
Giovanni Asproni
email: giovanni.asproni@zuhlke.com
 gasproni@asprotunity.com
twitter: @gasproni
linkedin: http://www.linkedin.com/in/gasproni

Creating An Incremental
Architecture For Your System

ACCU Conference, April 2018, Bristol, UK

mailto:gasproni@asprotunity.com
http://twitter.com/gasproni
http://www.linkedin.com/in/gasproni

Agenda

• What is Software Architecture

• The problems with the “Rational Model”

• What is Incremental Architecture and its advantages

• Getting started

• Growing the system

• Incremental Architecture for legacy and brownfield systems

http://handbookofsoftwarearchitecture.com/?p=63

“Every software-intensive system has an
architecture. In some cases that architecture is
intentional, while in others it is accidental […]
the architecture of a system is the naming of
the most significant design decisions that
shape a system, where we measure significant
by cost of change and by impact upon use.”

Photo from: https://commons.wikimedia.org/wiki/
File:Grady_Booch,_CHM_2011_2_cropped.jpg

http://handbookofsoftwarearchitecture.com/?p=63
https://commons.wikimedia.org/wiki/File:Grady_Booch,_CHM_2011_2_cropped.jpg
https://commons.wikimedia.org/wiki/File:Grady_Booch,_CHM_2011_2_cropped.jpg
https://commons.wikimedia.org/wiki/File:Grady_Booch,_CHM_2011_2_cropped.jpg

“Cost of change” is
a relative value

“Impact upon use” is about
how much the users of the
system are affected by those
decisions

“Today’s programmers make
design decisions about the
architecture every single day.
When one line of code can tank a
required quality attribute, then
you are a software architect
whether you identify as one or
not.”

Architecture Is For

• Making important structural choices

• Recording and communicating
decisions

• Guiding implementation decisions

• Splitting work among teams

What Does Architecture Include?

• Static and dynamic views of the system

• Sketches

• Prototypes and reference implementations

• Documentation

• Design and implementation guidelines

• Anything else necessary to understand “the shape” and the
behaviour of the system

Architectural Drivers

The Rational Design Process

From: The Design of Design, Fred Brooks

The Rational Design Process Doesn’t Work!

• Design Isn’t Just to Satisfy
Requirements, but Also to Uncover
them

• Design Isn’t Simply Selecting from
Alternatives, but Also Realizing
Their Existence

• Often the domain is not well
understood even by the domain
experts!

STAKT

1
- '•» T m mm |

II

The chances of success of a big
upfront design are inversely
proportional to the size of the
system being designed

BUFD Is A Red Herring

• Most projects have:
• Speculative Upfront Design

(SUFD)
• Absence of refactoring

“incremental design (also called
evolutionary design) allows you to
build technical infrastructure (such
as domain models and persistence
frameworks) incrementally, in
small pieces, as you deliver
stories”

Incremental Architecture

• One small (set of) feature(s) at a time

• Design

• Implement

• Test

• Deploy

Adding increments
is not enough, you
need to iterate as
well!

One More Thing…

An Incremental Approach Can Alleviate / Remove
Constraints

• Early production => early revenue => fewer budget
restrictions

• A technology can be learnt while creating and
deploying the system

• Often, important deadlines can be met with just some
basic functionality

An incremental approach
allows to create the right
domain model for the
application

Qualities: Incremental Approach

• Architectural Patterns

• Hoisting

• Prototyping

Getting started

“If the politics don’t fly,
the system never will”

Engage with
stakeholders and the
development team from
the start!

Start Small!

“A complex system that works is invariably
found to have evolved from a simple system
that worked.”

Focus On What You Know

• No SUFD

• Sufficient design

• Remove “reusable” and “flexible” from your dictionary

• Address major risks

“Favoring simplicity before generality
acts as a tiebreaker between otherwise
equally viable design alternatives. When
there are two possible solutions, favor
the one that is simpler and based on
concrete need rather than the more
intricate one that boasts of generality.”

Kevlin Henney

“Choose Your Tools With Care”

Giovanni Asproni

You may have an idea of the
final shape of the system.
However, that’s just as an
hypothesis

http://www.developerdotstar.com/mag/articles/reeves_design.html

Test Your Hypothesis

“Coding actually makes sense more often than
believed. Often the process of rendering the
design in code will reveal oversights and the
need for additional design effort. The earlier this
occurs, the better the design will be.”

Jack Reeves, “What Is Software Design?”

http://www.developerdotstar.com/mag/articles/reeves_design.html

Don’t Fall in love with your design!

Walking Skeleton

From: http://alistair.cockburn.us/Walking+skeleton

“is a tiny implementation of the system
that performs a small end-to-end
function. It need not use the final
architecture, but it should link together
the main architectural components. The
architecture and the functionality can
then evolve in parallel.”

http://alistair.cockburn.us/Walking+skeleton

Walking Skeleton

Skeleton On Crutches

https://gojko.net/2014/06/09/forget-the-walking-skeleton-put-it-on-crutches/

Extracting A Service

Design for testability

The main purpose of automated
tests is to make the system
maintainable and evolvable

“When testing is done right, it is almost
unreasonably effective at uncovering
defects that matter.”

