Procedural Programming
It's Back? It Never Went Away

Bricstow

Bristow

Bristol

procedure

procedural

procedural?

uovoAlbog

This is the Unix philosophy:
Write programs that do one
thing and do it well. Write
programs to work together.

Doug Mcllroy

Lservices

In Mcllroy's summary, the hard
part is his second sentence:
Write programs to work
together.

Jjohn D Cook

In the long run every
program becomes rococo
— then rubble.

Alan Perlis

B LA

SOFTWARE ENGINEERING

Report on a conference sponsored by the

NATO SCIENCE COMMITTEE
Garmisch, Germany, 7th to 11th October 1968

I began to use the term “software
engineering” to distinguish it from
hardware and other kinds of engineering;
yet, treat each type of engineering as part of
the overall systems engineering process.

Margaret Hamilton

200I: A SPACE ODYSSEY

SOFTWARE ENGINEERING

Report on a conference sponsored by the

NATO SCIENCE COMMITTEE
Garmisch, Germany, 7th to 11th October 1968

Define a subset of the system which is
small enough to bring to an operational
state [...] then build on that subsystem.

E E David

This strategy requires that the system
be designed in modules which can be
realized, tested, and modified
independently, apart from conventions
for intermodule communication.

E E David

The design process
1S an 1terative one.

Andy Kinslow

There are two classes of system designers.
The first, if given five problems will solve
them one at a time.

Andy Kinslow

The second will come back and announce
that these aren’t the real problems, and
will eventually propose a solution to the
single problem which underlies the
original five.

Andy Kinslow

This is the “system type” who is great
during the initial stages of a design project.
However, you had better get rid of him
after the first six months if you want to get
a working system.

Andy Kinslow

A software system can best be
designed if the testing is interlaced
with the designing instead of
being used after the design.

Alan Perlis

proc is leap year = (int year) bool:
skip;

P A

et

T e

»
Cé

e T e S

1¥

ised Report
on the Algorithm

Rev
Edited by

At long

bool .
char union

short

volid

struct

proc is leap year = (int year) bool:

false;

[] proposition Teap year spec =

(
("Years not divisible by 4 are not Teap years",
void: (assert (not is leap year (1967))))

);

@®

mode proposition = struct (string name, proc void test);

proc is leap year = (int year) bool:
false;

[] proposition Teap year spec =

(

("Years not divisible by 4 are not Teap years",
void: (assert (not is leap year (1967))))

)3

test (leap year spec)

@®

mode proposition = struct (string name, proc void test);

proc test = ([] proposition spec) void:
for entry from 1lwb spec to upb spec
do
print (name of spec [entry]);
test of spec [entry];
print (new line)
od;

@®

proc is leap year = (int year) bool:
year mod 4 = 0;

[] proposition Teap year spec =

(
("Years not divisible by 4 are not leap years",
void: (assert (not is Teap year (1967)))),
("Years divisible by 4 but not by 100 are leap years",
void: (assert (is leap year (1968))))
);

test (leap year spec)

@®

proc is leap year = (int year) bool:
year mod 4 = 0 and year mod 100 /= 0;

[] proposition Teap year spec =

(

("Years not divisible by 4 are not leap years",

void: (assert (not is Teap year (1967)))),

("Years divisible by 4 but not by 100 are leap years",

void: (assert (is leap year (1968)))),

("Years divisible by 100 but not by 400 are not leap years",
void: (assert (not is leap year (1900))))

)3

test (leap year spec)

@®

proc is leap year = (int year) bool:
year mod 4 = 0 and year mod 100 /= 0 or year mod 400 = 0;

[] proposition Teap year spec =
(
("Years not divisible by 4 are not leap years",
void: (assert (not is Teap year (1967)))),
("Years divisible by 4 but not by 100 are leap years",
void: (assert (is leap year (1968)))),
("Years divisible by 100 but not by 400 are not leap years",
void: (assert (not is leap year (1900)))),
("Years divisible by 400 are leap years",
void: (assert (is leap year (2000))))

)3

test (leap year spec)

@®

LISP 1.5 Programmer’'s Manual

The Computation Center
and Research Laboratory of Electronics

Massachusetts Institute of Technology

proc is leap year = (int year) bool:
year mod 4 = 0 and year mod 100 /= 0 or year mod 400 = 0;

[] proposition Teap year spec =

(

("Years not divisible by 4 are not leap years",

with (2018, 2001, 1967, 1), expect (false)),

("Years divisible by 4 but not by 100 are leap years",

with (2016, 1984, 1968, 4), expect (true)),

("Years divisible by 100 but not by 400 are not leap years",
with (2100, 1900, 100), expect (false)),

