
Read and write considered Read and write considered
harmfulharmful

ACCU Bristol, April 2018ACCU Bristol, April 2018

Hubert MatthewsHubert Matthews
hubert@oxyware.comhubert@oxyware.com

Copyright © 2018 Oxyware Ltd 2/38

Why this talk?Why this talk?

Copyright © 2018 Oxyware Ltd 3/38

OverviewOverview
1)1) Basics of Read/WriteBasics of Read/Write
2)2) Business processes, rules and schemasBusiness processes, rules and schemas
3)3) Performance, scaling, concurrencyPerformance, scaling, concurrency
4)4) Six questions about dataSix questions about data
5)5) Asynchrony and queuesAsynchrony and queues
6)6) Structure changingStructure changing
7)7) State managementState management

Copyright © 2018 Oxyware Ltd 4/38

ReadsReads

• Can be cached, at multiple levels (e.g. CPU)Can be cached, at multiple levels (e.g. CPU)
• Caching is transparent (mostly)Caching is transparent (mostly)
• Idempotent (can be retried without side-efects)Idempotent (can be retried without side-efects)
• Can be partitioned easily (routing)Can be partitioned easily (routing)
• Access control rules onlyAccess control rules only
• Synchronous and blockingSynchronous and blocking
• Scalable bandwidth – fanout reduces contentionScalable bandwidth – fanout reduces contention

X
cache

Copyright © 2018 Oxyware Ltd 5/38

WritesWrites

• Caching is horrible for writesCaching is horrible for writes
– writeback/through, eviction policy, coherence,etcwriteback/through, eviction policy, coherence,etc

• Scaling writes is horrible – fan-in creates contentionScaling writes is horrible – fan-in creates contention
• Sharding works well only for primary key writesSharding works well only for primary key writes
• Access control rules plus update rulesAccess control rules plus update rules
• Can be delayed or asynchronousCan be delayed or asynchronous
• Idempotence is a design issue/choiceIdempotence is a design issue/choice

X

Copyright © 2018 Oxyware Ltd 6/38

DependenciesDependencies

• Even simple code has dependencies caused by read and Even simple code has dependencies caused by read and
writewrite

• Asymmetric – caller object doesn’t know who calls itAsymmetric – caller object doesn’t know who calls it
• Makes testing difcultMakes testing difcult

– SubstitutionSubstitution
– Mocks, etcMocks, etc

• Introduces notion of push and pullIntroduces notion of push and pull

Input X Output

Copyright © 2018 Oxyware Ltd 7/38

REST APIs and rulesREST APIs and rules
REST = getters/setters on REST = getters/setters on
steroidssteroids

– Industrial-scale anti-patternIndustrial-scale anti-pattern
– Separates code and dataSeparates code and data
– Opposite of encapsulationOpposite of encapsulation
– Very non-OOVery non-OO
– Duplicated logic/rules in Duplicated logic/rules in

every clientevery client
– Example: stock_level >= 0Example: stock_level >= 0
– If rule is broken (stock_level If rule is broken (stock_level

== -1) where is the bug?== -1) where is the bug?

X

Client1 Client2
rulesrules

Copyright © 2018 Oxyware Ltd 8/38

REST APIs and schemasREST APIs and schemas

R

X

W
schema

R

X

W
schema

R

X

W

schema

schema on write
(enforce valid data)

schema on read
(NoSQL)

schema with data
(SQL, OO)

Tradeofs: early/late validation failure, schema Tradeofs: early/late validation failure, schema
migration, versioning, code/rule duplicationmigration, versioning, code/rule duplication

Copyright © 2018 Oxyware Ltd 9/38

REST APIs and processesREST APIs and processes

REST = CRUDREST = CRUD
– Statechart has one Statechart has one

state and four state and four
transitionstransitions

– OK for metadataOK for metadata

Real processes have Real processes have
multiple statesmultiple states

– Have diferent Have diferent
entities per state entities per state
(possibly sub-entities)(possibly sub-entities)

Entity DC

R

U

State1 C
State3

State2

Copyright © 2018 Oxyware Ltd

Typical system scaling pathTypical system scaling path
• Application is too slow
• Get more front-end boxes (scale R+W)

• Application is still too slow
• Get bigger DB box (scale R+W)

• Run out of read bandwidth
• Replicate or cache data (scale R)

