
Procedural Programming

It's Back? It Never Went Away

@KevlinHenney

Brycgstow

Bricstow

Bristow

Bristol

procedure

procedural

procedural?

µονόλιθος

This is the Unix philosophy:

Write programs that do one

thing and do it well. Write

programs to work together.

Doug McIlroy

µservices

In McIlroy's summary, the hard

part is his second sentence:

Write programs to work

together.

John D Cook

In the long run every

program becomes rococo

— then rubble.

Alan Perlis

1960s

1960s

I began to use the term “software
engineering” to distinguish it from
hardware and other kinds of engineering;
yet, treat each type of engineering as part of
the overall systems engineering process.

Margaret Hamilton

Define a subset of the system which is
small enough to bring to an operational
state [...] then build on that subsystem.

E E David

This strategy requires that the system
be designed in modules which can be
realized, tested, and modified
independently, apart from conventions
for intermodule communication.

E E David

The design process
is an iterative one.

Andy Kinslow

There are two classes of system designers.
The first, if given five problems will solve
them one at a time.

Andy Kinslow

The second will come back and announce
that these aren’t the real problems, and
will eventually propose a solution to the
single problem which underlies the
original five.

Andy Kinslow

This is the ‘system type’ who is great
during the initial stages of a design project.
However, you had better get rid of him
after the first six months if you want to get
a working system.

Andy Kinslow

A software system can best be
designed if the testing is interlaced
with the designing instead of
being used after the design.

Alan Perlis

proc is leap year = (int year) bool:
skip;

proc is leap year = (int year) bool:
false;

[] proposition leap year spec =
(

("Years not divisible by 4 are not leap years",
void: (assert (not is leap year (1967))))

);

mode proposition = struct (string name, proc void test);

proc is leap year = (int year) bool:
false;

[] proposition leap year spec =
(

("Years not divisible by 4 are not leap years",
void: (assert (not is leap year (1967))))

);

test (leap year spec)

mode proposition = struct (string name, proc void test);

proc test = ([] proposition spec) void:
for entry from lwb spec to upb spec
do

print (name of spec [entry]);
test of spec [entry];
print (new line)

od;

proc is leap year = (int year) bool:
year mod 4 = 0;

[] proposition leap year spec =
(

("Years not divisible by 4 are not leap years",
void: (assert (not is leap year (1967)))),
("Years divisible by 4 but not by 100 are leap years",
void: (assert (is leap year (1968))))

);

test (leap year spec)

proc is leap year = (int year) bool:
year mod 4 = 0 and year mod 100 /= 0;

[] proposition leap year spec =
(

("Years not divisible by 4 are not leap years",
void: (assert (not is leap year (1967)))),
("Years divisible by 4 but not by 100 are leap years",
void: (assert (is leap year (1968)))),
("Years divisible by 100 but not by 400 are not leap years",
void: (assert (not is leap year (1900))))

);

test (leap year spec)

proc is leap year = (int year) bool:
year mod 4 = 0 and year mod 100 /= 0 or year mod 400 = 0;

[] proposition leap year spec =
(

("Years not divisible by 4 are not leap years",
void: (assert (not is leap year (1967)))),
("Years divisible by 4 but not by 100 are leap years",
void: (assert (is leap year (1968)))),
("Years divisible by 100 but not by 400 are not leap years",
void: (assert (not is leap year (1900)))),
("Years divisible by 400 are leap years",
void: (assert (is leap year (2000))))

);

test (leap year spec)

proc is leap year = (int year) bool:
year mod 4 = 0 and year mod 100 /= 0 or year mod 400 = 0;

[] proposition leap year spec =
(

("Years not divisible by 4 are not leap years",
with (2018, 2001, 1967, 1), expect (false)),
("Years divisible by 4 but not by 100 are leap years",
with (2016, 1984, 1968, 4), expect (true)),
("Years divisible by 100 but not by 400 are not leap years",
with (2100, 1900, 100), expect (false)),
("Years divisible by 400 are leap years",
with (2000, 1600, 400), expect (true))

