
Dom Davis
@idomdavis

If You're Happy and You Know It
Inside the mind of a developer

THE WHEELS ON THE
BUS

–Johnny Appleseed

As I was going to St. Ives,

–Johnny Appleseed

As I was going to St. Ives,
I met a man with seven wives,

–Johnny Appleseed

As I was going to St. Ives,
I met a man with seven wives,

Each wife had seven sacks,

–Johnny Appleseed

As I was going to St. Ives,
I met a man with seven wives,

Each wife had seven sacks,
Each sack had seven cats,

–Johnny Appleseed

As I was going to St. Ives,
I met a man with seven wives,

Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits:

–Johnny Appleseed

As I was going to St. Ives,
I met a man with seven wives,

Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits:

Kits, cats, sacks, and wives,

–Johnny Appleseed

As I was going to St. Ives,
I met a man with seven wives,

Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits:

Kits, cats, sacks, and wives,
How many were there going to St. Ives?

–Johnny Appleseed

1
I met a man with seven wives,

Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits:

Kits, cats, sacks, and wives,
How many were there going to St. Ives?

–Johnny Appleseed

1
8

Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits:

Kits, cats, sacks, and wives,
How many were there going to St. Ives?

–Johnny Appleseed

1
1 + 7 = 8
7 x 7 = 49

Each sack had seven cats,
Each cat had seven kits:

Kits, cats, sacks, and wives,
How many were there going to St. Ives?

–Johnny Appleseed

1
1 + 7 = 8
7 x 7 = 49

49 x 7 = 343
Each cat had seven kits:

Kits, cats, sacks, and wives,
How many were there going to St. Ives?

–Johnny Appleseed

1
1 + 7 = 8
7 x 7 = 49

49 x 7 = 343
343 x 7 = 2,401

Kits, cats, sacks, and wives,
How many were there going to St. Ives?

–Johnny Appleseed

1
7

7 x 7 = 49
49 x 7 = 343

343 x 7 = 2,401
Kits, cats, sacks, and wives,

How many were there going to St. Ives?

–Johnny Appleseed

7o = 1
71 = 7

72 = 49
73 = 343

74 = 2,401
Kits, cats, sacks, and wives,

How many were there going to St. Ives?

–Johnny Appleseed

1
7

7 x 7 = 49
49 x 7 = 343

343 x 7 = 2,401
7 + 49 + 353 + 2,401 = 2,800

How many were there going to St. Ives?

[davisd@hyperion ~]$ node
> var howMany
undefined
>

–Johnny Appleseed

As I was going to St. Ives,
I met a man with seven wives,

Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven kits:

Kits, cats, sacks, and wives,
How many were there going to St. Ives?

70 + 71 + 72 + 73 + 74 = 2,801

Heads

Heads
Shoulders

Heads
Shoulders
Neezantos

Define: Web Services

Define: Neezanto

Oh, the cow in the meadow goes
"moo!"

3/14 = π day

3/14 = 3rd of when??

23:59:59

23:59:60

TGIF

TGIW

–Johnny Appleseed

Mary had a liele lamb,
its fleece was white as snow.

package main 
 
type size string 
 
type colour struct { 
 r int 
 g int 
 b int 
} 
 
type lamb struct { 
 size 
 colour 
}

var snow = colour{255, 255, 255} 
const little = size("little")

func New(s size, c colour) lamb { 
 return return lamb{size: s, colour: c}
}

func main() { 
 marysLamb := New(little, snow) 
}

–Johnny Appleseed

Mary had a liele lamb,
its fleece was white as snow.

And everywhere that Mary went,
The lamb was sure to go.

package main 

type size string
 
type colour struct { 
 r int 
 g int 
 b int 
} 
 
type location struct { 
 x int 
 y int 
} 
 
type lamb struct { 
 size 
 colour 
 location 
 mary location 
}

var snow = colour{255, 255, 255} 
const little = size("little")

func New(s size, c colour) lamb { 
 return return lamb{size: s, colour: c}
} 
 
func (l lamb) path() { 
 // route from l.location to l.mary  
}

func main() { 
 marysLamb := New(little, snow) 
}

package main 
 
type size string
type bags int
 
type colour struct { 
 r int 
 g int 
 b int 
} 
 
type location struct { 
 x int 
 y int 
} 
 
type lamb struct { 
 size 
 colour 
 location 
 mary location
 wool bool 
 yield bags 
}

var snow = colour{255, 255, 255} 
const little = size("little")

func New(s size, c colour) lamb { 
 return return lamb{size: s, colour: c}
} 
 
func (l lamb) path() { 
 // route from l.location to l.mary  
}

func main() { 
 marysLamb := New(little, snow) 
}

package main
 
type size string 
type bags int
 
type colour struct { 
 r int 
 g int 
 b int 
} 
 
type location struct { 
 x int 
 y int 
} 
 
type lamb struct { 
 size 
 colour 
 location 
 mary location 
 wool bool 
 yield bags 
 sound string 
} 

var snow = colour{255, 255, 255} 
const little = size("little")

func New(s size, c colour) lamb { 
 return lamb{size: s, colour: c, sound: "Baa, baa!"} 
} 
 
func (l lamb) path() { 
 // route from l.location to l.mary  
} 
 
func main() { 
 marysLamb := New(little, snow) 
}

package main

import ( 
 "fmt" 
 "net/http" 
 