• Run out of write bandwidth
• Shard/partition data on primary key (scale R+W)

• Create separate services per entity/component
• Cross-service joins done in client (scale entities)

stop when
it's fast
enough

Copyright © 2018 Oxyware Ltd 11/38

Scaling problemsScaling problems
• Partitioning or sharding works to an extentPartitioning or sharding works to an extent

– If access is strongly biased around primary keyIf access is strongly biased around primary key
• Nasty to scale cross-partition operationsNasty to scale cross-partition operations

– Particularly for write (usually not idempotent)Particularly for write (usually not idempotent)
– Partial failure on write, cross-box transactions, Partial failure on write, cross-box transactions,

concurrency, latency, etc (classic Waldo paper)concurrency, latency, etc (classic Waldo paper)
– Service boundaries aligned with operation Service boundaries aligned with operation

boundaries and failure boundariesboundaries and failure boundaries
• Bulk access to multiple records can cause N+1 Bulk access to multiple records can cause N+1

access problem (get primary keys then N single-access problem (get primary keys then N single-
row accesses – beware of REST and ORMs)row accesses – beware of REST and ORMs)

Copyright © 2018 Oxyware Ltd 12/38

Avoid sharing mutable dataAvoid sharing mutable data

• Shared mutable data Shared mutable data
is the evil of all is the evil of all
computing!computing!

• Read-only data can Read-only data can
be shared safely be shared safely
without lockswithout locks

• Const is your friendConst is your friend
• Pure message-Pure message-

passing approach passing approach
avoids thisavoids this

mutable

sharednot shared

immutable

Copyright © 2018 Oxyware Ltd 13/38

Shared writes don't scaleShared writes don't scale

(graphic by Dmitry Vykov, http://www.1024cores.net, CC BY-NC-SA 3.0)

http://www.1024cores.net/

Copyright © 2018 Oxyware Ltd 14/38

Why shared writes don't scaleWhy shared writes don't scale

Core1

L1

L2

Core2

L1

L2

L3

RAM

32+32 KB
1-3 cycles

256 KB
5-20 cycles

4 MB
30-50 cycles

16 GB
100-300 cycles

MESI

• Caches have to Caches have to
communicate communicate
to ensure to ensure
coherent view coherent view

• MESI protocol MESI protocol
passes passes
messages messages
between cachesbetween caches

• Shared writes Shared writes
limited by limited by
MESI commsMESI comms

MESI

Copyright © 2018 Oxyware Ltd 15/38

6 questions about data access6 questions about data access

PK hashing, partitioning, op==

Non-PK search, secondary indexes, full-text search

Range scans ordering, iteration, bulk vs. single values, op<

R/W ratio caching, cost of lookups vs. cost of updates

Working set how big is the commonly accessed set of data (RAM)

Consistency exact results vs. fast approximations, eventual
consistency, replication, batched updates

Strongly related to the operational profile

PK hashing, partitioning, op==

Non-PK search, secondary indexes, full-text search

Range scans ordering, iteration, bulk vs. single values, op<

R/W ratio caching, cost of lookups vs. cost of updates

Working set how big is the commonly accessed set of data (RAM)

Consistency exact results vs. fast approximations, eventual
consistency, replication, batched updates

Strongly related to the operational profile

Copyright © 2018 Oxyware Ltd 16/38

1. Primary key access1. Primary key access
• Most common form of accessMost common form of access

– Database primary keyDatabase primary key
– std::map/unordered_mapstd::map/unordered_map

• Can use hashing [O(1)], binary search [O(log N)] Can use hashing [O(1)], binary search [O(log N)]
or linear search for small N [O(N)]or linear search for small N [O(N)]

• Requires only operator==Requires only operator==
• Partition on primary key into multiple parts that Partition on primary key into multiple parts that

can operate in parallel or to avoid contentioncan operate in parallel or to avoid contention
• Examples: product catalogue, customer records, Examples: product catalogue, customer records,

sticky web sessions, NoSQL, memcache, RESTsticky web sessions, NoSQL, memcache, REST

Copyright © 2018 Oxyware Ltd 17/38

2. Non-primary key access2. Non-primary key access
• Finding items by value, not by keyFinding items by value, not by key
• Need for secondary indexes (e.g. database indexes)Need for secondary indexes (e.g. database indexes)
• Search on parts of a recordSearch on parts of a record
• Metadata search (date/time, etc)Metadata search (date/time, etc)
• Full-text searchFull-text search
• May require substantially more work to build May require substantially more work to build

compared to PK-based accesscompared to PK-based access
• Usually slower than PK access for lookupUsually slower than PK access for lookup

