Creating An Incremental
Architecture For Your System

ACCU Conference, April 2018, Bristol, UK

Giovanni Asproni

email: giovanni.asproni@zuhlke.com
gasproni@asprotunity.com

twitter: @gasproni

linkedin: http://www.linkedin.com/in/gasproni

mailto:gasproni@asprotunity.com
http://twitter.com/gasproni
http://www.linkedin.com/in/gasproni

Agenda

= What is Software Architecture

= The problems with the “Rational Model”

» What is Incremental Architecture and its advantages
» Getting started

= Growing the system

= Incremental Architecture for legacy and brownfield systems

Photo from: https://commons.wikimedia.org/wiki/

File:Grady Booch, CHM_2011_2_ cropped.jpg

“Every software-intensive system has an
architecture. In some cases that architecture is
intentional, while in others it is accidental [..]
the architecture of a system is the naming of
the most significant design decisions that
shape a system, where we measure significant
by cost of change and by impact upon use.”

http://handbookofsoftwarearchitecture.com/?p=63

http://handbookofsoftwarearchitecture.com/?p=63
https://commons.wikimedia.org/wiki/File:Grady_Booch,_CHM_2011_2_cropped.jpg
https://commons.wikimedia.org/wiki/File:Grady_Booch,_CHM_2011_2_cropped.jpg
https://commons.wikimedia.org/wiki/File:Grady_Booch,_CHM_2011_2_cropped.jpg

“Cost of change” is
a relative value

“Impact upon use” is about
how much the users of the
system are affected by those
decisions

Design It!

From Programmer
to Software Architect

Michael Keeling
edited by Susannah Pfalzer

“Today’s programmers make
design decisions about the
architecture every single day.
When one line of code can tank a
required quality attribute, then
you are 3 software architect
whether you identify as one or
not.”

Architecture Is For

» Making important structural choices

= Recording and communicating
decisions

» Guiding implementation decisions

= Splitting work among teams

What Does Architecture Include?

= Static and dynamic views of the system

= Sketches

= Prototypes and reference implementations
= Documentation

= Design and implementation guidelines

= Anything else necessary to understand “the shape” and the
behaviour of the system

Architectural Drivers

The Rational Design Process Eis

e Goal

Desiderata

Utility function

Constraints, especially budget (perhaps not $ cost)

Design tree of decisions

UNTIL ("good enough") or (time runs out)

DO another design (to improve utility function)
s UNTIL design is complete
THE | .. WHILE design remains feasible,

DESI(GIY make another design decision
OF DESIGN END WHILE
FREDERICK P. BRDOKS, JUR. Backtrack up design tree

Explore a path not searched before
END UNTIL
END DO
Take best design
END UNTIL

From: The Design of Design, Fred Brooks

The Rational Design Process Doesn’t Work!

= Design Isn’t Just to Satisty
Requirements, but Also to Uncover
them

= Design Isn’t Simply Selecting from
Alternatives, but Also Realizing
Their Existence

= Often the domain is not well
understood even by the domain
experts!

The chances of success of a big
upfront design are inversely
proportional to the size of the
system being designed

BUFD Is A Red Herring

= Most projects have:

= Speculative Upfront Design
(SUFD)

= Absence of refactoring

Agile
Development

amowania 2winnego

O'REILLY"

“incremental design (also called
evolutionary design) allows you to
build technical infrastructure (such
as domain models and persistence
frameworks) incrementally, in
small pieces, as you deliver
stories”

Incremental Architecture

= One small (set of) feature(s) at a time
= Design

= Implement

s [est

= Deploy

One More Thing...

Adding increments
IS not enough, you
need to iterate as
well!

An Incremental Approach Can Alleviate / Remove
Constraints

= Early production => early revenue => fewer budget
restrictions

= A technology can be learnt while creating and
deploying the system

= Often, important deadlines can be met with just some
basic functionality

An incremental approach
allows to create the right
domain model for the
application

Quialities: Incremental Approach

= Architectural Patterns

= Hoisting

= Prototyping

Getting started

THIRD EDITION

THE ART OF
SYSTEMS
ARCHITECTING [.. :

If the politics don't fly,

the system never will”

o N\ |
P e
[\
/“ e \
(8, B
ya i

L E
MARK W. MAIER
EBERHARDT RECHTIN

Engage with
stakeholders and the
development team from

the start!