);

test (is leap year, leap year spec)

mode expect = bool;

mode with = flex [1:0] int;

mode proposition = struct (string name, with inputs, expect result);

proc test = (proc (int) bool function, [] proposition spec) void:
for entry from lwb spec to upb spec
do

print (name of spec [entry]);

string report := "", separator := " failed for ";
[] int inputs = inputs of spec [entry];

for value from lwb inputs to upb inputs
do

if
bool expected = result of spec [entry];
function (inputs [value]) /= expected

then
report +:= separator + whole(inputs[value], 0);
separator := " "

fi
od;
print (if report = "" then (new line) else (new line, report, new line) fi)

od;

proc test = (proc (int) bool function, [] proposition spec) void:
for entry from lwb spec to upb spec
do

print (name of spec [entry]);

string report := "", separator := " failed for ";
[] int inputs = inputs of spec [entry];

for value from lwb inputs to upb inputs
do

if
bool expected = result of spec [entry];
function (inputs [value]) /= expected

then
report +:= separator + whole(inputs[value], 0);
separator := " "

fi
od;
print (if report = "" then (new line) else (new line, report, new line) fi)

od;

proc test = (proc (int) bool function, [] proposition spec) void:
for entry from lwb spec to upb spec
do

print (name of spec [entry]);

string report := "", separator := " failed for ";
[] int inputs = inputs of spec [entry];

for value from lwb inputs to upb inputs
do

if
bool expected = result of spec [entry];
function (inputs [value]) /= expected

then
report +:= separator + whole(inputs[value], 0);
separator := " "

fi
od;
print (if report = "" then (new line) else (new line, report, new line) fi)

od;

proc test = (proc (int) bool function, [] proposition spec) void:
for entry from lwb spec to upb spec
do

print (name of spec [entry]);

string report := "", separator := " failed for ";
[] int inputs = inputs of spec [entry];

for value from lwb inputs to upb inputs
do

if
bool expected = result of spec [entry];
function (inputs [value]) /= expected

then
report +:= separator + whole(inputs[value], 0);
separator := " "

fi
od;
print (if report = "" then (new line) else (new line, report, new line) fi)

od;

proc test = (proc (int) bool function, [] proposition spec) void:
for entry from lwb spec to upb spec
do

print (name of spec [entry]);

string report := "", separator := " failed for ";
[] int inputs = inputs of spec [entry];

for value from lwb inputs to upb inputs
do

if
bool expected = result of spec [entry];
function (inputs [value]) /= expected

then
report +:= separator + whole(inputs[value], 0);
separator := " "

fi
od;
print (if report = "" then (new line) else (new line, report, new line) fi)

od;

proc test = (proc (int) bool function, [] proposition spec) void:
for entry from lwb spec to upb spec
do

print (name of spec [entry]);

string report := "", separator := " failed for ";
[] int inputs = inputs of spec [entry];

for value from lwb inputs to upb inputs
do

if
bool expected = result of spec [entry];
function (inputs [value]) /= expected

then
report +:= separator + whole(inputs[value], 0);
separator := " "

fi
od;
print (if report = "" then (new line) else (new line, report, new line) fi)

od;

proc test = (proc (int) bool function, [] proposition spec) void:
for entry from lwb spec to upb spec
do

print (name of spec [entry]);

string report := "", separator := " failed for ";
[] int inputs = inputs of spec [entry];

for value from lwb inputs to upb inputs
do

if
bool expected = result of spec [entry];
function (inputs [value]) /= expected

then
report +:= separator + whole(inputs[value], 0);
separator := " "

fi
od;
print (if report = "" then (new line) else (new line, report, new line) fi)

od;

proc test = (proc (int) bool function, [] proposition spec) void:
for entry from lwb spec to upb spec
do

print (name of spec [entry]);

string report := "", separator := " failed for ";
[] int inputs = inputs of spec [entry];

for value from lwb inputs to upb inputs
do

if
bool expected = result of spec [entry];
function (inputs [value]) /= expected

then
report +:= separator + whole(inputs[value], 0);
separator := " "

fi
od;
print ((report = "" | (new line) | (new line, report, new line)))

od;

We instituted a rigorous regression
test for all of the features of AWK.
Any of the three of us who put in a
new feature into the language [...],
first had to write a test for the new
feature.

Alfred Aho
http://www.computerworld.com.au/article/216844/a-z_programming_languages_awk/

There is no such question as testing things after the
fact with simulation models, but that in effect the
testing and the replacement of simulations with
modules that are deeper and more detailed goes on
with the simulation model controlling, as it were,
the place and order in which these things are done.

Alan Perlis

As design work progresses this
simulation will gradually evolve
into the real system.

The simulation is the design.

