
13 April 2018 WS-P-042 v1.1

Commercially Confidential

Grease

A Message-Passing Approach to Protocol Stacks in Rust

Jonathan Pallant

ACCU 2018

L3

L2

L1



13 April 2018 WS-P-042 v1.12Commercially Confidential

2 Protocol Stacks

3 The Layered Model

4 Making Good Software

1 My Journey in Software Engineering

5 Grease



13 April 2018 WS-P-042 v1.13Commercially Confidential

My Journey in Software 

Engineering



13 April 2018 WS-P-042 v1.14Commercially Confidential
CC-BY-SA TommyAngelo1988/Wikimedia



13 April 2018 WS-P-042 v1.15Commercially Confidential



13 April 2018 WS-P-042 v1.16Commercially Confidential



13 April 2018 WS-P-042 v1.17Commercially Confidential



13 April 2018 WS-P-042 v1.18Commercially Confidential

At this point…

▪ I know 11 languages (to some extent)

▪ I am a programmer, but

▪ I do not know how to write software. 



13 April 2018 WS-P-042 v1.19Commercially Confidential

h cccc



13 April 2018 WS-P-042 v1.110Commercially Confidential



13 April 2018 WS-P-042 v1.111Commercially Confidential



13 April 2018 WS-P-042 v1.112Commercially Confidential

Protocol Stacks



13 April 2018 WS-P-042 v1.113Commercially Confidential

Hands-Free Profile

RFCOMM

L2CAP

HCI



13 April 2018 WS-P-042 v1.114Commercially Confidential

Hands-
Free 

Profile

Hands-
Free 

Profile



13 April 2018 WS-P-042 v1.115Commercially Confidential

Hands-
Free 

Profile

RFCOMM

Hands-
Free 

Profile

RFCOMM



13 April 2018 WS-P-042 v1.116Commercially Confidential

Hands-Free 
Profile

RFCOMM

L2CAP

Hands-Free 
Profile

RFCOMM

L2CAP



13 April 2018 WS-P-042 v1.117Commercially Confidential

HTTP/1.1

TLS/1.2

TCP

IP

?



13 April 2018 WS-P-042 v1.118Commercially Confidential



13 April 2018 WS-P-042 v1.119Commercially Confidential



13 April 2018 WS-P-042 v1.120Commercially Confidential

HTTP

TLS

TCP

IP

?



13 April 2018 WS-P-042 v1.121Commercially Confidential

The Layered Model



13 April 2018 WS-P-042 v1.122Commercially Confidential

Hands-
Free 

Profile

RFCOMM

Hands-
Free 

Profile

RFCOMM



13 April 2018 WS-P-042 v1.123Commercially Confidential

Higher Layers
Higher 

Layers

HCI Driver HCI Firmware HCI

USB USB
Bluetooth 

Radio

Bluetooth 

Radio

PC USB Bluetooth 

Module

Single-chip 

Bluetooth 

Module



13 April 2018 WS-P-042 v1.124Commercially Confidential



13 April 2018 WS-P-042 v1.125Commercially Confidential

Hands-
Free 

Profile

RFCOMM



13 April 2018 WS-P-042 v1.126Commercially Confidential

Layer N

(Service User)

Layer N-1

(Service Provider)



13 April 2018 WS-P-042 v1.127Commercially Confidential

Layer N

(Service User)

Layer N-1

(Service Provider)

Request

Confirm



13 April 2018 WS-P-042 v1.128Commercially Confidential

Layer N

(Service User)

Layer N-1

(Service Provider)

Response

Indication



13 April 2018 WS-P-042 v1.129Commercially Confidential

Naming Messages

▪ Good Names

– FRAME_SEND_REQ / FRAME_SEND_CFM

– FRAME_QUEUE_REQ / FRAME_QUEUE_CFM

– FRAME_TX_IND

– DATA_RECEIVED_IND

– POSITION_REQUIRED_IND / POSITION_REQUIRED_RSP

– IndDataReceived

▪ Bad Names

– SEND_DATA_REQ / DATA_SEND_CFM

– DATA_RECEIVED

• Clearly state the intention.

• Matched pairs of REQ/CFM.

• Appropriate case depends 

on language.

• Mismatched pair.

• Unclear message type.



13 April 2018 WS-P-042 v1.130Commercially Confidential

But why?

▪ Large systems are large.

▪ A consistent set of rules of crucial.

– Signposting so you don’t get lost.

– Avoids misunderstanding.

– This works in practice!



13 April 2018 WS-P-042 v1.131Commercially Confidential

Message Sequence Charts

Layer N+1 Layer N Layer N-1

EnableRxReq

EnableRxCfm

Time elapses...