 "github.com/gorilla/mux" 
) 
 
type size string 
type bags int
 
type colour struct { 
 r int 
 g int 
 b int 
} 
 
type location struct { 
 x int 
 y int 
} 
 
type lamb struct { 
 size 
 colour 
 location 
 mary location 
 wool bool 
 yield bags 
 sound string 
} 

var snow = colour{255, 255, 255} 
const little = size("little")

func New(s size, c colour) lamb { 
 return lamb{size: s, colour: c, sound: "Baa, baa!"} 
} 
 
func (l lamb) path() { 
 // route from l.location to l.mary  
} 
 
func main() { 
 marysLamb := New(little, snow) 
 router := mux.NewRouter() 
 
 router.Handle("/size", http.HandlerFunc( 
 func(w http.ResponseWriter, r *http.Request) { 
 fmt.Fprintf(w, "%s", marysLamb.size) 
 })).Methods("GET") 
 router.Handle("/colour", http.HandlerFunc( 
 func(w http.ResponseWriter, r *http.Request) { 
 fmt.Fprintf(w, "{r: %d, g: %d, b: %d}",
marysLamb.colour.r, 
 marysLamb.colour.g, marysLamb.colour.b) 
 })).Methods("GET") 
 
 http.Handle("/", router) 
 fmt.Println("Listening on port 8001...") 
 if err := http.ListenAndServe(":8001", nil); err != nil { 
 panic(err) 
 } 
}

package main

import ( 
 "fmt" 
 "net/http" 
 
 "github.com/gorilla/mux" 
) 
 
type size string 
type bags int
 
type colour struct { 
 r int 
 g int 
 b int 
} 
 
type location struct { 
 x int 
 y int 
} 
 
type lamb struct { 
 size 
 colour 
 location 
 mary location 
 wool bool 
 yield bags 
 sound string 
} 

var snow = colour{255, 255, 255} 
const little = size("little")

func New(s size, c colour) lamb { 
 return lamb{size: s, colour: c, sound: "Baa, baa!"} 
} 
 
func (l lamb) path() { 
 // route from l.location to l.mary  
} 
 
func main() { 
 marysLamb := New(little, snow) 
 router := mux.NewRouter() 
 
 router.Handle("/size", http.HandlerFunc( 
 func(w http.ResponseWriter, r *http.Request) { 
 fmt.Fprintf(w, "%s", marysLamb.size) 
 })).Methods("GET") 
 router.Handle("/colour", http.HandlerFunc( 
 func(w http.ResponseWriter, r *http.Request) { 
 fmt.Fprintf(w, "{r: %d, g: %d, b: %d}",
marysLamb.colour.r, 
 marysLamb.colour.g, marysLamb.colour.b) 
 })).Methods("GET") 
 
 http.Handle("/", router) 
 fmt.Println("Listening on port 8001...") 
 if err := http.ListenAndServe(":8001", nil); err != nil { 
 panic(err) 
 } 
}

package main 

type size string
 
type colour struct { 
 r int 
 g int 
 b int 
} 
 
type location struct { 
 x int 
 y int 
} 
 
type lamb struct { 
 size 
 colour 
 location 
 mary location 
}

var snow = colour{255, 255, 255} 
const little = size("little")

func New(s size, c colour) lamb { 
 return return lamb{size: s, colour: c} 
} 
 
func (l lamb) path() { 
 // route from l.location to l.mary  
}

func main() { 
 marysLamb := New(little, snow) 
}

package main 

type location struct { 
 x int 
 y int 
} 
 
type lamb struct { 
 location 
 mary location 
}

func New() lamb { 
 return return lamb{}
} 
 
func (l lamb) path() { 
 // route from l.location to l.mary  
}

func main() { 
 marysLamb := New() 
}

package main 
 
type location struct { 
 x int 
 y int 
} 
 
type lamb struct { 
 location  
 mary location  
} 
 
func New() lamb { 
 return lamb{} 
} 
 
func (l lamb) path() { 
 // route from l.location to l.mary  
} 
 
func main() { 
 marysLamb := New() 
}

package main 
 
type location struct { 
 x int 
 y int 
} 
 
func (l location) path(to location) { 
 // route from current location to new location  
} 
 