John Regehr

http://blog.regehr.org/archives/820

Create Feedback Loops

• Continuous Integration

• Continuous Deployment

• Continuous Delivery

TDD at all levels helps

Write a failing
acceptance test

Write a failing
unit test

Make the
test pass

Refactor

Often Forgotten Things

• Buildability
• Deployability
• Configurability
• Versioning strategies

How can I include architectural
tasks in my workflow?

• Architecture in the Backlog
• Architectural Trigger
• Architectural Spike
• Technical Debt Management

Patterns

Documenting The Design
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO.2, FEBRUARY 1986 251

A Rational Design Process: How and Why to Fake It
DAVID LORGE PARNAS AND PAUL C. CLEMENTS

Abstract-Many have sought a software design process that allows a
program to be derived systematically from a precise statement of re-
quirements. This paper proposes that, although we will not succeed in
designing a real product in that way, we can produce documentation
that makes it appear that the software was designed by such a process.
We first describe the ideal process, and the documentation that it re-
quires. We then explain why one should attempt to design according to
the ideal process and why one should produce the documentation that
would have been produced by that process. We describe the contents of
each of the required documents.

Index Terms-Programming methods, software design, software
documentation, software engineering.

I. THE SEARCH FOR THE PHILOSOPHER'S STONE: WHY

Do WE WANT A RATIONAL DESIGN PROCESS?

A PERFECT LY rational person is one who always has
a good reason for what he does. Each step taken can

be shown to be the best way to get to a well defined goal.
Most of us like to think of ourselves as rational profes-
sionals. However, to many observers, the usual process of
designing software appears quite irrational. Programmers
start without a clear statement of desired behavior and im-
plementation constraints. They make a long sequence of
design decisions with no clear statement of why they do
things the way they do. Their rationale is rarely explained.

Many of us are not satisfied with such a design process.
That is why there is research in software design, program-
ming methods, structured programming, and related top-
ics. Ideally, we would like to derive our programs from a
statement of requirements in the same sense that theorems
are derived from axioms in a published proof. All of the
methodologies that can be considered "top down" are the
result of our desire to have a rational, systematic way of
designing software.

This paper brings a message with both bad news and
good news. The bad news is that, in our opinion, we will
never find the philosopher's stone. We will never find a
process that allows us to design software in a perfectly
rational way. The good news is that we can fake it. We
can present our system to others as if we had been rational
designers and it pays to pretend do so during development
and maintenance.

Manuscript received March 18, 1985. This work was supported by the
U.S. Navy and by the National Science and Engineering Research Council
(NSERC) of Canada.

D. L. Parnas is with the Department of Computer Science, University
of Victoria, Victoria, B. C. V8W 2Y2, Canada, and the Computer Science
and Systems Branch, Naval Research Laboratory, Washington, DC 20375.

P. C. Clements is with the Computer Science and Systems Branch, Naval
Research Laboratory, Washington, DC 20375.

IEEE Log Number 8405736.

II. WHY WILL A SOFTWARE DESIGN "PROCESS"

ALWAYS BE AN IDEALIZATION?

We will never see a software project that proceeds in
the "rational" way. Some of the reasons are listed below:

1) In most cases the people who commission the build-
ing of a software system do not know exactly what they
want and are unable to tell us all that they know.

2) Even if we knew the requirements, there are many
other facts that we need to know to design the software.
Many of the details only become known to us as we pro-
gress in the implementation. Some of the things that we
learn invalidate our design and we must backtrack.Be-
cause we try to minimize lost work, the resulting design
may be one that would not result from a rational design
process.

3) Even if we knew all of the relevant facts before we
started, experience shows that human beings are unable
to comprehend fully the plethora of details that must be
taken into account in order to design and build a correct
system. The process of designing the software is one in
which we attempt to separate concerns so that we are
working with a manageable amount of information. How-
ever, until we have separated the concerns, we are bound
to make errors.

4) Even if we could master all of the detail needed, all
but the most trivial projects are subject to change for ex-
ternal reasons. Some of those changes may invalidate pre-
vious design decisions. The resulting design is not one
that would have been produced by a rational design pro-
cess.

5) Human errors can only be avoided if one can avoid
the use of humans. Even after the concerns are separated,
errors will be made.

6) We are often burdened by preconceived design ideas,
ideas that we invented, acquired on related projects, or
heard about in a class. Sometimes we undertake a project
in order to tryout or use a favorite idea. Such ideas may
not be derived from our requirements by a rational pro-
cess.

7) Often we are encouraged, for economic reasons, to
use software that was developed for some other project. In
other situations, we may be encouraged to share our soft-
ware with another ongoing project. The resulting software
may not be the ideal software for either project, i.e., not
the software that we would develop based on its require-
ments alone, but it is good enough and will save effort.

