)

All of these neighborhoods are
composed of nothing but edges.

And it’s edges all the way up.

It’s edges all the way down.

Questions?