Start Small!

“A complex system that works is invariably
found to have evolved from a simple system
that worked.”

JOHN GALL

GENERAL SYSTEMANTICS PRESS ~ WALKER MINNESOTA

Focus On What You Know

= No SUFD
= Sufficient design
= Remove “reusable” and “flexible” from your dictionary

= Address major risks

97 Thlngs Every

Should Know

“Favoring simplicity before generality
acts as a tiebreaker between otherwise
equally viable design alternatives. When
there are two possible solutions, favor
the one that is simpler and based on
concrete need rather than the more
intricate one that boasts of generality.”

Kevlin Henney

BEE
3

B
£
&

f0<EH

dEi
ﬂﬁ'@

DY S HE
OePDE

£8P
CHREEG
AGE W
208
ZE0E

2 E DR
bk E D
HE®P=g

12
& &
2§ 8 9
£ &2
@ﬁlﬂﬂ@ﬂﬂ
ROE 2389

Collective Wisdom
from the Experts

Programmer

O’REILLY" Edited by Kevlin Henney

“Choose Your Tools With Care”

Giovanni Asproni

You may have an idea of the
final shape of the system.
However, that’s just as an
hypothesis

Test Your Hypothesis

“Coding actually makes sense more often than
believed. Often the process of rendering the
design in code will reveal oversights and the
need for additional design effort. The earlier this
occurs, the better the design will be.”

Jack Reeves, “What Is Sottware Design?”

http://www.developerdotstar.com/mag/articles/reeves_design.html

Don't Fall in love with your design!

Walking Skeleton

“is a tiny implementation of the system
that performs a small end-to-end
function. It need not use the final
architecture, but it should link together
the main architectural components. The
architecture and the functionality can
then evolve in parallel.”

http://alistair.cockburn.us/Walking+skeleton

Walking Skeleton

E

N %E

Skeleton On Crutches zihlke

https://gojko.net/2014/06/09/forget-the-walking-skeleton-put-it-on-crutches/

EX
tracting A S
ervic
e

T
3%
5

= ’
= D—ﬁﬁ?
§

Design for testability

The main purpose of automated
tests is to make the system
maintainable and evolvable

“When testing is done right, it is almost
unreasonably effective at uncovering
defects that matter.”

John Regehr

Create Feedback Loops

= Continuous Integration
= Continuous Deployment

= Continuous Delivery

TDD at all levels helps B

Write a failing
unit test

Make the
Write a failing test pass

acceptance test
\Ctor

Often Forgotten Things

® |
© = Buildability
= Deployability
= Configurability
= Versioning strategies

Kanban Board

How can | include architectural
tasks in my workflow?

Patterns to Develop and Evolve Architecture
During an Agile Software Project

Rebecca Wirfs-Brock, Wirfs-Brock Associates, Inc., USA
Joseph Yoder, The Refactory, Inc., USA
Eduardo Guerra, National Institute of Space Research (INPE), Brazil

Abstract: The design of the architecture during an agile project is an ongoing activity that takes
place in all phases of a project lifecycle. It is important to continue to evolve the architecture in
order to keep it suitable for the software system's current needs. This paper documents four
patterns for working on and evolving a system'’s architecture using agile techniques.

Categories and Subject Descriptors

* Software and its engineering~Agile software development « Software and its engineering-Software design techniques
* Software and its engineering~Risk management * Software and its engineering~Software evolution

« Software and its engineering~Patterns

General Terms
Agile, Architecture, Patterns, Software Qualities, Agile Methodology

Keywords
Agile Architecture, Backlog, Technical Backlog, System Qualities, Pattemns, Agile Software Development, Technical Debt,
Software Evolution, Architectural Spike, Design Spike, Refactoring

1. Introduction

Agile teams generally don't follow a common set of architectural design practices as evidenced
by industry reports [Bin], a systematic review [BSWL], and a grounded theory study [WNA].
Research [BSWL] into the relationship between agile development and software architecture
reveals a lack of empirical evidence for many of the claims about agile processes and
architecture. In the grounded theory study involving 44 participants [WNA], one of the findings
was that reducing up-front design too much can lead to an accidental architecture which does
not necessarily support the team'’s ability to develop functionality and fails to meet requirements.

