
COMMON WEB SECURITY THREATS
… and what to do about them

Eoin Woods
@eoinwoodz

Endava

Introductions

Eoin Woods

•CTO at Endava

•Career has spanned products and applications
• Architecture and software engineering
• Bull, Sybase, InterTrust
• BGI (Barclays) and UBS

• Long time security dabbler

• Increasingly concerned at cyber threat for “normal” systems

Content

•Introducing Web Security Threats & OWASP

•The OWASP Web Vulnerabilities List

•Useful Tools to Know About

•Reviewing Defences

•Summary

Introducing Web Security Threats

Web Security Threats

•We need systems that are dependable in the face of
•Malice
• Error
•Mischance

•People are sometimes bad, stupid or just unlucky

•System security aims to mitigate these situations

Web Security Threats

•System threats are similar to real-world threats:
• Theft
• Fraud
• Destruction
• Disruption

•Anything of value may attract unwelcome attention

“I rob banks because that’s where the money is” – Willie Sutton

Web Security Threats

•Why do we care about these threats?
•A threat is a risk of a loss of some sort

•Common types of loss are:
•Time
•Money
•Privacy
•Reputation
•Advantage

Web Security Threats

•Digital channels need security
•APIs on the Internet
• Introspection of APIs
•Attacks being “weaponised”
•Today’s internal app is

tomorrow’s “digital channel”

Security today mitigates
tomorrow’s threat

Who are OWASP?

•The Open Web Application Security Project
• Largely volunteer organisation, largely online

•Exists to improve the state of software security
• Research, tools, guidance, standards
• Runs local chapters for face to face meetings

• “OWASP Top 10” project lists top application security risks
• Data-driven list of most significant threats to webapps
• Referenced widely by MITRE, PCI DSS and similar
• Updated as threats change (2003, 2004, 2007, 2010, 2013, 2017)

Other Important Security Organisations

•MITRE Corporation
• Common Vulnerabilities and Exposures (CVE)
• Common Weaknesses Enumeration (CWE)

•SAFECode
• Fundamental Practices for Secure Software Development
• Training

There are a lot of others too (CPNI, CERT, CIS, ISSA, …)

OWASP Web Vulnerabilities List

How was the 2017 List Produced?

•Project of the OWASP organisation
• Group of ~75 volunteers create it

•Data set analysis
• Data from 24 firms including Aspect Security, Checkmarx, MicroFocus, NCCST,

Synopsis, TCS, Vantage Point, Veracode, …
• Data represents ~114,000 applications
• https://github.com/OWASP/Top10/2017/datacall

•Survey analysis
• ~500 participants from the OWASP Top 10 mailing list

OWASP Top 10 - 2017

#1 Injection Attacks
#2 Broken Authentication
#3 Sensitive Data Exposure
#4 XML External Entities (XXE)
#5 Broken Access Control

#6 Security Misconfiguration
#7 Cross Site Scripting (XSS)
#8 Insecure Deserialisation
#9 Component Vulnerabilities
#10 Insufficient Logging and

Monitoring

Some may look “obvious” but appear on the list year after year, based on real vulnerability data!

What Changed from 2013 to 2017?

OWASP 2013 Top 10 OWASP 2017 Top 10
A1 – Injection A1 – Injection

A2 – Broken Authentication & Session Management A2 – Broken Authentication

A3 – Cross-Site Scripting (XSS) A3 – Sensitive Data Exposure

A4 – Insecure Direct Object References A4 – XML External Entities (XEE) -- NEW
A5 – Security Misconfiguration A5 – Broken Access Control

A6 – Sensitive Data Exposure A6 – Security Misconfiguration

A7 – Missing Function Level Access Control A7 – Cross Site Scripting (XSS)

A8 – Cross Site Request Forgery (CSRF) A8 – Insecure Deserialisation -- NEW
A9 – Components with Known Vulnerabilities A9 – Components with Known Vulnerabilities

A10 – Unvalidated Redirects & Forwards A10 – Insufficient Logging and Monitoring -- NEW

#1 Injection Attacks

• Unvalidated input passed to any interpreter
• Operating system and SQL are most common
• Configuration injection often overlooked

• Defences include “escaping” inputs, bind variables, using white lists, …

SELECT * from table1 where name = ’%1’

Set ‘%1’ to ‘ OR 1=1 -- … this results in this query:

SELECT * FROM table1 WHERE name = ’ ’ OR 1=1 --

Exploitability 3

Prevalence 2
Detectability 3

Tech Impact 3

(See also #4 – XML External Entities …)