("Years divisible by 400 are leap years",

with (2000, 1600, 400), expect (true))

)3

test (is leap year, leap year spec)

@®

mode expect = bool;
mode with = flex [1:0] int;

mode proposition = struct (string name, with inputs, expect result);

@®

proc test = (proc (int) bool function, [] proposition spec) void:
for entry from lwb spec to upb spec

do
print (name of spec [entry]);
string report := "", separator := " failed for ";
[]1 int inputs = inputs of spec [entry];
for value from lwb inputs to upb inputs
do
if
bool expected = result of spec [entry];
function (inputs [value]) /= expected
then
report +:= separator + whole(inputs[value], 0);
separator := " "
fi
od;
print (if report = "" then (new line) else (new line, report, new Tine) fi)
od;

@®

proc test = (proc (int) bool function, [] proposition spec) void:
for entry from lwb spec to upb spec

do
print (name of spec [entry]);
string report := "", separator := " failed for ";
[] int inputs = inputs of spec [entry];
for value from lwb inputs to upb inputs
do
if
bool expected = result of spec [entry];
function (inputs [value]) /= expected
then
report +:= separator + whole(inputs[value], 0);
separator := " "
fi
od;
print (if report = "" then (new line) else (new line, report, new Tine) fi)
od;

@®

string report := "", separator := failed for ";
[1 int inputs = inputs of spec [entry];

proc test = (proc (int) bool function, [] proposition spec) void:
for entry from lwb spec to upb spec

do
print (name of spec [entry]);
string report := "", separator := " failed for ";
[] int inputs = inputs of spec [entry];
for value from lwb inputs to upb inputs
do
if
bool expected = result of spec [entry];
function (inputs [value]) /= expected
then
report +:= separator + whole(inputs[value], 0);
separator := " "
fi
od;
print (if report = "" then (new line) else (new line, report, new Tine) fi)
od;

@®

bool expected = result of spec [entry];
function (inputs [value]) /= expected

@®

proc test = (proc (int) bool function, [] proposition spec) void:

for entry from lwb spec to upb spec

do

od;

print (name of spec [entry]);

string report := "", separator := failed for ";
[] int inputs = inputs of spec [entry];

for value from lwb inputs to upb inputs
do
hi
bool expected = result of spec [entry];
function (inputs [value]) /= expected
then
report +:= separator + whole(inputs[value], 0);
separator := " "
fi
od;

print (if report = "" then (new 1ine) else (new line, report, new Tine) fi)

@®

print (if report = "" then (new line) else (new line, report, new Tine) fi)

@®

print ((report =

| (new Tine) | (new line, report, new line)))

@®

We instituted a rigorous regression
test for all of the features of AWK.
Any of the three of us who putin a
new feature into the language [...],
first had to write a test for the new
feature.

Alfred Aho

http:/lwww.computerworld.com.aularticle/2 | 6844/a-z_programming_languages_awk/

There is no such question as testing things after the
fact with simulation models, but that in effect the
testing and the replacement of simulations with
modules that are deeper and more detailed goes on
with the simulation model controlling, as it were,
the place and order in which these things are done.

Alan Perlis

As design work progresses this
simulation will gradually evolve
into the real system.

The simulation is the design.

Tad B Pinkerton

& TRUCTURED
PROGRAMMING

0.). DAHLE V. DIKSTRA
oad C. B R HOARE

Go To Statement Considered Harmful

Key meh and Phnsea g0 i statement, ,ump instruction,
branch clause, elause, repet-
itive clause, pmonam intelligibility, program sequencing

CR annam 4.22, 5.23, 5.2

Epiron:

For a number of years I have been familiar with the observation
that the quality of programmers is a deerensing function of the
density of go to statements in the programs they produce. More
recently I discovered why the use of the go to statement has such
disastrous effects, and T became convinced that the go to state-
ment should be abelished from all “higher level" programming
languages (i.e. everything except, perhaps, plain machine code).
At'that time I did not attach too much importance to this dis-
covery; [now submit my considerations for publication because
in very recent diseussions in which the subjeet turned up, I have
been urged to do so.