For all of these reasons, the picture of the software de-
signer deriving his design in a rational, error-free way
from a statement of requirements is quite unrealistic. No

0098-5589/86/0200-0251$01.00 © 1986 IEEE

Growing The System

When The System Grows…

• Increasing team size

• Increasing the number of teams

• Feature teams or component teams?

Brownfield And Legacy Systems

• Rewrite from scratch rarely works

• The incremental approach still
apply

Thank You!
giovanni.asproni@zuhlke.com

@gasproni

mailto:giovanni.asproni@zuhlke.com
http://twitter.com/gasproni
http://twitter.com/gasproni

Books And References

ptg6985396

From the Library of Giovanni Asproni

ptg6985396

From the Library of Giovanni Asproni

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO.2, FEBRUARY 1986 251

A Rational Design Process: How and Why to Fake It
DAVID LORGE PARNAS AND PAUL C. CLEMENTS

Abstract-Many have sought a software design process that allows a
program to be derived systematically from a precise statement of re-
quirements. This paper proposes that, although we will not succeed in
designing a real product in that way, we can produce documentation
that makes it appear that the software was designed by such a process.
We first describe the ideal process, and the documentation that it re-
quires. We then explain why one should attempt to design according to
the ideal process and why one should produce the documentation that
would have been produced by that process. We describe the contents of
each of the required documents.

Index Terms-Programming methods, software design, software
documentation, software engineering.

I. THE SEARCH FOR THE PHILOSOPHER'S STONE: WHY

Do WE WANT A RATIONAL DESIGN PROCESS?

A PERFECT LY rational person is one who always has
a good reason for what he does. Each step taken can

be shown to be the best way to get to a well defined goal.
Most of us like to think of ourselves as rational profes-
sionals. However, to many observers, the usual process of
designing software appears quite irrational. Programmers
start without a clear statement of desired behavior and im-
plementation constraints. They make a long sequence of
design decisions with no clear statement of why they do
things the way they do. Their rationale is rarely explained.

Many of us are not satisfied with such a design process.
That is why there is research in software design, program-
ming methods, structured programming, and related top-
ics. Ideally, we would like to derive our programs from a
statement of requirements in the same sense that theorems
are derived from axioms in a published proof. All of the
methodologies that can be considered "top down" are the
result of our desire to have a rational, systematic way of
designing software.

This paper brings a message with both bad news and
good news. The bad news is that, in our opinion, we will
never find the philosopher's stone. We will never find a
process that allows us to design software in a perfectly
rational way. The good news is that we can fake it. We
can present our system to others as if we had been rational
designers and it pays to pretend do so during development
and maintenance.

Manuscript received March 18, 1985. This work was supported by the
U.S. Navy and by the National Science and Engineering Research Council
(NSERC) of Canada.

D. L. Parnas is with the Department of Computer Science, University
of Victoria, Victoria, B. C. V8W 2Y2, Canada, and the Computer Science
and Systems Branch, Naval Research Laboratory, Washington, DC 20375.

P. C. Clements is with the Computer Science and Systems Branch, Naval
Research Laboratory, Washington, DC 20375.

IEEE Log Number 8405736.

II. WHY WILL A SOFTWARE DESIGN "PROCESS"

ALWAYS BE AN IDEALIZATION?

We will never see a software project that proceeds in
the "rational" way. Some of the reasons are listed below:

1) In most cases the people who commission the build-
ing of a software system do not know exactly what they
want and are unable to tell us all that they know.

2) Even if we knew the requirements, there are many
other facts that we need to know to design the software.
Many of the details only become known to us as we pro-
gress in the implementation. Some of the things that we
learn invalidate our design and we must backtrack.Be-
cause we try to minimize lost work, the resulting design
may be one that would not result from a rational design
process.

3) Even if we knew all of the relevant facts before we
started, experience shows that human beings are unable
to comprehend fully the plethora of details that must be
taken into account in order to design and build a correct
system. The process of designing the software is one in
which we attempt to separate concerns so that we are
working with a manageable amount of information. How-
ever, until we have separated the concerns, we are bound
to make errors.

4) Even if we could master all of the detail needed, all
but the most trivial projects are subject to change for ex-
ternal reasons. Some of those changes may invalidate pre-
vious design decisions. The resulting design is not one
that would have been produced by a rational design pro-
cess.

5) Human errors can only be avoided if one can avoid
the use of humans. Even after the concerns are separated,
errors will be made.

6) We are often burdened by preconceived design ideas,
ideas that we invented, acquired on related projects, or
heard about in a class. Sometimes we undertake a project
in order to tryout or use a favorite idea. Such ideas may
not be derived from our requirements by a rational pro-
cess.

7) Often we are encouraged, for economic reasons, to
use software that was developed for some other project. In
other situations, we may be encouraged to share our soft-
ware with another ongoing project. The resulting software
may not be the ideal software for either project, i.e., not
the software that we would develop based on its require-
ments alone, but it is good enough and will save effort.

For all of these reasons, the picture of the software de-
signer deriving his design in a rational, error-free way
from a statement of requirements is quite unrealistic. No

0098-5589/86/0200-0251$01.00 © 1986 IEEE