#2 Broken Authentication

• Credential Stuffing - millions of usernames and passwords available
• Well known credentials often present
• Unprotected session IDs
• Session IDs not rotated after login or invalidated after use
• Mitigations include strong authentication and session management controls

a5f3dd56ff32 a5f3dd56ee33

Exploitability 3

Prevalence 2
Detectability 2

Tech Impact 3

#3 Sensitive Data Exposure

• Is sensitive data secured in transit?
• TLS, message encryption

• Is sensitive data secured at rest?
• Encryption, tokenisation, separation

• Impact can include loss of data or spoofing attacks

•Mitigation via threat analysis, encryption, limiting scope, crypto standardisation

https://askleo.com

Exploitability 2

Prevalence 3
Detectability 2

Tech Impact 3

#4 XML External Entities (XXE)

• XML “external” entities cause XML parsers to retrieve external data

• Many XML parsers enable this by default (including Java’s standard library)

• Can expose sensitive data or provide DoS attack vector

• Mitigate by disabling external entities or removing XML

Exploitability 2

Prevalence 2
Detectability 3

Tech Impact 3

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE danger [

<!ELEMENT other ANY >
<!ENTITY dos SYSTEM "file:///dev/random" >]>

<foo>&xxe;</foo>

XML
Parser

/dev/random

#5 Broken Access Control

• Directly referencing IDs in requests (filenames, accounts, …)
• Not authenticating access to each on the server
• Client can modify request and gain access to other objects

• Relying on UI or other client side code for access control
• e.g. UI removing ”update” option & not validating action on the server

• Not checking for tampering or replaying security meta data (e.g. JWT tokens)
• Mitigation through entity level access control, deny by default, strong and standardised

authorisation technology and patterns, hide metadata

Exploitability 2

Prevalence 2
Detectability 2

Tech Impact 3

http://www.example.com/gettxn?txnid=4567
à http://www.example.com/updttxn?tid=4567&value=100.00

#6 Security Misconfiguration

• Security configuration is often complicated
• Many different places to put it, complex & varying semantics
• Layers from OS to application all need to be consistent

• It is easy to accidentally miss an important part
• OS file permissions?
• .htaccess files?
• Shared credentials in test and production?

• Allows accidental access to or modification of resources

• Mitigation via scanning, standardisation, simplicity and automation

Exploitability 3

Prevalence 3
Detectability 3

Tech Impact 2

OS

Web Server

App Framework

Application Code

Application Settings

#7 Cross Site Scripting

• Occurs when script is injected into a user’s web page
• Reflected XSS attack – crafted link in email …
• Stored XSS attack - database records, site postings, activity listings
• DOM XSS attack - data inserted into the browser dom

• Allows redirection, session data stealing, page corruption, …

•Mitigations include validation and escaping data on the server-side

Exploitability 3

Prevalence 3
Detectability 3

Tech Impact 2

#1 malicious comment
with javascript

#3 malicious code

#2 innocent request

#4 private information

#8 Insecure Deserialisation

• Subverting de-serialisation mechanism
• e.g. Java “gadgets” vulnerable to abuse

with tampered objects
• De-serialising hostile code
• e.g. serialised code that causes de-

serialisation method to loop
•Mitigations include
• only de-serialising from trusted sources
• avoiding binary serialisation formats
• signed serialisation data
• whitelists of classes
• platform security managers

Exploitability 1

Prevalence 2
Detectability 2

Tech Impact 3

#9 Known Vulnerable Components

Source: “The Unfortunate Reality of Insecure Libraries”, Aspect Security & Sonartype, 2012

Exploitability 2

Prevalence 3
Detectability 2

Tech Impact 2

#9 Known Vulnerable Components

•Many commonly used components have vulnerabilities
• See weekly US-CERT list for a frightening reality check!
• Much OSS doesn’t have well researched vulnerabilities

• Few teams consider security of their 3rd party components
• And keeping everything up to date is disruptive

•Mitigations include automated scanning of 3rd party components, actively review
vulnerability lists, keep components patched

Exploitability 2

Prevalence 3
Detectability 2

Tech Impact 2

#10 Insufficient Logging and Monitoring

• Poor logging and monitoring underpins many major exploits

• Common problems:
• Not logging key events (failed login, high value transaction, …)
• Poor messages, no actionable statements
• Lack of log analysis

• Centralise logging to provide better view and security of logs
• Identify expected and unexpected log patterns (e.g OWASP coreruleset.org)
• Know what to do when logs indicate unexpected situation

• Good test is to use OWASP ZAP, SQLMap and check for alerts

• Mitigations include standard log formats, key event logging, centralised logs, incident
response plans, intrusion detection and SIEM systems

Exploitability 2

Prevalence 3
Detectability 1

Tech Impact 2

http://logio.org

Summary of Main Vulnerability Types

• Interpreter and page injections
• Operating System, SQL, XML, deserialization, XSS, …

• Lack of validation
• trusting client side restrictions
• allowing session IDs and cookies to be reused
• not escaping and validating input data
• parameter values directly in pages and links

•Missing data protection
• Sensitive data exposure, deserialisation, configuration showing metadata, …

• Complexity
• Misconfiguration, deserialization, XXE, known vulnerabilities

Useful Tools

Deliberately Vulnerable Applications

•Deliberately insecure webapps
• So run in a VM!

