Y Cambridge
A Consultants

Grease

A Message-Passing Approach to Protocol Stacks in Rust

ACCU 2018

Jonathan Pallant Commercially Confidential

Y Cambridge
| Consultants

My Journey in Software Engineering

Protocol Stacks
The Layered Model
Making Good Software

Grease

Commercially Confidential

Cambridge

Consultants

My Journey in Software
Engineering

13 April 2018 Commercially Confidential 3 WS-P-042 v1.1

CC-BY-SA TommyAngelo1988/Wikimedia

Cambridge
Consultants

'File Edit Search BRun Compile Debug Options Window Help

NONAMEG®. PAS
Open... F3

New

Save FZ2
Save as...
Save all

Change dir...
Print

Get info...
DOS shell
Exit Alt-x

Locate and open a file in an Edit window

13 April 2018 Commercially Confidential 5 WS-P-042 v1.1

Cambridge
Consultants

13 April 2018 Commercially Confidential WS-P-042 v1.1

Y Cambridge
| Consultants

g . .
Member of Microsoft Visual Studio e,

Urvegisiered ©2002 Borland Software Corporation

Profeional Edition

Microsoft*

~ This program is pretected by U.S. and internaticnal
VISUAL copyright laws as described in Help About,
Studio® Copyright 1985-1998 Microsoft Corporation.

Commercially Confidential

Y Cambridge
| Consultants

At this point...

= | know 11 languages (to some extent)

= | am a programmer, but

= | do not know how to write software.

Commercially Confidential

Y Cambridge
Consultants

Commercially Confidential

1Cambrldge

Consultants

Cambridge
Consultants

&3 Bluetooth

13 April 2018 Commercially Confidential WS-P-042 v1.1

Cambridge

Consultants

Protocol Stacks

13 April 2018 Commercially Confidential 12 WS-P-042 v1.1

Hands-Free Profile

RFCOMM
L2CAP

Hands-

Free Free
Profile elill=

Hands- Hands-
Free Free
Profile Profile

RFCOMM

Hands-Free Hands-Free
Profile Profile

HTTP/1.1
TLS/1.2

TCP

Y Cambridge
| Consultants

INTERNATIONAL TELECOMMUNICATION UNION

ITU-T X.200

TELECOMMUNICATION (07/94)
STANDARDIZATION SECTOR
OF MU

DATA NETWORKS AND OPEN SYSTEM
COMMUNICATIONS

OPEN SYSTEMS INTERCONNECTION - MODEL
AND NOTATION

INFORMATION TECHNOLOGY -

OPEN SYSTEMS INTERCONNECTION -
BASIC REFERENCE MODEL:

THE BASIC MODEL

Commercially Confidential

Y Cambridge
| Consultants

Peer protocol

Application

Fresentation

Session

Transport

MNetwaork

Data Link

Physical

TISO2920-94/d 10

T— Physical media for OS5

Commercially Confidential

-"1Cambridge
»_AConsultants

— Pegr protocol

Application ——————»

Presentaion—— |

Sessin ———M

Transpot ———|

Network

Data Link

Physical

TIS02920-%4/d10

[— Physical media for OSI

Commercially Confidential

Cambridge

Consultants

The Layered Model

13 April 2018 Commercially Confidential 21 WS-P-042 v1.1

Hands- Hands-
Free Free
Profile Profile

RFCOMM

Y Cambridge
»_AConsultants

Higher Layers

HCI Driver HCI Firmware

Bluetooth Bluetooth
Radio Radio

Single-chip
Bluetooth
Module

USB Bluetooth
Module

Commercially Confidential

Cambridge
Consultants

FCI Protocol-control-information
FPDU Protocol-data-unit
SDU Service-data-unit

Commercially Confidential

(N —1)-PClI

v

(N)-PDU

(N —1)-SDU

I

i (N—1)-PDU

TIS02900-%4/d08

JCambridge
»__AConsultants

Hands-
Free
Profile

RFCOMM

JCambridge
»__AConsultants

Layer N
(Service User)

Layer N-1
(Service Provider)

Commercially Confidential

9

Cambridge
Consultants

Request

Layer N
(Service User)

Layer N-1
(Service Provider)

Commercially Confidential

Confirm

:]Cambridge
»_AConsultants

Layer N
(Service User)

Response

Indication

Layer N-1
(Service Provider)

Commercially Confidential

Cambridge
Consultants

Naming Messages

Clearly state the intention.

Good Names .
Matched pairs of REQ/CFM.

FRAME_SEND REQ /FRAME_SEND CFM .

