
Simplicity
Not Just for Beginners

Kate Gregory
kate@gregcons.com

@gregcons

When We Teach, We Start Simple

• Omit error checking

• Assume we’re given a positive or otherwise reasonable number

• Assume all input is well intentioned

• Show how to move things up but not down, or forward but not back

Why?

• So we can show what we’re trying to teach

• So the learner can concentrate on one thing at a time

• So it fits on a page with a largish font

• To reduce the cognitive burden on those who read it

• Because the sample is artificial and lacks context

So What Happens?

• Real life is complicated

• You can’t omit all that error checking and input sanitizing and
handling both directions

• Code grows

• It gets more complicated

What Happens to
Developers?
• We reject simple

• After all, we’re not beginners

• And real life is complicated

• Maybe we even show off a
little
• If it was hard to write, it should

be hard to read

• If it was easy, anyone could do it

http://www.chinadaily.com.cn/photo/2011-12/20/content_14295630_8.htm
http://www.chinadaily.com.cn/photo/2011-12/20/content_14295630_8.htm

What is simple code?

• Expressive

• Readable

• Understandable

• Unsurprising

• Transparent

• Self explanatory

• Reassuring

• Pleasant

Is Simpler Better?

• Better means?
• Faster to write the first time

• More correct

• Runs faster or in less memory or less of some other resource

• Easier to read and understand the next hundred+ times

• Easier to modify when the world changes

• More fun to create and have created

Is it faster to write simple code?

• Definitely not

• Much-misattributed quote about no time for a
shorter letter

• New habits required

• New ways of looking

• Reviewing, revisiting, refactoring

http://www.juniperboothstudio.com/wp-content/gallery/home_page/woodcarving_large.jpg
http://www.juniperboothstudio.com/wp-content/gallery/home_page/woodcarving_large.jpg

Is simpler code more correct?

• Usually, yes

• RAII is less to write, and also less to forget

• Take away opportunities to be inconsistent
• One function with default parameters instead of two similar functions
• One function that is called with params instead of blocks of copy-and-paste-

and-mostly-edit
• One template instead of two (or ten) similar functions

• Code that moves complexity to abstractions often has less bugs
• When you move complexity, can it disappear?

• Library code is already tested and has thought of edge cases

Does simpler code run faster?

• Usually, no
• for (auto p : people)

• for (auto& p : people)

• To get faster code you typically have to know and remember
something about the language

• Try not to choose simplicity over performance if a real choice exists

• But
• Library code may be faster than what you would write yourself

• Compilers and optimizers are often much better than you
• They’re guaranteed to be better than someone who’s not measuring

What’s in it for you?

• Simpler code is more readable and debuggable
• Often more correct too

• Unsurprising code is more maintainable code

• Expressive code is fun to work with

• Other people’s code is beautiful

What I Have Learned

• True simplicity is very hard

• You have to know your tools
• The language

• The libraries

• Our idioms

• Simplicity that is complete is utterly different from “I left that out for
simplicity”

OK, Give me the Simple
Rules to Write Simple Code

The Easiest Step

• Know what simple looks like

• Try to write code simply from the beginning

• As it grows, expands, and twists, recognize when it is too complex
• Do something to make it simpler

• Prevent opportunities to be inconsistent

Names really help

• Often hiding in comments

//total of the numbers in the vector

int i = 0;

for (auto n : v)

{

i += n;

}

• Becomes

int total = accumulate(begin(v), end(v), 0);

Using names

• Variables (avoid a, x, i, d1, d2, d3, …)

• Functions
• Especially from <algorithm> et al

• Enums

• Constants

Short Functions

• Not for readability or to print on a single page

• But so they can be named

• If a function does two things, perhaps it’s two functions?

• Consider also “emotionally short” functions such as those in
<algorithm>
• Code you didn’t write feels very short indeed

• Code everybody “knows” is also short – no learning and absorbing needed

Avoid really long lists of parameters

• Abstraction is your friend
• Don’t pass 4 ints, pass a Rectangle or two Points

• Don’t pass 3 strings and a float, pass an Order or Employee

• Maybe this function needs 10 pieces of information because it’s really
3 functions, that could be called with smaller parameter lists?

• Maybe this should be a member function of something that knows
most of this already?

Don’t nest deeply – return early
bool Order::Calculate(double x, double y)
{

if (x < limit)
{

if (y >= 0)
{

if (shipping)
{

//... actual calculation setting some member variable
return true;

}
else
{

error = Errors::NotShipping;
return false;

}
}
else
{

error = Errors::YNegative;
return false;

}

}
else
{

error = Errors::XTooLarge;
return false;

}

}

Don’t nest deeply – return early
bool Order::Calculate(double x, double y)
{

if (x >= limit)
{

error = Errors::XTooLarge;
return false;

}
if (y < 0)
{

error = Errors::YNegative;
return false;

}
if (!shipping)
{

error = Errors::NotShipping;
return false;

}
//... actual calculation setting some member variable
return true;

}

Const all the things

• Beyond just “const correctness”