My first remark is that, although the 's activity

dynamic progresa is only charseterized when we also glve to which
call of the procedure we refer. With the inclusion of procedures
we ean characterize the progress of the process via a sequence of
textual indices, the length of this sequence being equal to the
dynamic depth of procedure calling.

us now consider repetition clauses (like, while B repeat A
or repeat A until H). Logically speaking, such clauses are now
superfluous, because we can express repetition with the aid of
reqursive procedures. For reasons of realism I don’t wish to ex-
clude them: on the one hand, repetition clauses can be impla-

mented quite comfortably with present day finite o

judge by whom my thinking has been influenced? It is fairly
obvious that T am not uninfiuenced by Peter Landin and Chris-
topher Strachey. Finally 1 should like to record (as [remember it
quite distinctly) how Heinz Zemansk at the pre-ALaoL meeting
in early 1030 in Copenhagen quite explicitly expressed his doubts
whether the goto statement should be treated on equal syntactic
footing with the assignment statement, To a modest extent [
blame mygelf for not baving thes drawn the consequences of his
remark.

The remark about the undesirability of the go 1o s1atement is
far from new. I remember having read the explicit resommenda-
tiom 10 resirict ithe use of the go to statement 1o alarm exits, but
I have not bean sble to trace it; presimably, it has been mads by
C. A, K. Hoare. In |1, Sec. 3.2.1] Wirth and Hoare together
make a remark in the same direetion in nwmmng the case
construction: “Like the tonditionsl, it mirrors the dynamic
strugture of a program more clearly than go to statements and
switches, and it eliminates the need for introducing a large number
of labels in the program.”

Tn 2 Guiseppe Jacopini secrms i have proved the (logical)
of the go to statement. The exercise to translate

the other hand, the ressoning patiern kvown ss “induction”
makes us well equipped to retain our intellectual grasp on the

generated by repetition clauses. With the inelusion of
the repetition clamses textual indices are no longer sufficient to
deseribe the dynamic progress of the precess. With each entry into
a repetition clause, however, we can nssociate & so-called ‘dy-
namie mdnx " inexorsbly Bwnung the ordllld numbser of the

ends when be has eonstructed a eorreet program, the process
tnking place under control of his program is the true subject
matter of his activity, for it is this process that has to secomplish
the desired effect ; it is this process that in ite dynamic behavior
bas tosatisy the desired specifications. Yet, once the program has
been made, the “making” of the corresponding process is dale-
gated to the machine.

My aceond remurk is that our intellectusl powers are rather
geared to master static relations and that our powers to visualize
procesges evolving in time are relatively poorly developed. For
that reason we should do (as wise programmers aware of our
limitations) our utmust to shorten the conceptusl gap between
the static program and the dynamic process, to make the cor-
respondence between the program {spread out in text space) and
the process (spread out in time) as triviel as possible.

Let us now consider how we can churacterize the progress of &
process. (You may think ahout this question in & very concrete
manner: suppose that o proeeas, considered as a time succession
of actions, is stopped after an arbitrary action, what data do we
have 1o fix in order that we can redo the process until the very
same point?) IF the program text is o pure concatenation of, say,
assignment statements (For the purpose of this discussion regarded
sa the deseriptions of single actions) it is sufficient to point in the
Program text 1o & point between two auccessive action deserip-
tona, (In the absence of go to statements 1 con permit myself the
synibactic ambiguity in the last three words of the previous sen-
tence: if we parse them as “successive (netion deseriptions)” we
mean snecessive in text space; if we parss as “(successive action)
descriptions” we mean successive in time.) Let us call such a
pointer to s suitable pluce in the text s “textual index.'

When we inelude conditional clauses (if & then A), slternative
clsuses (if & then Al else A2), choice clauses as introduced by
A R. Houre (easeli] of id1, AZ, - , An}}, or conditional expres-
sione s introduced by J. MeCarthy (81 — E1, B2 — EZ, .-,
B — Bn), the fact remaing that the progreas of the prosess re-
mains characterized by a single textual index,

Az goon as we inolude in our language procedures we must admit
that o single textual index is no longer sufficient. In the case that
a textusl index points to the interior of & procedure body the

Volume 11 / Number 3 / March, 1968

current As clauses (just as
procedure calls) may be applied nestedly, we find that now the
progress of the process can always be uniquely charscterized by &
(mixed) sequence of textual and/or dynamic indiees.

The main point is that the velues of these indices are outside
programmer’s control; they are generated (either by the write-up
of his program or by the dynsmic evolution of the process) whether
he wishes or not, They provide independent coordinates in which
to deseribe the progress of the process.

Why do we need such indepe'udom. coordinates? The reason
is—and this seems to be inhérent to sequeéntial processes—that
we can interpret the value of a variable only with respect to the
progress of the process. If we wish to count the number, n ssy, of
people in an initially empty room, we ean achieve this by increas.
ing # by one whenever we see someone entering the room. Tn the
in-between moment that we have observed someone entering the
room but have not yet performed the subsequent increase of m,
ita yalue equals the number of people in the room minus one!