Tad B Pinkerton

goto

/ WordFriday

snowclone, noun
▪ clichéd wording used as a template, typically

originating in a single quote

▪ e.g., "X considered harmful", "These aren't

the Xs you're looking for", "X is the new Y",

"It's X, but not as we know it", "No X left

behind", "It's Xs all the way down", "All your

X are belong to us"

FUNCTION ISLEAP(YEAR)
LOGICAL ISLEAP
INTEGER YEAR
IF (MOD(YEAR, 400) .EQ. 0) GOTO 20
IF (MOD(YEAR, 100) .EQ. 0) GOTO 10
IF (MOD(YEAR, 4) .EQ. 0) GOTO 20

10 ISLEAP = .FALSE.
RETURN

20 ISLEAP = .TRUE.
END

FUNCTION ISLEAP(YEAR)
LOGICAL ISLEAP
INTEGER YEAR
IF (MOD(YEAR, 400) .EQ. 0) GOTO 20
IF (MOD(YEAR, 100) .EQ. 0) GOTO 10
IF (MOD(YEAR, 4) .EQ. 0) GOTO 20

10 ISLEAP = .FALSE.
RETURN

20 ISLEAP = .TRUE.
RETURN

END

FUNCTION ISLEAP(YEAR)
LOGICAL ISLEAP
INTEGER YEAR
IF (MOD(YEAR, 400) .EQ. 0) GOTO 20
IF (MOD(YEAR, 100) .EQ. 0) GOTO 10
IF (MOD(YEAR, 4) .EQ. 0) GOTO 20

10 ISLEAP = .FALSE.
GOTO 30

20 ISLEAP = .TRUE.
30 RETURN

END

FUNCTION ISLEAP(YEAR)
LOGICAL ISLEAP
INTEGER YEAR
IF (MOD(YEAR, 400) .EQ. 0) GOTO 20
IF (MOD(YEAR, 100) .EQ. 0) GOTO 10
IF (MOD(YEAR, 4) .EQ. 0) GOTO 20

10 ISLEAP = .FALSE.
GOTO 30

20 ISLEAP = .TRUE.
GOTO 30

30 RETURN
END

FUNCTION ISLEAP(YEAR)
LOGICAL ISLEAP
INTEGER YEAR
IF (MOD(YEAR, 400) .EQ. 0) GOTO 20
IF (MOD(YEAR, 100) .EQ. 0) GOTO 10
IF (MOD(YEAR, 4) .EQ. 0) GOTO 20

10 ISLEAP = .FALSE.
GOTO 30

20 ISLEAP = .TRUE.
GOTO 30

30 CONTINUE
RETURN

END

FUNCTION ISLEAP(Year)
LOGICAL ISLEAP
INTEGER YEAR
IF (MOD(YEAR, 400) .EQ. 0) THEN

ISLEAP = .TRUE.
ELSE IF (MOD(YEAR, 100) .EQ. 0) THEN

ISLEAP = .FALSE.
ELSE IF (MOD(YEAR, 4) .EQ. 0) THEN

ISLEAP = .TRUE.
ELSE

ISLEAP = .FALSE.
END IF

END

FUNCTION ISLEAP(Year)
LOGICAL ISLEAP
INTEGER YEAR
IF (MOD(YEAR, 400) .EQ. 0) THEN

ISLEAP = .TRUE.
ELSE IF (MOD(YEAR, 100) .EQ. 0) THEN

ISLEAP = .FALSE.
ELSE IF (MOD(YEAR, 4) .EQ. 0) THEN

ISLEAP = .TRUE.
ELSE

ISLEAP = .FALSE.
END IF

END

A goto completely

invalidates the high-level

structure of the code.

Taligent's Guide to Designing Programs

FUNCTION ISLEAP(YEAR)
LOGICAL ISLEAP
INTEGER YEAR
IF (MOD(YEAR, 400) .EQ. 0) GOTO 20
IF (MOD(YEAR, 100) .EQ. 0) GOTO 10
IF (MOD(YEAR, 4) .EQ. 0) GOTO 20

10 ISLEAP = .FALSE.
RETURN

20 ISLEAP = .TRUE.
END

send(to, from, count)
register short *to, *from;
register count;
{

register n=(count+7)/8;
switch(count%8){
case 0: do{ *to = *from++;
case 7: *to = *from++;
case 6: *to = *from++;
case 5: *to = *from++;
case 4: *to = *from++;
case 3: *to = *from++;
case 2: *to = *from++;
case 1: *to = *from++;

}while(--n>0);
}

}

send(to, from, count)
register short *to, *from;
register count;
{

register n=(count+7)/8;
switch(count%8){
case 0: do{ *to = *from++;
case 7: *to = *from++;
case 6: *to = *from++;
case 5: *to = *from++;
case 4: *to = *from++;
case 3: *to = *from++;
case 2: *to = *from++;
case 1: *to = *from++;

}while(--n>0);
}

}

I feel a combination of
pride and revulsion at
this discovery.