•OWASP Top 10 in action
•Mutillidae & DVWA in PHP
•WebGoat in Java

http://sourceforge.net/projects/mutillidae/

https://github.com/WebGoat/WebGoat/wiki
http://www.dvwa.co.uk/

https://github.com/eystsen/pentestlab

BurpSuite

• Proxy, scanning, pentest tool
• Very capable free version
• Fuller commercial version available
• Inspect traffic, manipulate headers

and content, replay, spider, …
•Made in Knutsford!

http://portswigger.net/burp

Browser and Proxy Switcher

• Chrome and Switchy Omega or other
similar pairing
• Allows easy switching of proxy server

to BurpSuite

sqlmap

• Automated SQL injection and database
pentesting
• Open source Python command line

tool
• Frighteningly effective!

http://sqlmap.org

Metasploit

• The pentester’s ”standard” tool
• Very wide range of capabilities
• Commercial version available

https://www.metasploit.com

Open Source Scanning

• Example commercial tools for open
source security, audit & compliance:
• BlackDuck
• Whitesource
• Sonatype LCM

• Scan builds identifying open source
• Checks for known vulnerabilities
• Alerts and dashboards for monitoring

www.blackduck.com
www.whitesourcesoftware.com
www.sonatype.com/nexus-lifecycle

Demonstrations

Mutillidae

MutillidaeBurpSuite
(proxy)

Browser with
proxy plugin

An Example Multi-Step Attack - Impersonation
Attacks rarely use just one vulnerability

1. SQL Injection

User list
obtained

2. Plant XSS in blog

Persistent
XSS

achieved

3. Send link to Admin

XSS Script
executed

4. Steal browser state

Sessions
etc. saved

5. Impersonation

Goal
Achieved!

Defences

Key Web Vulnerability Defences

• Don’t trust clients (browsers)
• Validation, authorisation, …

• Identify “interpreters”, escape inputs, use bind variables, …
• Command lines, web pages, database queries, …

• Protect valuable information at rest and in transit
• Use encryption judiciously

• Simplicity
• Verify configuration and correctness

• Standardise and Automate
• Force consistency, avoid configuration errors

Don’t Trust Clients

• Be wary when trusting anything from a browser
• You don’t control it
• Sophisticated code execution (& injection) platform
• Output can be manipulated

• Assume or prevent tampering
• TLS connections to avoid 3rd party interception
• Short lived sessions
• Reauthenticate regularly & before sensitive operations
• Consider multi-factor authentication
• Use opaque tokens not real object references for params
• Validate everything

Watch out for injection

•Many pieces of software act as interpreters
• Browser for HTML and JavaScript
• Operating system shells – system(“mv $1 $2”)
• Databases – query languages
• Configuration files
• XML parsers

• Assume that someone will work it out!
• Avoid creating commands using string manipulation

• Use libraries and bind variables

• Escape all strings being passed to an “interpreter”
• Use a third party “escaping” library (e.g. OWASP)

• Reject excessively long strings (e.g. username > 30 char)

Protect Valuable Information

• Defence in depth – assume perimeter breach
• Encrypt messaging as standard
• Consider database encryption
• Consider file or filesystem encryption

• However encryption complicates using the data
• Slows everything down
• Can you query while encrypted? (Homomorphic encryption?)
• Message routing on sensitive fields (in headers)
• Managing and rotating the keys
• What about restore on disaster recovery?

http://getacoder.com

http://slate.com

Simplicity & Standardisation

• Complexity is the enemy of security
• “You can’t secure what you don’t understand” - Schneier
• Special cases will be forgotten

• Simplify, Standardise and Automate
• Simpler things are easier to check and secure
• Standardising an approach means there are no

special cases to forget to handle
• Automation eliminates human inconsistencies

from the process so avoiding a type of risk

http://innovationmanagement.se/

https://www.aliexpress.com

Summary

Summary

•Much of the technology we use is inherently insecure
• Mitigation needs to be part of application development

• Attacking systems is becoming industrialised
• Digital transformation is providing more valuable, insecure targets

• Fundamental attack vectors appear again and again
• Injection, interception, page manipulation, validation, configuration, …

•Most real attacks exploit a series of vulnerabilities
• Each vulnerability may not look serious, the combination is

•Most mitigations not difficult but need to be applied consistently
• … and may conflict with other desirable qualities

Books

Eoin Woods
Endava
@eoinwoodz
eoin.woods@endava.com

Thank You

47