The unbridled use of the go to statement has an immediate
consequence that it becomes terribly hard to find & meaningful set
of coordinates in which to deacribe the process progress. Usually,
people take into acoount ss well the values of soma well chosan
wvariables, but this is out of the question bessuse it is relative to
the progress that the meaning of these values is to be understood |
With the go to statement one can, of course, still describe the
progross uniquely by a counter counting the number of actions
performed since program start {vis. a kind of normalized clok).
The diffieulty is that such a coordinate, although unique, is utterly
unhelpful. In such a eoordinate system it becomes an extremely
complicated affair to define all those points of progress where,
suy, n equals the mimber of persons in the roem minus one!

The go to statement as it atands is just too primitive; it is teo
much an invitation to make a mess of ene's program. One esn
regard and appreciate the clauses considered us bridling its uso, [
do not eluim that the elauses mentioned are exhanstive in the sense
that they will satisfy all needs, but whatever clauses are suggested
(.5 ulmuon olwn) they ahuuld satisly the requirement thnl a

stem can be maintained to
deurlbe the process in & helpful and manageable way.

It is hard to end this with » fair acknowledgment. Am I to

Communicationa of the ACM ur

an nhumry flow diagram more of less mechanieally into & jump-
less one, hawever, is not 10 be recommendsd. Then the resulting
flow disgram cannot be expecied to be more transparent than the

original one.
REFERENCES!
1. Wirrst, Nikrars, ano Hoare, C. AR, A contribution to the

development of ALGOL. Comm. ACM 8 {June 1966), $13-332.
2 Bome, Conmapo, axp Jacorist, Griseree, Flow disgrams,
Turing machines and languages with only two formation
rules, Comm. ACM & (May 1806, 360-371.
Epscer W, DiikstRa
Technological University
Eindhoven, The Netherlands

W \\‘*"“-"ré . D REFERENCE

N\ e . 'useoxmmmcnoumvor

(g : A ‘
4 INou oR n g IS
. wo >
‘ : L The \\ill‘('>\»£
- .
L Book .

| T.FHOAD gy

T Eorrmd
An /chf VMta

creator of the A\ j

with " A ;l’dnr
\

ORD , mﬂg
| of 175

REFERENCE DICTIONARY

MATHEMATICS

snowclone, noun

= clichéd wording used as a template, typically
originating in a single quote

= e.g., "X considered harmtul", "These aren't
the Xs you're looking for", "X is the new Y",
"Tt's X, but not as we know it", "No X left
behind", "It's Xs all the way down", "All your
X are belong to us"

FWD215 - O

A Case against the GO TO Statement.

by Edsger W.Dijkstra
Technological University

Eindhoven, The Netherlands

Since a number of years I am familisr with the observation that the
quality of programmers is a decreasing function aof the density of go to
statements in the programs they produce. Later 1 discovered why the use of
the go to statement has such disastrous effects and did I become convinced
that the go to statement should be abolished from all "higher level"
prugramﬁing languages (i.e. everything except -perhaps- plzin machine code),
At that time I did not attaeh too mych importance to this discavery; 1 now
submit my considerations for publication because in very recent discussions

in which the subject turned up, I have been urged to do so.

10

20

FUNCTION ISLEAP(YEAR)
LOGICAL ISLEAP
INTEGER YEAR
IF (MOD(YEAR, 400) .EQ. 0) GOTO 20
IF (MOD(YEAR, 100) .EQ. 0) GOTO 10
IF (MOD(YEAR, 4) .EQ. 0) GOTO 20

ISLEAP = .FALSE.

RETURN

ISLEAP = .TRUE.
END

@®

10

20

FUNCTION ISLEAP(YEAR)
LOGICAL ISLEAP
INTEGER YEAR
IF (MOD(YEAR, 400) .EQ. 0) GOTO 20
IF (MOD(YEAR, 100) .EQ. 0) GOTO 10
IF (MOD(YEAR, 4) .EQ. 0) GOTO 20

ISLEAP = .FALSE.
RETURN
ISLEAP = .TRUE.
RETURN

END

@®

10

20
30

FUNCTION ISLEAP(YEAR)
LOGICAL ISLEAP
INTEGER YEAR
IF (MOD(YEAR, 400) .EQ. 0) GOTO 20
IF (MOD(YEAR, 100) .EQ. 0) GOTO 10
IF (MOD(YEAR, 4) .EQ. 0) GOTO 20