• Mark everything const that you possibly can

• To lower the cognitive burden of future readers
• Yes, there are 10 local variables here, but only 2 of them vary

• Also a reason to avoid out params and in/out params in functions
• Return a struct or std::optional or even a std::tuple

• Perhaps this should be a member function of the in/out thing
• Abstraction again

Keep up with the standard

• The mutable keyword is 25 years old yet people don’t know it
• Lets you stay more const correct than you otherwise would be

• Yes, yes, thread-safe, but…

• Use ranged-for loops if you must use loops

• Instead of making certain constructors private to prevent others
creating objects, make them deleted

• Use non static member initializers

• Use the library

The pit of success
• We can control a lot of the defaults we leave for the next developer

• Opportunities to be inconsistent are rotten things to leave behind
• Two versions of a function? They will have to remember to change both
• One version? No chance to be inconsistent
• Initialization to defaults with nonstatic member init – ctors can’t get inconsistent

• All cleanup in the destructor?
• They don’t have to remember to clean up
• No need for changes when exceptions are added

• Const correct?
• They don’t need to play chase-the-const later
• Might also make concurrency less terrifying later

• Good names for everything? Short functions?
• They will keep the pattern going

But our
programmers are
good!

Don’t be an architecture astronaut

AbstractFactory* factory =

FactoryMakerSingleton::getInstance()->getFactory();

shared_ptr<Subject> subject = factory->createSubject();

subject->attach(factory->createObserver());

shared_ptr<Command> command =

factory->createCommand(subject);

command->execute();

Simplicity Paradox

• The things you do to make code simple can make it more complex

• It is NOT POSSIBLE to write simple rules for how to write simple code
• Unless you write vague rules

• “good”, “short”, “a lot”, “not many”

• “usually”, “without a good reason”

• This is a law of the universe
• What speed should you drive at? What lane should you be in? When do you

change lanes?

• The baby is crying. What should you do?

Not all questions have simple answers

• Should you use exceptions?

• How long should a function be?

• What is a good variable name?

• Are default parameters confusing?

• Are overloads confusing?

• Should we really never use raw loops or raw pointers?

Moving to harder steps

• Simple practices like naming and keeping things short are easy
enough
• They require some judgment

• Ideally you write your code like this from the beginning
• But you can refactor to be simpler

• But that is not the whole story
• Not by a long shot

• Looking for big gains
• In performance
• In understandability, reusability
• In maintenance pain

Simplifying Polynomials

• At what age did you learn to expand polynomials?
• (x+1)(x+2)

• FOIL

• x2 + 2x + 1x + 2

• x2 + 3x + 2

• Remember how much harder it is to “simplify” them?
• x2 + 4x + 4

• You have to recognize certain combinations

• (x+2)(x+2)

Idioms, Library Abstractions, Commonality
• These are old friends you can learn to recognize too

• This loop touches every element in the collection; I should use a
ranged for instead of a traditional for loop
• Or something from <algorithm>

• “This is obviously a rotate”

• There is already a stack in the Standard Library

• I bet someone already wrote a pretty good json parser, logger, http-
getter, etc

• If I move the initialization of this object to a function or immediately-
invoked lambda, I can make it const

Learning patterns and idioms and
things with initials isn't necessarily
just showing off. It can be a
powerful technique towards better
code.

About that for loop…

for(uint8_t i=0; i < GetSize(); i++)

{

//...

}

• Guess what the return type of GetSize() is?
• uint16_t

• And it needs to be – won’t fit in 8 bits

• So that means?

• C++ is so complicated with all those darn different types

The Harder Step
• Know what we all should know

• Is surprising people simple?
• It is not enough that you know something. The reader must know it

• Replace your complicated things with
• Familiar idioms and language constructs that express your intent
• Well known library classes and functions that others will recognize
• Appropriate abstraction that becomes a thing to learn in your code

• Moving complexity inside your abstraction

• Without
• Omitting needed capabilities
• Hiding core information behind abstractions and indirections

• Factories, interfaces, InjectorFactoryAdapter

• Preventing future changes
• Global mutable state, singletons, hardcoding things because “it’s simpler”

The Hardest Steps

• Knowing that border between “skipping stuff to make it easy” and
genuinely elegant simplicity

• Being brave enough to present simple code
• “Is that all you did?”

• “I thought you were creative/innovative/an architect?”

The Border

• As simple as possible, but no simpler!

• Simplicity in the larger context
• Using a magic number is simpler now than setting up a const variable (or an

enum for several of them) but will it be simpler to understand later?

• Adding a global is simpler now than adding a parameter to a long chain of
function calls, but later when people don’t understand what controls
behaviour, was it simpler?

• Remember simpler code isn’t always faster or easier to write
• Take the time to write the shorter letter

The Bravery

• Which side of that border are you on?
• Is this simple-didn’t-think-it-through or simple-brilliant?

• If you’re relying on knowing your language and library, do others?

• Now your code is expressive and transparent, can you be replaced?

• Does your code reflect you and your abilities?

• How far are you from being a beginner?

Call to Action

• Learn

• Read

• Care

• Test

• Communicate