Tom Duff

send(to, from, count)
register short *to, *from;
register count;
{

register n=(count+7)/8;
switch(count%8){
case 0: do{ *to = *from++;
case 7: *to = *from++;
case 6: *to = *from++;
case 5: *to = *from++;
case 4: *to = *from++;
case 3: *to = *from++;
case 2: *to = *from++;
case 1: *to = *from++;

}while(--n>0);
}

}

Many people have said that the worst
feature of C is that switches don't break
automatically before each case label.
This code forms some sort of argument
in that debate, but I'm not sure whether
it's for or against.

Tom Duff

break

Plankalkül
Bram Bruines

continue
break
return

One of the most powerful
mechanisms for program
structuring [...] is the block
and procedure concept.

Ole-Johan Dahl and C A R Hoare

"Hierarchical Program Structures"

sequence
selection
iteration

Main Program and Subroutine

The goal is to decompose a program into

smaller pieces to help achieve modifiability.

A program is decomposed hierarchically.

Len Bass, Paul Clements & Rick Kazman

Software Architecture in Practice

afferent branch transform branch efferent branch

main

subroutine subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

There is typically a single thread of control

and each component in the hierarchy gets

this control (optionally along with some

data) from its parent and passes it along

to its children.

Len Bass, Paul Clements & Rick Kazman

Software Architecture in Practice

afferent branch transform branch efferent branch

main

subroutine subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

subroutine

afferent branch transform branch efferent branch

main

procedure procedure

procedure

procedure

procedure

procedure

procedure

procedure

afferent branch transform branch efferent branch

main

function function

function

function

function

function

function

function

main

function function

function

function

function

function

function

function

You cannot teach beginners

top-down programming,

because they don't know

which end is up.

C A R Hoare

Everything should be built

top-down, except the first

time.

Alan Perlis

Hamlet: To be, or not to be,
that is the question.

Ophelia: 'Tis in my memory
locked, and you yourself
shall keep the key of it.

Hamlet: Yea, from the table
of my memory I'll wipe
away all trivial fond records.

One of the most powerful
mechanisms for program
structuring [...] is the block
and procedure concept.

Ole-Johan Dahl and C A R Hoare

"Hierarchical Program Structures"

begin

ref(Book) array books(1:capacity);

integer count;

procedure Push(top); ...

procedure Pop; ...

boolean procedure IsEmpty; ...

boolean procedure IsFull; ...

integer procedure Depth; ...

ref(Book) procedure Top; ...

count := 0

end;

A procedure which is capable of
giving rise to block instances which
survive its call will be known as a
class; and the instances will be
known as objects of that class.

Ole-Johan Dahl and C A R Hoare

"Hierarchical Program Structures"

class Stack(capacity);

integer capacity;

begin

ref(Book) array books(1:capacity);

integer count;

procedure Push(top); ...

procedure Pop; ...

boolean procedure IsEmpty; ...

boolean procedure IsFull; ...

integer procedure Depth; ...

ref(Book) procedure Top; ...

count := 0

end;

const newStack = () => {
const items = []
return {

depth: () => items.length,
top: () => items[0],
pop: () => { items.shift() },
push: newTop => { items.unshift(newTop) },

}
}

const newStack = () => {
const items = []
return {

depth: () => items.length,
top: () => items[items.length - 1],
pop: () => { items.pop() },
push: newTop => { items.push(newTop) },

}
}

Concatenation is an operation
defined between two classes A
and B, or a class A and a block C,
and results in the formation of a
new class or block.

Ole-Johan Dahl and C A R Hoare

"Hierarchical Program Structures"

Concatenation consists in a
merging of the attributes of both
components, and the composition
of their actions.

