If You're Happy and You Know It

Inside the mind of a developer

Dom Davis
@idomdavis

UNUNHTION

SIDE ONE

Cot No. ANA-CD-4
All rights reserved
Made in Evrope

L utomatic

I. ON-AIR 2. SPACE € TIME 3_ RESOLUTION 4 CONTROL 5. GRODBYE 20TH CENTURY
B. STREAMLINE 7. GRATITUDE B. NOVA (SHINE A LIGHT ON ME) 9. PHOTDN 10. RADID

WWW. VNYNATION.COM » WWW.FACEBOOK.COM/VYNYNATION

BUS STAND
i

=

o

©

THE WHEELS ON THE
BUS

As | was going to St. Ives,

As | was going to St. Ives,
| met a man with seven wives,

As | was going to St. Ives,
| met a man with seven wives,
Each wife had seven sacks,

As | was going to St. Ives,

| met a man with seven wives,
Each wife had seven sacks,
Each sack had seven cats,

As | was going to St. Ives,
| met a man with seven wives,
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven Kkits:

As | was going to St. Ives,
| met a man with seven wives,
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven Kkits:
Kits, cats, sacks, and wives,

As | was going to St. Ives,
| met a man with seven wives,
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven Kkits:
Kits, cats, sacks, and wives,
How many were there going to St. lves?

1
| met a man with seven wives,
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven Kkits:
Kits, cats, sacks, and wives,
How many were there going to St. lves?

1
38
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven Kkits:
Kits, cats, sacks, and wives,
How many were there going to St. lves?

1
1+/7=8
/X7 =49
Each sack had seven cats,
Each cat had seven Kkits:
Kits, cats, sacks, and wives,
How many were there going to St. lves?

1

1+/=8
/x/ =49
49 x 7/ = 343

Each cat had seven kits:
Kits, cats, sacks, and wives,
How many were there going to St. lves?

1

1+/7=8
/x7 =49
49 x 7/ = 343
343 x /7 =2,401

Kits, cats, sacks, and wives,
How many were there going to St. lves?

1

/
/ x 7 =49
49 x 7 = 343
343 x 7/ = 2,401

Kits, cats, sacks, and wives,
How many were there going to St. lves?

/o=1
/1=7
/2 =49
/3 =343
/4 =2,401
Kits, cats, sacks, and wives,
How many were there going to St. lves?

1
/
/X7 =49
49 x 7 = 343
343 x 7/ = 2,401
7 +49 + 353 + 2,401 = 2,800
How many were there going to St. lves?

[davisd@hyperion ~]$ node
> var howMany

undefined
>

As | was going to St. Ives,
| met a man with seven wives,
Each wife had seven sacks,
Each sack had seven cats,
Each cat had seven Kkits:
Kits, cats, sacks, and wives,
How many were there going to St. lves?

/0+ /1 + 72+ 73+ 74 =23801

it &
- L 4
W e o ol
e -

T il
sSSPV IS
—T ‘- -l? i ?

7 (/((«
= 13 R . \ y A . / <<<(M e~
== _ Y @ 3 ~—- 7).‘. S a0

~

AR d

e 0 YIS~ L~k

_—

A %
.: l - m. wo.
'* '}f‘,f v &

Heads

Heads
Shoulders

Heads

Shoulders
Neezantos

Define: Web Services

Define: Neezanto

Oh, the cow In the meadow goes
"mOO!"

——

: ”..-oooou - -y
faf1 3

- -

'_l!-"f." i |

il

3/14 = it day

3/14 = 3rd of when??