Copyright © 2018 Oxyware Ltd 18/38

3. Range scans and sequential access3. Range scans and sequential access
• Requires ordering, i.e. operator<, (ordering costs)Requires ordering, i.e. operator<, (ordering costs)
• Requires iterators/cursors/traversal stateRequires iterators/cursors/traversal state
• Seek then scan – frst fnd is slow, then fastSeek then scan – frst fnd is slow, then fast
• Dense linear access and prefetchDense linear access and prefetch
• Watch out for read/write amplifcationWatch out for read/write amplifcation
• Bulk, not single record, access – may require bulk Bulk, not single record, access – may require bulk

aggregate operations rather than N times single aggregate operations rather than N times single
record operations for speed (DB N+1 problem)record operations for speed (DB N+1 problem)

Copyright © 2018 Oxyware Ltd 19/38

4. Read/write ratio4. Read/write ratio

High reads High writes
• Caches are effective
• Cache writethrough/back
• Cache eviction policy
• Cache coherency

• Index structures useful

• Caches don't help much
(except for metadata)

• Locking overhead

• Index structures require
updating

Not all data in a system has similar R/W ratios
e.g. metadata is often read-heavy

Copyright © 2018 Oxyware Ltd 20/38

5. Working set size and skew5. Working set size and skew
• How much of the common data will ft in main How much of the common data will ft in main

memory, the L1/L2/L3 cachememory, the L1/L2/L3 cache
• Will the index structures ft but not the main dataWill the index structures ft but not the main data

– Index data tends to be “hot”, main data may be Index data tends to be “hot”, main data may be
“cold”“cold”

• Depends on data access patterns – 80/20 ruleDepends on data access patterns – 80/20 rule

news website - biased passports - flat

latest news
in cache

evenly spread
disk access

Copyright © 2018 Oxyware Ltd 21/38

6. Consistency6. Consistency
• Do all copies of the data need to be exactly up-Do all copies of the data need to be exactly up-

to-date right nowto-date right now
– ACID, 2-phase commit, centralised, locking, slowACID, 2-phase commit, centralised, locking, slow

• How often are copies updatedHow often are copies updated
• Batch updates (e.g. overnight)Batch updates (e.g. overnight)
• Data vs. metadata (transactions vs. reference Data vs. metadata (transactions vs. reference

data)data)
• ACID vs. BASE (eventual consistency)ACID vs. BASE (eventual consistency)

– BASE allows for decoupled asynchronous systemsBASE allows for decoupled asynchronous systems

Copyright © 2018 Oxyware Ltd 22/38

read/write? pull/push?
sync/async? queues?

Copyright © 2018 Oxyware Ltd 23/38

Read or write, pull or push?Read or write, pull or push?

• Is X reading Y or writing to it?Is X reading Y or writing to it?
• Or both at diferent times?Or both at diferent times?
• Is X pushing or Y pulling?Is X pushing or Y pulling?
• Where is the thread of control?Where is the thread of control?
• Is this a full batch update or a Is this a full batch update or a

partial incremental change?partial incremental change?
• Is this an asynchronous push Is this an asynchronous push

(fre-and-forget) or a (fre-and-forget) or a
synchronous blocking call?synchronous blocking call?

X

Y

diagrams like this
are often useless

Copyright © 2018 Oxyware Ltd 24/38

Full vs incrementalFull vs incremental
• Full changes allow the state to be reset on a Full changes allow the state to be reset on a

regular basisregular basis
– Prevents build-up of errors or divergence from base Prevents build-up of errors or divergence from base

datadata
– Slow, long latency, partial failure problemsSlow, long latency, partial failure problems
– One big transactionOne big transaction

• Incremental changes are fast but don’t Incremental changes are fast but don’t
guarantee to keep state changes synchronisedguarantee to keep state changes synchronised

– Lost messages because of unavailabilityLost messages because of unavailability
– Transactionality only on each updateTransactionality only on each update