RxDataInd

RxDataRsp

RxFrameInd



13 April 2018 WS-P-042 v1.132Commercially Confidential

DNS Example, Part 1

DNS Client DNS Resolver UDP IP Ethernet MAC Ethernet PHY

ReqLookup

(hostname)

ReqSendDatagram

(ip_addr, port, payload)

CfmLookup

encode_packet()

ReqSendPacket

(ip_addr, payload)

encode_frame()

ReqSendFrame

(mac_addr, payload)

add_to_buffer()

CfmSendFrame

(result)

CfmSendPacket

(result)

CfmSendDatagram

(result)

backoff_timeout()

ReqSendBits

(bits)

CfmSendBits

(result)



13 April 2018 WS-P-042 v1.133Commercially Confidential

DNS Example, Part 2

DNS Client DNS Resolver UDP IP Ethernet MAC Ethernet PHY

IndBitsRx

(bits)

decode()

IndFrameRx

(src, dest, frame)

decode()

IndPacketRx

(src, dest, packet)

decode()

IndDatagramRx

(src, dest, datagram)

IndResult

(record[])



13 April 2018 WS-P-042 v1.134Commercially Confidential

You can use this model to 

make good software



13 April 2018 WS-P-042 v1.135Commercially Confidential



13 April 2018 WS-P-042 v1.136Commercially Confidential

Function-call

• Single threaded

Message-passing

• Multi-threaded



13 April 2018 WS-P-042 v1.137Commercially Confidential

Function-call

• Single threaded

Message-passing

• Multi-threaded



13 April 2018 WS-P-042 v1.138Commercially Confidential

Function Calling stacks

▪ Many (most?) stacks and OS APIs are based around function calling:

– Berkeley sockets API, for example

– Callback functions for asynchronicity

– Which thread does the callback function execute in?

– Can take ‘short-cuts’ and poke around in the memory of another module.



13 April 2018 WS-P-042 v1.139Commercially Confidential

// One method per message
result_t foo_tx_data_req(const uint8_t* p);

// One function for all requests
result_t foo_req(const foo_req_t* p);



13 April 2018 WS-P-042 v1.140Commercially Confidential

// One method per message
result_t bar_tx_frame_req(addr_t addr, ...);

// One function for all requests
result_t bar_req(const bar_req_t* p);



13 April 2018 WS-P-042 v1.141Commercially Confidential

Function-call

• Single threaded

Message-passing

• Multi-threaded



13 April 2018 WS-P-042 v1.142Commercially Confidential

Message Passing

▪ Message passing is more work, but has benefits:

– API is enforced, and well defined

– Can’t (easily) poke around with another task’s variables

– Unit testing is clean

– No fighting the linker to provide stubs, fakes and mocks

– Can hook the message passing system to provide debugging

– He said, she said…



13 April 2018 WS-P-042 v1.143Commercially Confidential

Every Layer is a Task

▪ Tasks are:

– 1 Thread (or maybe more…)

– 1 Queue (or maybe more…)

▪ The (primary) thread pends on the (primary) queue and performs actions based on 

the events received, before going to sleep again.



13 April 2018 WS-P-042 v1.144Commercially Confidential

Layer N



13 April 2018 WS-P-042 v1.145Commercially Confidential

Context

▪ If you allow more than one request to be in-flight at a time then, when a Confirmation 

is received, the service-user needs to be able to work out which Request it is a reply 

to.

– You might need to handle multiple simultaneous connections

– Requests might take an indeterminate amount of time.

▪ We use a Context field for this.

– Each layer should use an unambiguous (to that layer) value

– A pointer/reference

– A unique integer from an incrementing thread-local value



13 April 2018 WS-P-042 v1.146Commercially Confidential

Context

▪ The Confirmation reflects back the Context in the Request. Perhaps also used in a 

later Indication.

– Service-user may have some sort of Hash Table to allow fast lookups.

▪ Context values generated in a given layer do not (generally) go up – they go down.

▪ Always decided by the Service-User

– Service Providers must not rely on uniqueness

– Example/test/production code might always set it to zero!

▪ For brevity, context values were omitted from the previous diagrams (along with error 

codes).



13 April 2018 WS-P-042 v1.147Commercially Confidential

Typical C implementation

typedef struct message_t

{

inter_id_t inter_id;

prim_id_t prim_id;

address_t return_address;

size_t size;

} message_t;

typedef enum http_prim_id_t

{

HTTP_REGISTER_URL_REQ,

HTTP_REGISTER_URL_CFM,

...

