Read and write considered
harmiful

ACCU Bristol, April 2018

Hubert Matthews
hubert@oxyware.com

Why this talk?

Overview

1) Basics of Read /Write

2) Business processes, rules and schemas
3) Pertormance, scaling, concurrency

4) Six questions about data

5) Asynchrony and queues

6) Structure changing

7) State management

3/38

Reads

.

Can be cached, at multiple levels (e.g. CPU)
Caching is transparent (mostly)

Idempotent (can be retried without side-etfects)
Can be partitioned easily (routing)

Access control rules only

Synchronous and blocking

Scalable bandwidth — fanout reduces contention

4/38

Wrrites

Caching is horrible for writes

— writeback/through, eviction policy, coherence, etc
Scaling writes is horrible — fan-in creates contention
Sharding works well only for primary key writes
Access control rules plus update rules
Can be delayed or asynchronous
Idempotence is a design issue/choice

5/38

* Even simple code has dependencies caused by read and

Dependencies

_

>.

write
Asymmetric — caller object doesn’t know who calls it
Makes testing difficult
— Substitution
— Mocks, etc
Introduces notion of push and pull

6/38

REST APIs and rules

REST = getters/setters on

steroids
- - — Industrial-scale anti-pattern
— Separates code and data
\ / — Opposite of encapsulation
— Very non-OO

— Duplicated logic/rules in
every client

— Example: stock _level >=0

— If rule is broken (stock_level
== -1) where is the bug?

7/38

REST APIs and schemas
"3 1%
I B =

schema on write schema on read schema with data
(enforce valid data) (NoSQL) (SQL, O0)

Tradeoffs: early /late validation failure, schema
migration, versioning, code/rule duplication

8/38

REST APIs and processes

REST = CRUD

— Statechart has one
state and four
transitions

— OK for metadata

Real processes have
multiple states

— Have different
entities per state
(possibly sub-entities)

9/38

Typical system scaling path

* Application is too slow
* Get more front-end boxes (scale R+W)

h * Application is still too slow
* Get bigger DB box (scale R+W)

b * Run out of read bandwidth
* Replicate or cache data (scale R)

st_olp P h * Run out of write bandwidth
IS s * Shard/partition data on primary key (scale R+W)
enough

* Create separate services per entity/component

* Cross-service joins done in client (scale entities)

Scaling problems

* Partitioning or sharding works to an extent
— If access is strongly biased around primary key
* Nasty to scale cross-partition operations

— Particularly for write (usually not idempotent)

— Partial failure on write, cross-box transactions,
concurrency, latency, etc (classic Waldo paper)

— Service boundaries aligned with operation
boundaries and failure boundaries

* Bulk access to multiple records can cause N+1
access problem (get primary keys then N single-
row accesses — beware of REST and ORMs)

11/38

Avoid sharing mutable data

* Shared mutable data mutable
is the evil of all A ok
computing! o
* Read-only data can
be shared safely
without locks - >

e Const is your el not shared shared

* Pure message-
passing approach
avoids this \/

immutable

12/38

Shared writes don't scale

Operation Scalability
(on 4 processors < 4 cores AMD machineg)

250000000000
20000000000
1 2000000000

1 0000000000

[
o
o
=3
=
=
=
=
=
=
=
=
=
'_

SO00000000

W

4
Thread Court

W Fead private "#Read shared ¥'Wiite peivae 0rie shared =R private =3 FEhivy stbared

(graphic by Dmitry Vykov, http://www.1024cores.net, CC BY-NC-SA 3.0)

http://www.1024cores.net/

Why shared writes don't scale

::

MESI

MESI

:

32+32 KB
1-3 cycles

256 KB
5-20 cycles

4 MB
30-50 cycles

16 GB
100-300 cycles

* Caches have to
communicate
to ensure
coherent view

* MESI protocol
passes
messages
between caches

e Shared writes
limited by
MESI comms

14/38

6 questions about data access

PK

Non-PK
Range scans
R/W ratio
Working set

Consistency

hashing, partitioning, op==

search, secondary indexes, full-text search
ordering, iteration, bulk vs. single values, op<
caching, cost of lookups vs. cost of updates

how big is the commonly accessed set of data (RAM)

exact results vs. fast approximations, eventual
consistency, replication, batched updates

Strongly related to the operational profile

1. Primary key access

* Most common form of access
— Database primary key
— std::map/unordered_map

* Can use hashing [O(1)], binary search [O(log N)]
or linear search for small N [O(IN)]

* Requires only operator==
* Partition on primary key into multiple parts that
can operate in parallel or to avoid contention

* Examples: product catalogue, customer records,
sticky web sessions, NoSQL, memcache, REST

2. Non-primary key access

* Finding items by value, not by key

* Need for secondary indexes (e.g. database indexes)
® Search on parts of a record

* Metadata search (date/time, etc)