Copyright © 2018 Oxyware Ltd 25/38

lambda
architecture

speed layer does
incremental real-

time updates

batch layer does
full updates from

read-only data

Copyright © 2018 Oxyware Ltd 26/38

Reader/writer vs data fowReader/writer vs data fow

• Readers and writers view hides Readers and writers view hides
inherent data fow in systemsinherent data fow in systems

• Split R and W into microservicesSplit R and W into microservices
– Separates rules, performance, Separates rules, performance,

scaling, access control, etcscaling, access control, etc
– Often W and R are very diferentOften W and R are very diferent
– W usually reads from somewhereW usually reads from somewhere

R

X

W W X R

vertical
thinking

horizontal
thinking

Copyright © 2018 Oxyware Ltd 27/38

Sync vs async systemsSync vs async systems
• ACID is hard to scale, partition, get ACID is hard to scale, partition, get

right, can promote failures, makes for right, can promote failures, makes for
a more fragile system as everything a more fragile system as everything
has to be up all the time (brittle)has to be up all the time (brittle)

– 10 sync systems with 99% uptime => 10 sync systems with 99% uptime =>
90% uptime90% uptime

– 10 async systems => 99% uptime for end 10 async systems => 99% uptime for end
systemsystem

• Can maybe delay writes or cover Can maybe delay writes or cover
them up (lambda arch)them up (lambda arch)

• Reads are sync but recent data may be Reads are sync but recent data may be
sufcient, particularly for metadata sufcient, particularly for metadata
(caching helps lots)(caching helps lots)

 sync
scales for

peak

queued

 async
scales for
average

 async
response
time is
shorter

Copyright © 2018 Oxyware Ltd 28/38

Data fow and sync/asyncData fow and sync/async

• Data fows can be point-to-point or broadcastData fows can be point-to-point or broadcast
• Can be synchronous or asynchronousCan be synchronous or asynchronous

– Message queues provide simple sync intermediary Message queues provide simple sync intermediary
– Flat fle batch transfer is popular for a reasonFlat fle batch transfer is popular for a reason

• Queues can also be event stores with rereadQueues can also be event stores with reread
– c.f. Kafka => LinkedInc.f. Kafka => LinkedIn
– Makes queue reads idempotentMakes queue reads idempotent

A B CMQ MQ

Copyright © 2018 Oxyware Ltd 29/38

Content management exampleContent management example

Serve

Store

Edit Edit Store Serve

CMS

editing (complex, infrequent)
and serving (high

performance, read-only,
secure) are intertwined

editing is not exposed,
complexity matches

domain

serving is simple,
isolated, fast and secure

(e.g. CDN)

push pull

• Data fow approach keeps two APIs Data fow approach keeps two APIs
separateseparate

– Security, clarity of purposeSecurity, clarity of purpose
– Separation of concernsSeparation of concerns
– Horizontal not vertical thinkingHorizontal not vertical thinking

Copyright © 2018 Oxyware Ltd 30/38

Larger exampleLarger example

• Data fow makes you think about where data comes from and goes toData fow makes you think about where data comes from and goes to
– ““Who is actually going to read the data I’m writing?”Who is actually going to read the data I’m writing?”

• Microservices may have two APIs for sending and receivingMicroservices may have two APIs for sending and receiving
– ““Vertical” thinking may lead to trying to ft both into one APIVertical” thinking may lead to trying to ft both into one API

Register DB Serve

who gets the
analysis?

Log Analyse

push push push

???

push

Client

pullpush

consumer

synchronous

asynchronous

Copyright © 2018 Oxyware Ltd 31/38

Command Query Representation Command Query Representation
Separation (CQRS)Separation (CQRS)

Read

Repr

Write

Write
repr

Read

Read
repr

Write

write APIread/write API read API

structure
transformation

• Need to change the structure from the form that best suits the write Need to change the structure from the form that best suits the write
API to the structure that best suits the read APIAPI to the structure that best suits the read API

• Can be synchronous or asynchronous transformationCan be synchronous or asynchronous transformation

command

write API

query

Copyright © 2018 Oxyware Ltd 32/38

CQRS examplesCQRS examples

• Structure change can be on read or on writeStructure change can be on read or on write
– Twitter does it on read for high-value users, not writeTwitter does it on read for high-value users, not write

• Log-structured merge systems do this internally and asynchronously Log-structured merge systems do this internally and asynchronously
(e.g. HBase, RocksDB)(e.g. HBase, RocksDB)