func main() { 
 lamb := location{0, 0} 
 mary := location{1, 0} 
 lamb.path(mary) 
}

package main 
 
type location struct { 
 x int 
 y int 
} 
 
type area struct { 
 tl location  
 tr location  
 bl location  
 br location  
} 
 
func (l location) path(to location, avoid []area) { 
 // route from current location to new location  
 // avoiding the given areas  
} 
 
func main() { 
 lamb := location{0, 0} 
 mary := location{1, 0} 
 lamb.path(mary, []area{}) 
}

type name struct { 
 title string 
 givenName string 
 middleNames []string 
 surname string 
 suffixes []string 
}

type name struct { 
 title string 
 givenName string 
 middleNames []string 
 surname string 
 suffixes []string 
} 
 
var re = regexp.MustCompile(`\s+`) 
 
func (n name) String() string { 
 parts := []string{n.title, n.givenName} 
 parts = append(parts, n.middleNames...) 
 parts = append(parts, n.surname) 
 parts = append(parts, n.suffixes...) 
 
 fullName := strings.Join(parts, " ") 
 fullName = strings.TrimSpace(fullName) 
 fullName = re.ReplaceAllString(fullName, " ") 
 
 return fullName 
}

func (n name) String() string { 
 parts := []string{n.title} 
 
 if n.eastern { 
 parts = append(parts, n.surname) 
 } else { 
 parts = append(parts, n.givenName) 
 } 
 
 parts = append(parts, n.middleNames...) 
 
 if n.eastern { 
 parts = append(parts, n.givenName) 
 } else { 
 parts = append(parts, n.surname) 
 } 
 
 parts = append(parts, n.suffixes...) 
 
 fullName := strings.Join(parts, " ") 
 fullName = strings.TrimSpace(fullName) 
 fullName = re.ReplaceAllString(fullName, " ") 
 
 return fullName 
}

(c)1992 Prince

var name string

If you're happy and you know it
Clap your hands

package main 
 
import "fmt" 
 
type person struct { 
 areHappy bool 
 knowIt bool 
 reallyWantToShowIt bool 
} 
 
func (p person) clapHands() { 
 fmt.Println("Clap! Clap!") 
} 
 
func main() { 
 you := person{true, true, true} 
 
 if you.areHappy && you.knowIt {  
 you.clapHands() 
 } 
 
 if you.areHappy && you.knowIt {  
 you.clapHands() 
 } 
 
 if you.areHappy && you.knowIt && you.reallyWantToShowIt {  
 if you.areHappy && you.knowIt {  
 you.clapHands() 
 } 
 } 
}

package main 
 
import "fmt" 
 
type person struct { 
 areHappy bool 
 knowIt bool 
 reallyWantToShowIt bool 
} 
 
func (p person) clapHands() { 
 fmt.Println("Clap! Clap!") 
} 
 
func main() { 
 you := person{true, true, true} 
 
 if you.areHappy && you.knowIt {  
 you.clapHands() 
 } 
 
 if you.areHappy && you.knowIt {  
 you.clapHands() 
 } 
 
 if you.areHappy && you.knowIt && you.reallyWantToShowIt {  
 if you.areHappy && you.knowIt {  
 you.clapHands() 
 } 
 } 
}

package main 
 
import "fmt" 
 
type person struct { 
 areHappy bool 
 knowIt bool 
 reallyWantToShowIt bool 
} 
 
func (p person) clapHands() { 
 fmt.Println("Clap! Clap!") 
} 
 
func main() { 
 you := person{true, true, true} 
 
 if you.areHappy && you.knowIt {  
 you.clapHands() 
 you.clapHands() 
 if you.reallyWantToShowIt {  
 you.clapHands() 
 } 
 } 
}

package main 
 
import "fmt" 
 
type Person struct { 
 AreHappy bool 
 KnowIt bool 
 ReallyWantToShowIt bool 
} 
 
func (p Person) clapHands() { 
 fmt.Println("Clap! Clap!") 
} 
 
func Clapper(you Person) { 
 if you.AreHappy && you.KnowIt {  
 you.clapHands() 
 } 
 
 if you.AreHappy && you.KnowIt {  
 you.clapHands() 
 } 
 
 if you.AreHappy && you.KnowIt && you.ReallyWantToShowIt {  
 if you.AreHappy && you.KnowIt {  
 you.clapHands() 
 } 
 } 
}

Dom Davis
@idomdavis

about.me/idomdavis