* Full-text search

* May require substantially more work to build
compared to PK-based access

* Usually slower than PK access for lookup

3. Range scans and sequential access

* Requires ordering, i.e. operator<, (ordering costs)
* Requires iterators/cursors/traversal state

* Seek then scan — first find is slow, then fast

* Dense linear access and prefetch

* Watch out for read /write amplification

* Bulk, not single record, access — may require bulk
aggregate operations rather than N times single
record operations for speed (DB N+1 problem)

L ~ 4 L ~ 4
I

18/38

4. Read /write ratio

High reads High writes

Caches are effective * Caches don't help much
Cache writethrough/back (except for metadata)
Cache eviction policy * Locking overhead
Cache coherency

* Index structures require
Index structures useful updating

Not all data in a system has similar R/W ratios
e.g. metadata is often read-heavy

-~

; g 19/38

5. Working set size and skew

e How much of the common data will fit in main
memory, the L1/L2/L3 cache
e Will the index structures fit but not the main data

— Index data tends to be “hot”, main data may be
“cold”

* Depends on data access patterns — 80/20 rule

news website - biased passports - flat

latest news evenly spread
in cache ~ disk access

20/38

6. Consistency

* Do all copies of the data need to be exactly up-
to-date right now
— ACID, 2-phase commit, centralised, locking, slow

* How often are copies updated
* Batch updates (e.g. overnight)
* Data vs. metadata (transactions vs. reference

data)
* ACID vs. BASE (eventual consistency)

— BASE allows for decoupled asynchronous systems

21/38

HTTP FTP

SI85[) [ELLS)XT

Product catalog

-

ATG Recommendations

¥

FuwW FW FwW 1 Fw
| read/write? pull/push?
HTTP External Applications : ,? ,.P
| sync/async? queues:
|
Mgrnt Deploy | Asset Management Cluster (C
| =
:\l’zgt i Se@rch Admin_| F’ramm ATG Customer P—
[#] - - I Versicned ';ust_ Fﬂ_.'[:lr.'lg Apps Intelligence (G) .
Customer-Facing Cluster (A} I | Campaign Optimizer | Content
- Deploy | Outreach | Merchandising | \Web Svc S
= Customer Facing A'Zf - * : BCC & Content Administration | ore
n raac |
5 Salf Service . ATG Platform %
Runtime Runtime : App Server (Jooss, Oracle. IBM) : Deploy
Mgmt and Agent Extensions || ~—=—— — ™ j
Publishing Agent R kL S/ :
ATG Platform | Deploy ,
App Server (JBoss, Oracle, IBM) | 1 [- ACO DW Load Server (F2)
M, 1/ | - Outreach DWL
b - [Assat DB I ATG Platform
: : App Server (JBoss, Oracle, IBM)
- r
Deploy : ﬁ |
Yy | ATGDW | ATG DW Load Server (F1)
- | i Search, K\, 58, CEC, ARM, DCS DWL
. ‘E’ . l ATG Platfarm
S0AP Customer DB | | | App Server (JBoss, Oracle, 1BM)
| - | .
I Agent DB ; ‘
I - y
o | Service Center (B) B R —
ATG Search Engine (E) : CSC ARM Agent Loader DB
| Service Admin Knowledge __ ARM DB
Commerce index . SCHP | Cust. App Modu.le:s ifor CSC) i
Sarvice index | Mgmt and Production Cluster Ext. Deploy ARM Admin Server (D)
SOAP : BOC & Content Administration
55 - [+ | Publishing Agent ARM Admin
Web I ATG Platform BCC & Content Administration
Agent e | App Server (JBoss, Oracla, IBM) ATG Platiorm
Deploy | L 11, App Server (JBoss, Oracle, IBM)
I | i
| Deploy
I
* k4
[eStara Connections J Key
Notes D Internal users —m» Shows connections
1 Arrows show connections; they do not indicate data flow. (nat impact scaling D:D] External users ODBC/Native connection
3. Does not show staging servers, l'fJ Database —-"6 JDBC connections

4. Letters A-G refer to descriptions of servers in ATG Multiple Application Integration Guide Fw Potential firewall ATGDW Data warehouse database

5135 [Ew=u)

Read or write, pull or push?

* [s X reading Y or writing to it?
* Or both at different times?
* [s X pushing or Y pulling?
* Where is the thread of control?

* [s this a full batch update or a
partial incremental change?

* [s this an asynchronous push
(fire-and-forget) or a
synchronous blocking call?

diagrams like this
are often useless

23/38

Full vs incremental

* Full changes allow the state to be reset on a
regular basis

— Prevents build-up of errors or divergence from base
data

— Slow, long latency, partial failure problems
— One big transaction
* Incremental changes are fast but don’t
guarantee to keep state changes synchronised
— Lost messages because of unavailability
— Transactionality only on each update

24/38

Batch /‘/1 ol s o J
recom U'(G . read-only data)
Immutable P Precompute
master data O views Batch layer
Batch views
New data laI.nbda MergeY| Query
stream architecture

Real-time views

View 2 | View N

Process Increment Speed layer
stream , views s
Reﬂl =time _— speed layer does
increment | "

Reader /writer vs data flow

hor1zontal

thmkmg

H-H-.