• Other examplesOther examples
– Time-series databasesTime-series databases
– Event sourcingEvent sourcing
– Struct-of-arrays vs array-of-structs (e.g. non-OO, data oriented)Struct-of-arrays vs array-of-structs (e.g. non-OO, data oriented)
– Columnar analytics databases (e.g. Redshift, BigQuery)Columnar analytics databases (e.g. Redshift, BigQuery)

followers (read API, columns)

tweeters
(write API,

rows)

Copyright © 2018 Oxyware Ltd 33/38

State managementState management
• Read and write focus doesn’t help manage state Read and write focus doesn’t help manage state

across a complex systemacross a complex system
• State management needs to address:State management needs to address:

– Transactions vs eventual consistencyTransactions vs eventual consistency
– Failure managementFailure management
– Availability and MTTRAvailability and MTTR
– ImmutabilityImmutability

• Align txn boundaries with failure and aggregate Align txn boundaries with failure and aggregate
boundariesboundaries

– REST API: /resourceA/1/resourceB/2REST API: /resourceA/1/resourceB/2
– Fragmentation and transactionality problemsFragmentation and transactionality problems

Copyright © 2018 Oxyware Ltd 34/38

Failure managementFailure management
• Distributed systems can sufer from partial Distributed systems can sufer from partial

failures on writesfailures on writes
– Writes in distributed are inherently concurrentWrites in distributed are inherently concurrent
– Recovery and resynchronising state is “fun”Recovery and resynchronising state is “fun”

• Idempotent writes allow for replay and Idempotent writes allow for replay and
dedupingdeduping

– Make deduping easy: serial number, timestamp, etcMake deduping easy: serial number, timestamp, etc
– Repeatable queues are useful (e.g. Kafka, fat fles)Repeatable queues are useful (e.g. Kafka, fat fles)

• Checkpointing of known good stateCheckpointing of known good state
– Point-in-time recoveryPoint-in-time recovery
– Full vs incremental update problem againFull vs incremental update problem again

A B

Copyright © 2018 Oxyware Ltd 35/38

Bell-LaPadula and Biba modelsBell-LaPadula and Biba models

privateprivate

publicpublic

trustedtrusted

untrusteduntrusted

write upread down write down read up

Bell-LaPadula: confidentiality Biba: integrity

diametrical opposites

Copyright © 2018 Oxyware Ltd 36/38

ImmutabilityImmutability
• Functional programming languages have Functional programming languages have

immutable dataimmutable data
– Make sharing and reasoning about data easierMake sharing and reasoning about data easier

• Russian Doll caching, MVCCRussian Doll caching, MVCC
– Change the key not the valueChange the key not the value

• Pets vs cattle – infrastructurePets vs cattle – infrastructure
• SSA – compilers and CPU reservation stationsSSA – compilers and CPU reservation stations
• Lambda architecture – immutable master dataLambda architecture – immutable master data

Immutability makes things simpler

Copyright © 2018 Oxyware Ltd 37/38

AvailabilityAvailability

• Maximise MTBF by “normal” means:Maximise MTBF by “normal” means:
– Good software practices, hardware failover, reliable Good software practices, hardware failover, reliable

well-known technology choiceswell-known technology choices
• Minimise MTTR by making systems easier to Minimise MTTR by making systems easier to

understand, debug and restartunderstand, debug and restart
– Minimise state management (txn redo logs, fsck, etc)Minimise state management (txn redo logs, fsck, etc)
– Use immutability where possibleUse immutability where possible

Availability = MTBF / (MTBF + MTTR)

(where MTBF = mean time between failures
MTTR = mean time to repair)

Copyright © 2018 Oxyware Ltd 38/38

Read and write are too low levelRead and write are too low level
• They don’t help you to design or analyse They don’t help you to design or analyse

systemssystems
– They are the assembler-level of data (CRUD)They are the assembler-level of data (CRUD)

• They don’t relate to the larger pictureThey don’t relate to the larger picture
• It is too easy to deal with them in isolationIt is too easy to deal with them in isolation

– REST APIs are an all-too common exampleREST APIs are an all-too common example
• Looking at data fows, push vs. pull, Looking at data fows, push vs. pull,

sync/async, business processes, operational sync/async, business processes, operational
profles, state management, etc are much more profles, state management, etc are much more
fruitful approachesfruitful approaches

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