More recent agile methods such as SAFe [Lef] or Disciplined Agile Delivery [AL] address agile
at scale. They recommend several architecture practices which have been adopted by some
larger organizations. But there still is a lack of consensus around agile architecture practices. A
question to be answered on agile projects is how much architecture definition is needed to start
development. When the project is running, the challenge is to keep the architecture good

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or for profit or and that copies bear this notice and
the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires
prior specific permission. A preliminary version of this paper was presented in a writers’ workshop at the 22nd Conference
on Pattern Languages of Programs (PLoP). PLoP*15, OCTOBER 24-26, gh, USA. C 2015 is
held by the author(s). HILLSIDE 978-1-941652-03-9.

Patterns

rch
rch
rch
Tech

itecture in the Backlog
itectural Trigger
itectural Spike

nical Debt Management

zuhlke

empowering ideas

Documenting The Design

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-12, NO. 2, FEBRUARY 1986 251

A Rational Design Process: How and Why to Fake It

DAVID LORGE PARNAS anp PAUL C. CLEMENTS

Abstract—Many have sought a software design process that allows a
program to be derived systematically from a precise statement of re-
quirements. This paper proposes that, although we will not succeed in
designing a real product in that way, we can produce documentation
that makes it appear that the software was designed by such a process.
We first describe the ideal process, and the documentation that it re-
quires. We then explain why one should attempt to design according to
the ideal process and why one should produce the documentation that
would have been produced by that process. We describe the contents of
each of the required documents.

Index Terms—Programming methods, software design, software
documentation, software engineering.

I. THE SEARCH FOR THE PHILOSOPHER'S STONE: WHY
Do WE WANT A RarioNAL DESIGN PROCESS?

PERFECTLY rational person is one who always has

a good reason for what he does. Each step taken can
be shown to be the best way to get to a well defined goal.
Most of us like to think of ourselves as rational profes-
sionals. However, to many observers, the usual process of
designing software appears quite irrational. Programmers
start without a clear statement of desired behavior and im-
plementation constraints. They make a long sequence of
design decisions with no clear statement of why they do
things the way they do. Their rationale is rarely explained.

Many of us are not satisfied with such a design process.
That is why there is research in software design, program-
ming methods, structured programming, and related top-
ics. Ideally, we would like to derive our programs from a
statement of requirements in the same sense that theorems
are derived from axioms in a published proof. All of the
methodologies that can be considered “‘top down” are the
result of our desire to have a rational, systematic way of
designing software.

This paper brings a message with both bad news and
good news. The bad news is that, in our opinion, we will
never find the philosopher’s stone. We will never find a
process that allows us to design software in a perfectly
rational way. The good news is that we can fake it. We
can present our system to others as if we had been rational
designers and it pays to pretend do so during development
and maintenance.

Manuscript received March 18, 1985. This work was supported by the
U.S. Navy and by the National Science and Engincering Research Council
(NSERC) of Canada.

D. L. Parnas is with the Department of Computer Science, University
of Victoria, Victoria, B. C. V8W 2Y2, Canada, and the Computer Science
and Systems Branch, Naval Research Laboratory, Washington, DC 20375.

P. C. Clements is with the Computer Science and Systems Branch, Naval
Research Laboratory, Washington, DC 20375.

IEEE Log Number 8405736.

II. WHY WILL A SOFTWARE DESIGN “PROCESS”
ALwAYS BE AN IDEALIZATION?

We will never see a software project that proceeds in
the “‘rational”” way. Some of the reasons are listed below:

1) In most cases the people who commission the build-
ing of a software system do not know exactly what they
want and are unable to tell us all that they know.