HTTP_LAST_PRIM // Not a prim

} http_prim_id_t;

typedef struct http_bind_req_t

{

message_t hdr;

ip_address_t addr;

http_bind_context_t ctx;

} http_bind_req_t;

http_register_url_req_t* p_req = message_alloc(

sizeof(http_register_url_req_t),

INTER_ID_HTTP,

HTTP_REGISTER_URL_REQ);

p_req->addr.port = 8000;

p_req->addr.ip[0] = 0x00;

…

message_send(OS_QID_HTTP, p_req);



13 April 2018 WS-P-042 v1.148Commercially Confidential

Standard C problems…

▪ Memory management

▪ Structure initialisation

▪ Tagged enumerations



13 April 2018 WS-P-042 v1.149Commercially Confidential

There must be a better way!



13 April 2018 WS-P-042 v1.150Commercially Confidential

Introducing Rust

▪ Rust is a systems programming language that runs blazingly fast, prevents segfaults, 

and guarantees thread safety.

– www.rust-lang.org

▪ Out of Mozilla

▪ Used in Firefox today on Win/Mac/Linux/Android…

▪ The Servo HTML5 rendering engine (replacing Gecko) is their use-case

http://www.rust-lang.org/


13 April 2018 WS-P-042 v1.151Commercially Confidential

Why should I care?

▪ Fast like C with excellent C inter-op

▪ Segmentation faults are impossible*

▪ Null-pointer dereferences are impossible*

▪ Buffer overflows are impossible*

▪ First class build system / documentation generator / code formatting

▪ Rich, expressive type system

▪ But unlike C++, the types are sane (e.g. std::string)



13 April 2018 WS-P-042 v1.152Commercially Confidential

Introducing Grease!

▪ A Message-Passing Approach to Protocol Stacks in Rust

▪ A proof of concept is available from https://github.com/cambridgeconsultants/grease

https://github.com/cambridgeconsultants/grease


13 April 2018 WS-P-042 v1.153Commercially Confidential

Queues in Rust

▪ Standard library offers ‘mpsc’ channels

– Multiple Provider Single Consumer

▪ Could easily substitute in another channel with the same API, e.g. to use an RTOS

– Would love someone to do this!

▪ Wrapped into two types:

– MessageSender – many per channel

– MessageReceiver – one per channel



13 April 2018 WS-P-042 v1.154Commercially Confidential

Tasks

▪ Standard library offers a threading API

▪ Could easily substitute in another threading library with the same API, e.g. to use an 

RTOS

▪ Messages can contain smart containers (like Vec) so tasks must be in the same 

address space



13 April 2018 WS-P-042 v1.155Commercially Confidential

pub enum Message {

Request(MessageSender, Request),

Confirmation(Confirmation),

Indication(Indication),

Response(Response),

}

Grease, Mk1



13 April 2018 WS-P-042 v1.156Commercially Confidential

Grease, Mk2

pub trait ServiceProvider<REQ, CFM, IND, RSP> {

/// Call this to send a request to this provider.

fn send_request(&self, req: REQ, reply_to: &ServiceUser<CFM, IND>);

/// Call this to send a response to this provider.

fn send_response(&self, rsp: RSP);

/// Call this to clone this object so another task can use it.

fn clone(&self) -> ServiceProviderHandle<REQ, CFM, IND, RSP>;

}



13 April 2018 WS-P-042 v1.157Commercially Confidential

Grease, Mk2

pub trait ServiceUser<CFM, IND> {

/// Call this to send a confirmation back to the service user.

fn send_confirm(&self, cfm: CFM);

/// Call this to send an indication to the service user.

fn send_indication(&self, ind: IND);

/// Call this so we can store this user reference in two places.

fn clone(&self) -> ServiceUserHandle<CFM, IND>;

}



13 April 2018 WS-P-042 v1.158Commercially Confidential



13 April 2018 WS-P-042 v1.159Commercially Confidential

What next?

▪ Think about message-passing architectures in your next project

▪ Think about what Rust can do you for

▪ Think about what you can do for Rust

▪ Check out https://github.com/cambridgeconsultants/grease

▪ Check out https://cambridgeconsultants.com/careers

https://github.com/cambridgeconsultants/grease
https://cambridgeconsultants.com/careers


13 April 2018 WS-P-042 v1.1

The contents of this presentation are commercially confidential 

and the proprietary information of Cambridge Consultants 

© 2016 Cambridge Consultants Ltd. All rights reserved.

UK

Cambridge Consultants is part of the Altran group, a global 

leader in Innovation. www.Altran.com

www.CambridgeConsultants.com

USA SINGAPORE JAPAN

Registered No. 1036296 England


