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At this point...

= | know 11 languages (to some extent)

= | am a programmer, but

= | do not know how to write software.
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The Layered Model
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Higher Layers
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FCI Protocol-control-information
FPDU Protocol-data-unit
SDU Service-data-unit
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Naming Messages

Clearly state the intention.

Good Names .
Matched pairs of REQ/CFM.

FRAME_SEND REQ /FRAME_SEND CFM .

* Appropriate case depends
FRAME_QUEUE_REQ /FRAME_QUEUE_CFM on language.
FRAME_TX_IND
DATA RECEIVED IND
POSITION _REQUIRED IND /POSITION_REQUIRED_ RSP
IndDataReceived

Bad Names
— SEND_DATA_REQ/DATA SEND_CFM * Mismatched pair.
— DATA RECEIVED * Unclear message type.
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But why?

= Large systems are large.

= A consistent set of rules of crucial.

— Signposting so you don’t get lost.

— Avoids misunderstanding.

— This works in practice!

Commercially Confidential



Cambridge
Consultants

Message Sequence Charts
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DNS Example, Part 1
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DNS Example, Part 2

DNS Client DNS Resolver Ethernet MAC Ethernet PHY
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You can use this model to
make good software
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Function Calling stacks

= Many (most?) stacks and OS APlIs are based around function calling:
— Berkeley sockets API, for example

— Callback functions for asynchronicity
— Which thread does the callback function execute in?

— Can take ‘short-cuts’ and poke around in the memory of another module.
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// One method per message
result t foo tx data req(const uint8 t* p);

// One function for all requests
result t foo reqg(const foo req t* p);

Commercially Confidentia



Y Cambridge
»__AConsultants

// One method per message
result t bar tx frame req(addr_t addr, ...);

// One function for all requests
result t bar reqg(const bar req t* p);
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Message Passing

= Message passing is more work, but has benefits:
— APl is enforced, and well defined
— Can't (easily) poke around with another task’s variables
— Unit testing is clean
— No fighting the linker to provide stubs, fakes and mocks

— Can hook the message passing system to provide debugging
— He said, she said...
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Every Layer is a Task

= Tasks are:
— 1 Thread (or maybe more...)
— 1 Queue (or maybe more...)

= The (primary) thread pends on the (primary) queue and performs actions based on
the events received, before going to sleep again.
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Context

If you allow more than one request to be in-flight at a time then, when a Confirmation
IS received, the service-user needs to be able to work out which Request it is a reply

to.
— You might need to handle multiple simultaneous connections

— Requests might take an indeterminate amount of time.

We use a Context field for this.
— Each layer should use an unambiguous (to that layer) value

— A pointer/reference
— A unique integer from an incrementing thread-local value
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Context

The Confirmation reflects back the Context in the Request. Perhaps also used in a
later Indication.

— Service-user may have some sort of Hash Table to allow fast lookups.
Context values generated in a given layer do not (generally) go up — they go down.
Always decided by the Service-User

— Service Providers must not rely on uniqueness
— Example/test/preduction code might always set it to zero!

For brevity, context values were omitted from the previous diagrams (along with error
codes).
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Typical C implementation

typedef struct message_t typedef struct http _bind req_
{ {

inter_id_t inter_id; message_t hdr;

prim_id_t prim_id; ip_address_t addr;

address_t return_address; http_bind_context_t ctx;

size_t size; } http_bind_req_t;
} message t;

http_register_url req_t* p req = message alloc(

typedef enum http prim id t sizeof(http _register_url req_t),
{ INTER_ID HTTP,

HTTP_REGISTER_URL_REQ, HTTP_REGISTER_URL_REQ);

HTTP_REGISTER _URL_CFM, p_req->addr.port = 8000;
p_req->addr.ip[0] = 0x00;

HTTP_LAST_PRIM // Not a prim "
} http prim_id t; message_send(0S_QID HTTP, p_req);
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Standard C problems...

= Memory management

=  Structure initialisation

= Tagged enumerations
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There must be a better way!
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Introducing Rust

Rust is a systems programming language that runs blazingly fast, prevents segfaults,
and guarantees thread safety.

— www.rust-lang.orq

Out of Mozilla

Used in Firefox today on Win/Mac/Linux/Android...

The Servo HTML5 rendering engine (replacing Gecko) is their use-case
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Why should | care?

Fast like C with excellent C inter-op

Segmentation faults are impossible*

Null-pointer dereferences are impossible*

Buffer overflows are impossible*

First class build system / documentation generator / code formatting

Rich, expressive type system

But unlike C++, the types are sane (e.g. std::string)
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Introducing Grease!

= A Message-Passing Approach to Protocol Stacks in Rust

= A proof of concept is available from https://github.com/cambridgeconsultants/grease
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Queues in Rust

= Standard library offers ‘mpsc’ channels
— Multiple Provider Single Consumer

= Could easily substitute in another channel with the same API, e.g. to use an RTOS

— Would love someone to do this!

= Wrapped into two types:
— MessageSender — many per channel
— MessageReceiver — one per channel
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Tasks

Standard library offers a threading API

Could easily substitute in another threading library with the same API, e.g. to use an
RTOS

Messages can contain smart containers (like Vec) so tasks must be in the same
address space
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Grease, Mk1

pub enum Message {

Request(MessageSender, Request),

Confirmation(Confirmation),
Indication(Indication),
Response(Response),
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Grease, Mk2

pub trait ServiceProvider<REQ, CFM, IND, RSP> {
/// Call this to send a request to this provider.
fn send request(&self, req: REQ, reply to: &ServiceUser<CFM, IND>);

/// Call this to send a response to this provider.
fn send response(&self, rsp: RSP);

/// Call this to clone this object so another task can use it.
fn clone(&self) -> ServiceProviderHandle<REQ, CFM, IND, RSP>;
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Grease, Mk2

pub trait ServiceUser<CFM, IND> {
/// Call this to send a confirmation back to the service user.
fn send confirm(&self, cfm: CFM);

/// Call this to send an indication to the service user.
fn send indication(&self, ind: IND);

/// Call this so we can store this user reference in two places.
fn clone(&self) -> ServiceUserHandle<CFM, IND>;
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What next?

Think about message-passing architectures in your next project

Think about what Rust can do you for
Think about what you can do for Rust

Check out https://qgithub.com/cambridgeconsultants/grease

Check out https://cambridgeconsultants.com/careers
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