2) Even if we knew the requirements, there are many
other facts that we need to know to design the software.
Many of the details only become known to us as we pro-
gress in the implementation. Some of the things that we
learn invalidate our design and we must backtrack. Be-
cause we try to minimize lost work, the resulting design
may be one that would not result from a rational design
process.

3) Even if we knew all of the relevant facts before we
started, experience shows that human beings are unable
to comprehend fully the plethora of details that must be
taken into account in order to design and build a correct
system. The process of designing the software is one in
which we attempt to separate concerns so that we are
working with a manageable amount of information. How-
ever, until we have separated the concerns, we are bound
to make errors.

4) Even if we could master all of the detail needed, all
but the most trivial projects are subject to change for ex-
ternal reasons. Some of those changes may invalidate pre-
vious design decisions. The resulting design is not one
that would have been produced by a rational design pro-
cess.

5) Human errors can only be avoided if one can avoid
the use of humans. Even after the concerns are separated,
errors will be made.

6) We are often burdened by preconceived design ideas,
ideas that we invented, acquired on related projects, or
heard about in a class. Sometimes we undertake a project
in order to try out or use a favorite idea. Such ideas may
not be derived from our requirements by a rational pro-
cess.

7) Often we are encouraged, for economic reasons, to
use software that was developed for some other project. In
other situations, we may be encouraged to share our soft-
ware with another ongoing project. The resulting software
may not be the ideal software for either project, i.e., not
the software that we would develop based on its require-
ments alone, but it is good enough and will save effort.

For all of these reasons, the picture of the software de-
signer deriving his design in a rational, error-free way
from a statement of requirements is quite unrealistic. No

0098-5589/86/0200-0251$01.00 © 1986 IEEE

zuhlke

empowering ideas

Growing The System

When The System Grows. ..

= |ncreasing team size
= Increasing the number of teams

= Feature teams or component teams?

Browntield And Legacy Systems EiE

Software
Design X-Rays

Fix Technical Debt with
Behavioral Code Analysis

= Rewrite from scratch rarely works

= The incremental approach still
apply

Adam Tornhill
edited by Adaobi Obi Tulton

Thank You!

giovanni.asproni@zuhlke.com

@gasproni

mailto:giovanni.asproni@zuhlke.com
http://twitter.com/gasproni
http://twitter.com/gasproni

Books And References zihlke

A Rational Design Process: How and Why to Feke I
Software
Design X-Rays

Fix Technical Debt with
Behavioral Code Analysis

!
Design It! Release It!

Second Edition
From Programmer

to Software Architect Design and Deploy
Production-Ready Software

Adam Tornhill
edited by Adaobi Obi Tulton

Michael Keeling
FREDERICK P. BRDOKS, JR. edited by Susannah Pfalzer

9

LSl PSRl THE \, | \ JOMWTB JISMS i
NP

|
/} R\SK-DR\ViAjﬁROf\CH L/ 1 Develo ment
e SYSTEMS Software A fllieciure Reveoemen
97 Things Every Second Edtion_ Vil

BIBLE Architecture 1

Should Know
THE BEGINNER'S GUIDE
TO SYSTEMS LARGE AND SMALL o Deve/operj e ig Collective Wisdom from the Experts

P

BEING

THE THIRD EDITION OF SYSTEMANTICS - g;gs%?&zzgf w
i : j

BY
Technical leadership by coding, coaching,

’ . Working With Using Viewpoints and F i
JOHN G ALL collaboration, arcAitecture sketching ’ p by \
aa just enough up front design \
- . y N NICK ROZANSKI - EOIN WOODS

Simon Brown

O'REILLY" oY,

"v 57} ' THIRD EDITION
o B £) &2 B b3
Software Systems THE ART OF
! EEpsERERastas SYSTEMS
OBJECT-ORIENTED Second Fdition BROE2AGBS =
SOFTWARE, Collective Wisdom y N

x u b
from the Experts 3, 2%) |]

WORKING
oy EFFECTIVELY
Brwil] WITH

e R e LEGAEIRCODE
NICK ROZANSKI * EOIN WOODS ' : L Michael C. Feathers

GUIDED BY

STEVE FREEMAN i
N e
N7 N

A
[
lm\

Programmer i

Working With Using Vi ints and F