* Readers and writers view hides
inherent data flow in systems
* Split R and W into microservices
vertical — Separates rules, performance,

thinking

scaling, access control, etc
— Often W and R are very different
— W usually reads from somewhere

26/38

Sync vs async systems

* ACID is hard to scale, partition, get
right, can promote failures, makes for
a more fragile system as everything s

scales for

has to be up all the time (brittle)

— 10 sync systems with 99% uptime =>
90% uptime asyne

— 10 async systems => 99% uptime for end) § | average

system

* Can maybe delay writes or cover
them up (lambda arch)

* Reads are sync but recent data may be T

response

sufficient, particularly for metadata time is
(caching helps lots)

27/38

Data flow and sync/async

u-1-E-1-8

* Data flows can be point-to-point or broadcast

* Can be synchronous or asynchronous
— Message queues provide simple sync intermediary
— Flat file batch transfer is popular for a reason
* Queues can also be event stores with reread
— c.f. Kaftka => LinkedIn
— Makes queue reads idempotent

28/38

Content management example

- . puu .

editing is not exposed, serving is simple,
complexity matches isolated, fast and secure

domain (e.g. CDN)

* Data flow approach keeps two APIs

editing (complex, infrequent) Separate
and serving (high _ 1 1
performance, read-only, SecurltY’ Clarlty Of purpose
secure) are intertwined — Sep aration Of concerns

Horizontal not vertical thinking
29/38

who gets the

Larger example
push push push push
push pull

consumer

‘ synchronous

‘ asynchronous

* Data flow makes you think about where data comes from and goes to

— “Who is actually going to read the data I'm writing?”
* Microservices may have two APIs for sending and receiving
— “Vertical” thinking may lead to trying to fit both into one API

30/38

Command Query Representation
Separation (CORS)

read/write API write API read API

structure
transformation

* Need to change the structure from the form that best suits the write
API to the structure that best suits the read API

* Can be synchronous or asynchronous transformation
31/38

CORS examples

followers (read API, columns)

tweeters
(write API,
rows)

* Structure change can be on read or on write
— Twitter does it on read for high-value users, not write

* Log-structured merge systems do this internally and asynchronously
(e.g. HBase, RocksDB)

* Other examples
— Time-series databases
— Event sourcing
— Struct-of-arrays vs array-of-structs (e.g. non-OO, data oriented)
— Columnar analytics databases (e.g. Redshift, BigQuery)

State management

* Read and write focus doesn’t help manage state
across a complex system

* State management needs to address:
— Transactions vs eventual consistency
— Failure management

— Availability and MTTR
— Immutability
* Align txn boundaries with failure and aggregate
boundaries

— REST API: /resourceA/1/resourceB/2
— Fragmentation and transactionality problems

33/38

ot o

* Distributed systems can sutfer from partial
failures on writes
— Wirites in distributed are inherently concurrent
— Recovery and resynchronising state is “fun”
* [dempotent writes allow for replay and
deduping
— Make deduping easy: serial number, timestamp, etc
— Repeatable queues are useful (e.g. Katka, flat files)

* Checkpointing of known good state

— Point-in-time recovery

Failure management

— Full vs incremental update problem again

34/38

Bell-I.aPadula and Biba models

private I

read down 1

T write up ~ write down 1

public I

Bell-L.aPadula: confidentiality

trusted

i

T read up

untrusted

i

Biba: integrity

diametrical opposites

35/38

Immutability g

* Functional programming languages have
immutable data
— Make sharing and reasoning about data easier

* Russian Doll caching, MVCC
— Change the key not the value

® Pets vs cattle — infrastructure
* SSA — compilers and CPU reservation stations
e [ambda architecture — immutable master data

Immutability makes things simpler

36/38

Availability

Availability = MTBF / (MTBF + MTTR)

(where MTBF = mean time between failures
MTTR = mean time to repair)

* Maximise MTBF by “normal” means:

— Good software practices, hardware failover, reliable
well-known technology choices

* Minimise MTTR by making systems easier to
understand, debug and restart
— Minimise state management (txn redo logs, fsck, etc)
— Use immutability where possible

37/38

Read and write are too low level

* They don’t help you to design or analyse
systems
— They are the assembler-level of data (CRUD)
* They don’t relate to the larger picture

* [tis too easy to deal with them in isolation
— REST APIs are an all-too common example
* [ooking at data flows, push vs. pull,
sync/async, business processes, operational
profiles, state management, etc are much more
fruittul approaches

38/38

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38