ISLEAP = .FALSE.
GOoTO 30
ISLEAP = .TRUE.
RETURN

END

@®

10
20
30

FUNCTION ISLEAP(YEAR)
LOGICAL ISLEAP
INTEGER YEAR
IF (MOD(YEAR, 400) .EQ. 0) GOTO 20
IF (MOD(YEAR, 100) .EQ. 0) GOTO 10
IF (MOD(YEAR, 4) .EQ. 0) GOTO 20

ISLEAP = .FALSE.
GOoTO 30
ISLEAP = .TRUE.
GOTO 30
RETURN

END

@®

10
20

30

FUNCTION ISLEAP(YEAR)
LOGICAL ISLEAP
INTEGER YEAR
IF (MOD(YEAR, 400) .EQ. 0) GOTO 20
IF (MOD(YEAR, 100) .EQ. 0) GOTO 10
IF (MOD(YEAR, 4) .EQ. 0) GOTO 20
ISLEAP = .FALSE.
GOTO 30
ISLEAP = .TRUE.
GOTO 30
CONTINUE
RETURN

@®

FUNCTION ISLEAP(Year)
LOGICAL ISLEAP
INTEGER YEAR

IF (MOD(YEAR, 400) .EQ. O) THEN

ISLEAP = .TRUE.

ELSE IF (MOD(YEAR, 100) .EQ. O) THEN

ISLEAP = .FALSE.
ELSE IF (MOD(YEAR, 4)

ISLEAP = .TRUE.
ELSE

ISLEAP = .FALSE.
END IF

.EQ. 0) THEN

@®

FUNCTION ISLEAP(Year)
LOGICAL ISLEAP
INTEGER YEAR

IF (MOD(YEAR, 400) .EQ. O) THEN

ISLEAP = .TRUE.
ELSE IF (MOD(YEAR, 100)
ISLEAP = .FALSE.

.EQ. 0) THEN

ELSE IF (MOD(YEAR, 4) .EQ. O) THEN

ISLEAP = .TRUE.
ELSE

ISLEAP = .FALSE.
END IF

@®

A goto completely
iInvalidates the high-level
structure of the code.

Taligent's Guide to Designing Programs

10

20

FUNCTION ISLEAP(YEAR)
LOGICAL ISLEAP
INTEGER YEAR
IF (MOD(YEAR, 400) .EQ. 0) GOTO 20
IF (MOD(YEAR, 100) .EQ. 0) GOTO 10
IF (MOD(YEAR, 4) .EQ. 0) GOTO 20

ISLEAP = .FALSE.

RETURN

ISLEAP = .TRUE.
END

@®

send(to,

{

from, count)
register short *to,
register count;

*from;

register n=(count+7)/8;

switch(count%8) {

case
case
case
case
case
case
case
case

}

0: do{ *to
7: *to
6: *to
5: *to
4: *to
3: *to
2: *to
1: *to =

twhile(--n>0);

*from++;
*from++;
*from++;
*from++;
*from++;
*from++;
*from++;
*from++;

[feel a combination of
pride and revulsion at
this discovery.

Tom Duff

Many people have said that the worst
feature of C is that switches don't break
automatically betore each case label.
This code forms some sort of argument
in that debate, but I'm not sure whether
it's for or against.

Tom Duff

break

v
AS'

|4

S

0
m X o

=7 |1 =e¢

(A |
o o|ln 1n
W [e > 0— [Z<Z—>]
1 0
da g ||
Z<Z—|
1 0
i o o |
e =—177Z=7
1 0
0
ln 1In o o

Od 1(V) =R
0
m X o

Vv =7

0 0

m. X T m. X g

Wim—1) [

VA =R

0 0

m X o m X o

4 =7

0 0

s e+1

a a

4 =7

0 0
c4+1

a a

e—1=c¢

Fin®

Plankalktil

Bram Bruines

continue
bDrealk
refturn

def islLeapYear(year)

{
return year % 4 == 0 && year % 100 != 0 || year % 400 ==

@®

def islLeapYear(year)

{
year % 4 == 0 && year % 100 != 0 || year % 400 ==

@®

def islLeapYear(year)

{

if (year % 400 == 0)
return true

else if (year % 100 == 0)
return false

else if (year % 4 == 0)
return true

else
return false

def islLeapYear(year)

{

if (year % 400 == 0)
return true

if (year % 100 == 0)
return false

if (year % 4 == 0)
return true

return false

@®

def islLeapYear(year)

{

if (year % 400 == 0)
true

else if (year % 100 == Q)
false

else if (year % 4 == 0)
true

else
false

def islLeapYear(year)