Ole-Johan Dahl and C A R Hoare

"Hierarchical Program Structures"

const stackable = base => {
const items = []
return Object.assign(base, {

depth: () => items.length,
top: () => items[items.length - 1],
pop: () => { items.pop() },
push: newTop => { items.push(newTop) },

})
}

const newStack = () => stackable({})

const clearable = base => {
return Object.assign(base, {

clear: () => {
while (base.depth())

base.pop()
},

})
}

const newStack =
() => clearable(stackable({}))

const newStack =
() => compose(clearable, stackable)({})

const compose = (...funcs) =>
arg => funcs.reduceRight(

(composed, func) => func(composed), arg)

Concept Hierarchies

The construction principle involved is best
called abstraction; we concentrate on features
common to many phenomena, and we abstract
away features too far removed from the
conceptual level at which we are working.

Ole-Johan Dahl and C A R Hoare

"Hierarchical Program Structures"

A type hierarchy is composed of subtypes and
supertypes. The intuitive idea of a subtype is
one whose objects provide all the behavior of
objects of another type (the supertype) plus
something extra.

Barbara Liskov

"Data Abstraction and Hierarchy"

What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type
T such that for all programs P defined in terms
of T, the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov

"Data Abstraction and Hierarchy"

const nonDuplicateTop = base => {
const push = base.push
return Object.assign(base, {

push: newTop => {
if (base.top() !== newTop)

push(newTop)
},

})
}

tests = {
...
'A non-empty stack becomes deeper by retaining a pushed item as its top':

() => {
const stack = newStack()

stack.push('ACCU')
stack.push('2018')
stack.push('2018')

assert(stack.depth() === 3)
assert(stack.top() === '2018')

},
...

}

const newStack =
() => compose(clearable, stackable)({})

tests = {
...
'A non-empty stack becomes deeper by retaining a pushed item as its top':

() => {
const stack = newStack()

stack.push('ACCU')
stack.push('2018')
stack.push('2018')

assert(stack.depth() === 3)
assert(stack.top() === '2018')

},
...

}

const newStack =
() => compose(nonDuplicateTop, clearable, stackable)({})

tests = {
...
'A non-empty stack becomes deeper by retaining a pushed item as its top':

() => {
const stack = newStack()

stack.push('ACCU')
stack.push('2018')
stack.push('2018')

assert(stack.depth() === 3)
assert(stack.top() === '2018')

},
...

}

What is wanted here is something like the
following substitution property: If for each
object o1 of type S there is an object o2 of type
T such that for all programs P defined in terms
of T, the behavior of P is unchanged when o1 is
substituted for o2, then S is a subtype of T.

Barbara Liskov

"Data Abstraction and Hierarchy"

Mutable

Immutable

Unshared Shared

Unshared mutable
data needs no
synchronisation

Unshared immutable
data needs no
synchronisation

Shared mutable
data needs
synchronisation

Shared immutable
data needs no
synchronisation

Mutable

Immutable

Unshared Shared

Unshared mutable
data needs no
synchronisation

Unshared immutable
data needs no
synchronisation

Shared mutable
data needs
synchronisation

Shared immutable
data needs no
synchronisation

The Synchronisation Quadrant

Procedural Comfort Zone

Mutable

Immutable

Unshared Shared

Unshared mutable
data needs no
synchronisation

Unshared immutable
data needs no
synchronisation

Shared mutable
data needs
synchronisation

Shared immutable
data needs no
synchronisation

Procedural Discomfort Zone

Mutable

Immutable

Unshared Shared

Unshared mutable
data needs no
synchronisation

Unshared immutable
data needs no
synchronisation

Shared mutable
data needs
synchronisation

Shared immutable
data needs no
synchronisation

Procedural Comfort Zone

Threads and locks —

they’re kind of a dead

end, right?

Bret Victor
"The future of programming"

So, I think if [...] we’re still using

threads and locks, we should

just, like, pack up and go home,

’cause we’ve clearly failed as an

engineering field.

Bret Victor
"The future of programming"

Procedural Comfort Zone

Mutable

Immutable

Unshared Shared

Unshared mutable
data needs no
synchronisation

Unshared immutable
data needs no
synchronisation

Shared mutable
data needs
synchronisation

Shared immutable
data needs no
synchronisation

single-threaded activity

no shared mutable state

coordination

N

bounded

buffered

asynchronous

N =

unbounded

buffered

asynchronous

∞

N = 1

bounded

buffered

asynchronous

futurepromise

N = 0

bounded

unbuffered

synchronous

Toutes choses sont dites
déjà; mais comme
personne n'écoute, il faut
toujours recommencer.

André Gide

Everything has been said
before; but since nobody
listens, we must always
start again.

André Gide