* Appropriate case depends
FRAME_QUEUE_REQ /FRAME_QUEUE_CFM on language.
FRAME_TX_IND
DATA RECEIVED IND
POSITION _REQUIRED IND /POSITION_REQUIRED_ RSP
IndDataReceived

Bad Names
— SEND_DATA_REQ/DATA SEND_CFM * Mismatched pair.
— DATA RECEIVED * Unclear message type.

Commercially Confidential

Cambridge
Consultants

But why?

= Large systems are large.

= A consistent set of rules of crucial.

— Signposting so you don’t get lost.

— Avoids misunderstanding.

— This works in practice!

Commercially Confidential

Cambridge
Consultants

Message Sequence Charts

Layer N+1 Layer N
EnableRxReq >:
I

EnableRxCfm '

|
|
|
|
< |
------------------------------ Time elapses...-----------mmeee
|

:< RxDatalnd

RxDataRsp >

I
I
I
RxFramelnd

<

13 April 2018 Commercially Confidential WS-P-042 v1.1

Cambridge
Consultants

DNS Example, Part 1

DNS Client DNS Resolver Ethernet MAC Ethernet PHY
I I

RegLookup

(hostname)

ReqgSendDatagram
(ip_addr, port, payload)

»

CfmLookup

I
I
I
I
l
I
encode_packet() D |
I
| I
! RegSendPacket 1
(ip_addr, payload) !
I
I
|
I
I

encode_frame() ;)

ReqSendFrame
(mac_addr, payload)

add_to_buffer() D

CfmSendFrame
(result)

CfmSendPacket
(result)

CfmSendDatagram
(result)

ReqgSendBits
(bits)

CfmSendBits
(result)

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
[P
<
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Commercially Confidential

Y Cambridge
| Consultants

DNS Example, Part 2

DNS Client DNS Resolver Ethernet MAC Ethernet PHY

IndBitsRx
(bits)

<

>

decode()

IndFrameRXx
(src, dest, frame)

IndPacketRx
(src, dest, packet)

IndDatagramRx
<
(src, dest, datagram)

IndResult
(record[])

<

Commercially Confidential

Cambridge

Consultants

You can use this model to
make good software

13 April 2018 Commercially Confidential 34 WS-P-042 v1.1

Cambridge
Consultants

&3 Bluetooth

13 April 2018 Commercially Confidential WS-P-042 v1.1

Function-call

 Single threaded

Message-passing

* Multi-threaded

Y Cambridge
| Consultants

Function-call

 Single threaded

-

Cambridge
Consultants

Function Calling stacks

= Many (most?) stacks and OS APlIs are based around function calling:
— Berkeley sockets API, for example

— Callback functions for asynchronicity
— Which thread does the callback function execute in?

— Can take ‘short-cuts’ and poke around in the memory of another module.

Commercially Confidential

Y Cambridge
»__AConsultants

// One method per message
result t foo tx data req(const uint8 t* p);

// One function for all requests
result t foo reqg(const foo req t* p);

Commercially Confidentia

Y Cambridge
»__AConsultants

// One method per message
result t bar tx frame req(addr_t addr, ...);

// One function for all requests
result t bar reqg(const bar req t* p);

Commercially Confidentia

4)

- J

Message-passing

* Multi-threaded

Cambridge
Consultants

Message Passing

= Message passing is more work, but has benefits:
— APl is enforced, and well defined
— Can't (easily) poke around with another task’s variables
— Unit testing is clean
— No fighting the linker to provide stubs, fakes and mocks

— Can hook the message passing system to provide debugging
— He said, she said...

Commercially Confidential

Cambridge
Consultants

Every Layer is a Task

= Tasks are:
— 1 Thread (or maybe more...)
— 1 Queue (or maybe more...)

= The (primary) thread pends on the (primary) queue and performs actions based on
the events received, before going to sleep again.

Commercially Confidential

-”]Cambridge

__AConsultants

Commercially Confidential

Cambridge
Consultants

Context

If you allow more than one request to be in-flight at a time then, when a Confirmation
IS received, the service-user needs to be able to work out which Request it is a reply

to.
— You might need to handle multiple simultaneous connections

— Requests might take an indeterminate amount of time.

We use a Context field for this.
— Each layer should use an unambiguous (to that layer) value

— A pointer/reference
— A unique integer from an incrementing thread-local value

Commercially Confidential

Cambridge
Consultants

Context

The Confirmation reflects back the Context in the Request. Perhaps also used in a
later Indication.

— Service-user may have some sort of Hash Table to allow fast lookups.
Context values generated in a given layer do not (generally) go up — they go down.
Always decided by the Service-User

— Service Providers must not rely on uniqueness
— Example/test/preduction code might always set it to zero!

For brevity, context values were omitted from the previous diagrams (along with error
codes).