{

if (year % 400 == 0)
return true

if (year % 100 == 0)
return false

if (year % 4 == 0)
return true

return false

@®

def islLeapYear(year)

{

if (year % 400 == 0)
true

else if (year % 100 == 0)
false

else if (year % 4 == 0)
true

else
false

def islLeapYear(year)

{

if (year % 400 == 0)
return true

if (year % 100 == 0)
return false

if (year % 4 == 0)
return true

false

@®

def islLeapYear(year)

{

if (year % 400 == 0)
true

else if (year % 100 == Q)
false

else if (year % 4 == 0)
true

else
false

def islLeapYear(year)

{

if (year % 400 == 0)
return true

if (year % 100 == 0)
return false

if (year % 4 == 0)
return true

return false

@®

def islLeapYear(year)

{

if (year % 400 == 0)
else if (year % 100 == 0)
else if (year % 4 == 0)

else

def islLeapYear(year)

{

if (year % 400 == 0)
if (year % 100 == 0)
if (year % 4 == 0)

return false

@®

def islLeapYear(year)

{

if (year % 400 == 0)
true

else if (year % 100 == Q)
false

else if (year % 4 == 0)
true

else
false

def islLeapYear(year)

{

if (year % 400 == 0)
return true

if (year % 100 == 0)
return false

if (year % 4 == 0)
return true

return false

@®

def islLeapYear(year)

{

if (year % 400 == 0)
true

else if (year % 100 == 0)
false

else if (year % 4 == 0)
true

else
false

@®

proc is leap year = (int year) bool:

if year mod 400 = @ then
true

elif year mod 100
false

elif year mod 4 = @ then
true

else
false

© then

fi;

isLeapYear year =

if year ‘mod' 400 == 0 then
True

else if year ‘mod®' 100 == @ then
False

else if year ‘mod' 4 == @ then
True

else
False

@®

function IsLeapYear(Year: Integer): Boolean;

begin
if Year mod 400 = 0 then
IsLeapYear := True
else if Year mod 100 = @ then
IsLeapYear := False
else if Year mod 4 = @ then
IsLeapYear := True
else
IsLeapYear := False
end;

@®

& TRUCTURED
PROGRAMMING

0.). DAHLE V. DIKSTRA
oad C. B R HOARE

One of the most powerful
mechanisms for program
structuring [...] is the block
and procedure concept.

Ole-Johan Dahl and C A R Hoare
"Hierarchical Program Structures”

sequence
selection
iteration

Main Program and Subroutine

The goal Is to decompose a program Into
smaller pieces to help achieve modifiability.
A program Is decomposed hierarchically.

Len Bass, Paul Clements & Rick Kazman
Software Architecture in Practice

> &

afferent branch fransform branch efferent branch

There Is typically a single thread of control
and each component in the hierarchy gets
this control (optionally along with some
data) from Its parent and passes It along
to its children.

Len Bass, Paul Clements & Rick Kazman
Software Architecture in Practice

> &

afferent branch fransform branch efferent branch

procedure procedure procedure

procedure procedure procedure procedure

procedure

afferent branch fransform branch efferent branch

> ¢

afferent branch fransform branch efferent branch

You cannot teach beginners
top-down programming,
because they don't know
which end is up.

C A R Hoare

Everything should be built
top-down, except the first
time.

Alan Perlis

We propose [...] that one begins with a
list of difficult design decisions or design
decisions which are likely to change.
Each module is then designed to hide
such a decision from the others.

David L Parnas
"On the Criteria to Be Used in Decomposing Systems into Modules”

An abstract data type defines a class of
abstract objects which is completely
characterized by the operations
avallable on those objects.

Barbara Liskov
"Programming with Abstract Data Types"

A programmer [...] is concerned only
with the behavior which that object
exhibits but not with any details of how
that behavior is achieved by means of
an implementation.

Barbara Liskov
"Programming with Abstract Data Types"

[The Self and the Objct | World j r

& m, mw»

Greenberg and Mitchell e arvaid i

Ob_]ect Relafmns in Psychoanalytlc Theo

B 5

™= - >/

DEFINITION MODULE Stacks;
TYPE Stack;

PROCEDURE
PROCEDURE

PROCEDURE
PROCEDURE
PROCEDURE
PROCEDURE

END Stacks.

New(VAR self: Stack);
Delete (VAR self: Stack);

Push(self: Stack; top: ARRAY OF CHAR);
Pop(self: Stack);

Depth(self: Stack): CARDINAL;

Top(self: Stack; VAR top: ARRAY OF CHAR);

@®

#ifdef __cplusplus
extern "C"

{
#tendif

typedef struct stack stack;

stack * stack_new(void);
void stack_delete(stack x*);

void stack_push(stack *, const char *);
void stack_pop(stack x*);

size_t stack_depth(const stack x*);
const char * stack_top(const stack x*);

#ifdef __cplusplus

}
#tendif

@®

struct stack

{
const char ** items;
size_t depth;

35

stack * stack_new(void)

{
stack * result = (stack *) malloc(sizeof(stack));
result->items = (const char **) malloc(9);
result->depth = 0;
return result;

3

void stack_delete(stack * self)

free(self->items);

free(self);
3
void stack_push(stack * self, const char * new_top)
{
self->items = (const char **) realloc(self->items, (self->depth + 1) * sizeof(char *));
self->items[self->depth] = new_top;
++self->depth;
3

void stack_pop(stack * self)

self->items = (const char **) realloc(self->items, (self->depth - 1) * sizeof(char *));
--self->depth;

3
size_t stack_depth(const stack * self)
{
return self->depth;
3
const char * stack_top(const stack * self)
{
return self->items[self->depth - 11;
b

@®

extern "C"

{
struct stack
i
std::vector<std::string> items;
};
stack * stack_new()
{
return new stack;
}
void stack_delete(stack * self)
delete self;
}
void stack_push(stack * self, const char * new_top)
{
self->items.push_back(new_top);
}
void stack_pop(stack * self)
self->items.pop_back();
}
size_t stack_depth(const stack * self)
{
return self->items.size();
B
const char * stack_top(const stack * self)
{
return self->items.back().c_str();
3
¥

@®

Hamlet: To be, or not to be,
that is the question.

Ophelia: "Tis in my memory
locked, and you yourself
shall keep the key of it.

Hamlet: Yea, from the table
of my memory I'll wipe
away all trivial fond records.

& TRUCTURED
PROGRAMMING

0.). DAHLE V. DIKSTRA
oad C. B R HOARE

One of the most powerful
mechanisms for program
structuring [...] is the block
and procedure concept.

Ole-Johan Dahl and C A R Hoare
"Hierarchical Program Structures”

begin

end;

ref (Book) array books (l:capacity):
integer count;

procedure Push (top);
procedure Pop;

boolean procedure IsEmpty;
boolean procedure IsFull;
integer procedure Depth;
ref (Book) procedure Top;

D)

@®

A procedure which is capable of
giving rise to block instances which
survive its call will be known as a
class; and the instances will be
known as objects of that class.

Ole-Johan Dahl and C A R Hoare
"Hierarchical Program Structures”

class Stack(capacity);

integer capacity;

begin

end;

ref (Book) array books (l:capacity):
integer count;

procedure Push (top);
procedure Pop;

boolean procedure IsEmpty;
boolean procedure IsFull;
integer procedure Depth;
ref (Book) procedure Top;

D)

@®

const newStack = () => {
const items = []
return {
depth: () => items.length,
top: () => items[0],
pop: () => { items.shift() },
push: newTop => { items.unshift(newTop) },

@®

const newStack = () => {
const items = []
return {
depth: () => items.length,
top: () => items[items.length - 1],
pop: () => { items.pop() },
push: newTop => { items.push(newTop)

}s

@®

Concatenation is an operation
defined between two classes A
and B, or a class A and a block C,
and results in the formation of a
new class or block.

Ole-Johan Dahl and C A R Hoare
"Hierarchical Program Structures”

Concatenation consists in a
merging of the attributes of both
components, and the composition
of their actions.

Ole-Johan Dahl and C A R Hoare
"Hierarchical Program Structures”

const stackable = base => {
const items = []
return Object.assign(base, {
depth: () => items.length,
top: () => items[items.length - 1],
pop: () => { items.pop() },
push: newTop => { items.push(newTop) },

)

@®

const newStack = () => stackable({})

@®

const clearable = base => {
return Object.assign(base, {
clear: () => {
while (base.depth())
base.pop()

}s
)

@®

const newStack =
() => clearable(stackable({}))

@®

const newStack =
() => compose(clearable, stackable) ({})

const compose = (...funcs) =>
arg => funcs.reduceRight (
(composed, func) => func(composed), arg)

@®

Concept Hierarchies

The construction principle involved is best
called abstraction; we concentrate on features
common to many phenomena, and we abstract
away teatures too far removed from the
conceptual level at which we are working.

Ole-Johan Dahl and C A R Hoare
"Hierarchical Program Structures”

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is
one whose objects provide all the behavior of
objects of another type (the supertype) plus
something extra.