Commercially Confidential

Y Cambridge
| Consultants

Typical C implementation

typedef struct message_t typedef struct http _bind req_
{ {

inter_id_t inter_id; message_t hdr;

prim_id_t prim_id; ip_address_t addr;

address_t return_address; http_bind_context_t ctx;

size_t size; } http_bind_req_t;
} message t;

http_register_url req_t* p req = message alloc(

typedef enum http prim id t sizeof(http _register_url req_t),
{ INTER_ID HTTP,

HTTP_REGISTER_URL_REQ, HTTP_REGISTER_URL_REQ);

HTTP_REGISTER _URL_CFM, p_req->addr.port = 8000;
p_req->addr.ip[0] = 0x00;

HTTP_LAST_PRIM // Not a prim "
} http prim_id t; message_send(0S_QID HTTP, p_req);

Commercially Confidential

Y Cambridge
| Consultants

Standard C problems...

= Memory management

= Structure initialisation

= Tagged enumerations

Commercially Confidential

Cambridge

Consultants

There must be a better way!

13 April 2018 Commercially Confidential 49 WS-P-042 v1.1

Y Cambridge
| Consultants

Introducing Rust

Rust is a systems programming language that runs blazingly fast, prevents segfaults,
and guarantees thread safety.

— www.rust-lang.orq

Out of Mozilla

Used in Firefox today on Win/Mac/Linux/Android...

The Servo HTML5 rendering engine (replacing Gecko) is their use-case

Commercially Confidential

http://www.rust-lang.org/

Y Cambridge
| Consultants

Why should | care?

Fast like C with excellent C inter-op

Segmentation faults are impossible*

Null-pointer dereferences are impossible*

Buffer overflows are impossible*

First class build system / documentation generator / code formatting

Rich, expressive type system

But unlike C++, the types are sane (e.g. std::string)

Commercially Confidential

Cambridge
Consultants

Introducing Grease!

= A Message-Passing Approach to Protocol Stacks in Rust

= A proof of concept is available from https://github.com/cambridgeconsultants/grease

Commercially Confidential

https://github.com/cambridgeconsultants/grease

Cambridge
Consultants

Queues in Rust

= Standard library offers ‘mpsc’ channels
— Multiple Provider Single Consumer

= Could easily substitute in another channel with the same API, e.g. to use an RTOS

— Would love someone to do this!

= Wrapped into two types:
— MessageSender — many per channel
— MessageReceiver — one per channel

Commercially Confidential

Y Cambridge
| Consultants

Tasks

Standard library offers a threading API

Could easily substitute in another threading library with the same API, e.g. to use an
RTOS

Messages can contain smart containers (like Vec) so tasks must be in the same
address space

Commercially Confidential

-"']Cambridge
»_AConsultants

Grease, Mk1

pub enum Message {

Request(MessageSender, Request),

Confirmation(Confirmation),
Indication(Indication),
Response(Response),

Commercially Confidential

Cambridge
Consultants

Grease, Mk2

pub trait ServiceProvider<REQ, CFM, IND, RSP> {
/// Call this to send a request to this provider.
fn send request(&self, req: REQ, reply to: &ServiceUser<CFM, IND>);

/// Call this to send a response to this provider.
fn send response(&self, rsp: RSP);

/// Call this to clone this object so another task can use it.
fn clone(&self) -> ServiceProviderHandle<REQ, CFM, IND, RSP>;

Commercially Confidential

Cambridge
Consultants

Grease, Mk2

pub trait ServiceUser<CFM, IND> {
/// Call this to send a confirmation back to the service user.
fn send confirm(&self, cfm: CFM);

/// Call this to send an indication to the service user.
fn send indication(&self, ind: IND);

/// Call this so we can store this user reference in two places.
fn clone(&self) -> ServiceUserHandle<CFM, IND>;

Commercially Confidential

Cambridge
Consultants

Soetanh A
rense

0‘4 1994 19pud fnor

13 April 2018 Commercially Confidential 58 WS-P-042 v1.1

Y Cambridge
| Consultants

What next?

Think about message-passing architectures in your next project

Think about what Rust can do you for
Think about what you can do for Rust

Check out https://qgithub.com/cambridgeconsultants/grease

Check out https://cambridgeconsultants.com/careers

Commercially Confidential

https://github.com/cambridgeconsultants/grease
https://cambridgeconsultants.com/careers

Cambridge
Consultants

sedibil wannd 2015
aree

UK = USA = SINGAPORE = JAPAN

The contents of this presentation are commercially confidential

Cambridge Consultants is part of the Altran group, a global and the proprietary information of Cambridge Consultants
leader in Innovation. www.Altran.com © 2016 Cambridge Consultants Ltd. All rights reserved. Registered No. 1036296 England