Barbara Liskov
"Data Abstraction and Hierarchy"

What is wanted here is something like the
following substitution property: If for each
object 0l of type S there is an object 02 of type
T such that for all programs P’ defined in terms
of T, the behavior of P is unchanged when o1 is
substituted for 02, then S is a subtype of T.

Barbara Liskov
"Data Abstraction and Hierarchy"

const nonDuplicateTop = base => {

const push = base.push
return Object.assign(base, {

push: newTop => {

if (base.top() !== newTop)
push(newTop)

}s

})

@®

tests = {

'A non-empty stack becomes deeper by retaining a pushed item as its top':

0 =>{

const stack = newStack()

stack.push('ACCU")
stack.push('2018")
stack.push('2018')

assert(stack.depth() === 3)
assert(stack.top() === "

@®

const newStack =
() => compose(clearable, stackable) ({})

tests = {

'A non-empty stack becomes deeper by retaining a pushed item as its top':
() =>{
const stack = newStack()
stack.push('ACCU")
stack.push('2018"')
stack.push('2018')

assert(stack.depth()
assert(stack.top() =

== 3)
'2018")

}s

const newStack =
() => compose(nonDuplicateTop, clearable, stackable) ({})

tests = {

@®

for all programs P defined in terms
of T, the behavior of P is unchanged when o1 is
substituted for 02

Barbara Liskov
"Data Abstraction and Hierarchy"

We can build a complete programming
model out of two separate pieces—the
computation model and the
coordination model.

David Gelernter + Nicholas Carriero

"Coordination Languages and their Significance"

Algorithms +
Data Structures =
Programs

Niklaus Wirth

Coordination +
Computation =
Programs

Mutable

Shared mutable
data needs
synchronisation

Unshared mutable
data needs no
synchronisation

Unshared Shared

Shared immutable
data needs no
synchronisation

Unshared immutable
data needs no
synchronisation

Immutable

Mutable

Unshared mutable
data needs no
synchronisation

Unshared Shared

Shared immutable
data needs no
synchronisation

Unshared immutable
data needs no
synchronisation

Immutable

Mutable

Unshared mutable
data needs no
synchronisation

Unshared Shared

Shared immutable
data needs no
synchronisation

Unshared immutable
data needs no
synchronisation

Immutable

Unshared mutable
data needs no
synchronisation

Shared immutable
data needs no
synchronisation

Unshared immutable
data needs no
synchronisation

Threads and locks —
they’'re kind of a dead
end, right?

Bret Victor
“The future of programming”

So, | think if [...] we're still using
threads and locks, we should

just, like, pack up and go home,
'cause we've clearly failed as an

engineering field.

Bret Victor
“The future of programming”

Mutable

Unshared mutable
data needs no
synchronisation

Unshared Shared

Shared immutable
data needs no
synchronisation

Unshared immutable
data needs no
synchronisation

Immutable

The computation model allows
programmers to build a single
computational activity: a single-
threaded, step-at-a-time
computation.

David Gelernter + Nicholas Carriero

"Coordination Languages and their Significance"

The coordination model is the
glue that binds separate
activities into an ensemble.

David Gelernter + Nicholas Carriero

"Coordination Languages and their Significance"

no shared mutable state

~

coordination

le-threaded activity

sing

Bummer'y--uhg\tﬁs Cost-
To put my strongest conesrns in 2 nll.ﬂahelll

1. We ghowld heve acoe waya of e¢cupling progrsm@ Mks
g.nrden hogg-—torew in annther segrent when li becomes khen’ ..
11; beoore? nessseary to rasssee detm in encther way. .
®ple 55 the way of 1D &lgo.
?, Cur loader srcull be abie to Ao llnk-loading end
sontrolled estatliskment, : . .
Js Our librery f1ling scheme ehculd &2low for raiher
generel Indering, respensibility, gerereticne, deia psth
swltching, a
4, It should be possible tk get privete :syatez. CCoponents
{z1l rovtines ers eytez conponents) fof ﬁ;ggeriug oround with,

%K. D. Mollre
Cet. pmﬁ

N

bounded
buffered
asynchronous

N=o00
unbounded
buffered
asynchronous

promise | future

—> —>

N=1
bounded
buffered
asynchronous

- adld |

bounded
vnbuffered
synchronous

C.A.R.Hoare
communicating

Sequential
Processes

Toutes choses sont dites
deja; mais comme
personne n'ecoute, il faut
toujours recommencer.

Andre Gide

Everything has been said
betore; but since nobody
listens, we must always
start again.

Andre Gide