Mary had a little lamb,
Its fleece was white as snow.

package main var snow = colour{255, 255, 255}
const little = size("little")
type size string
func New(s size, c colour) lamb {
type colour struct { return return lamb{size: s, colour: c}
r int }
g 1int
b int func main() {
} marysLamb := New(little, snow)
¥
type lamb struct {
size
colour

}

Mary had a little lamb,
Its fleece was white as snow.
And everywhere that Mary went,
The lamb was sure to go.

package main var snow = colour{255, 255, 255}
const little = size("little")
type size string
func New(s size, c colour) lamb {

type colour struct { return return lamb{size: s, colour: c}
r int }
g 1int
b int func (1 lamb) path() {
} // route from Ll.location to l.mary
¥
type location struct {
X 1nt func main() {
y 1nt marysLamb := New(little, snow)
Iy I
type lamb struct {
size
colour
location

mary location

package main var snow = colour{255, 255, 255}
const little = size("little")
type size string
type bags int func New(s size, c colour) lamb {
return return lamb{size: s, colour: c}

type colour struct { }

r int

g int func (1 lamb) path() {

b 1nt // route from Ll.location to l.mary

} }

type location struct { func main() {
X 1nt marysLamb := New(little, snow)

y 1nt ¥
}

type lamb struct {
size
colour
location
mary location
wool bool
yield bags

package main var snow = colour{255, 255, 255}
const little = size("little")
type size string
type bags int func New(s size, c colour) lamb {
return lamb{size: s, colour: c, sound: "Baa, baa!"}

type colour struct { }
r int
g int func (1 lamb) path() {
b 1nt // route from Ll.location to l.mary

} }

type location struct { func main() {
X 1nt marysLamb := New(little, snow)
y 1nt ¥

}

type lamb struct {
size
colour
location
mary location
wool bool
yield bags
sound string

package main var snow = colour{255, 255, 255}
const little = size("little")

import (

"fmt" func New(s size, c colour) lamb {

"net/http" return lamb{size: s, colour: c, sound: "Baa, baa!"}

Iy

"gi1thub.com/gorilla/mux"

) func (1 lamb) path() {
// route from Ll.location to l.mary

type size string }

type bags int
func main() {

type colour struct { marysLamb := New(little, snow)
r int router := mux.NewRouter()
g 1nt
b int router.Handle('"/s1ze", http.HandlerFunc(
} func(w http.Responselriter, r xhttp.Request) {
fmt.Fprintf(w, "#s", marysLamb.size)
type location struct { })).Methods("GET")
X 1nt router.Handle("/colour", http.HandlerFunc(
y 1nt func(w http.Responselriter, r xhttp.Request) {
} fmt.Fprintf(w, "{r: «d, g: #«d, b: %d}",
marysLamb.colour.r,
type lamb struct { marysLamb.colour.g, marysLamb.colour.b)
size })).Methods("GET")
colour
location http.Handle("/", router)
mary location fmt.Println("Listening on port 8001...")
wool bool if err := http.ListenAndServe(":8001", nil); err != nil {
yield bags panic(err)
sound string }

} }

package main var snow = colour{255, 255, 255}
const little = size("little")

import (
"fmt" func New(s size, c colour) lamb {
"net/http" return lamb{size: s, colour: c, sound: "Baa, baa!"}
Iy
"github.com/gorilla/mux" [
) ol) path() {
P e —— . 1.location to l.mary
type size string Y 1 W
type bags int y e \ .
y // func main() . \
type colour struct { Y 4 maryslLz New :tle, snow)
r int i route ux.New ter()
g int]]
b int] r ‘Handle("/s1 |, http.HandlerFunc(
} | nc(w http.Resf eWriter, r xhttp.Request) {
1 fmt.Fprintf(w s", marysLamb.size)
type location struct { })).Methods("GE
x int router.Handle("/¢ ir'", http.HandlerFunc(
y int func(w http.RY aseWriter, r xhttp.Request) {
} fmt.Fprind® 7 "{r: xd, g: «d, b: xd}",
\ 4 marysLamb.colo A
type lamb struct { < “m>" s.colour.g, marysLamb.colour.b)
size e B s("GET™)
location ~ http.Handle("/", router)
mary location fmt.Println("Listening on port 8001...")
wool bool if err := http.ListenAndServe(":8001", nil); err != nil {
yield bags panic(err)
sound string }

} }

package main var snow = colour{255, 255, 255}
const little = size("little")
type size string
func New(s size, c colour) lamb {

type colour struct { return return lamb{size: s, colour: c}
r int }
g 1int
b int func (1 lamb) path() {
} // route from Ll.location to l.mary
¥
type location struct {
X 1nt func main() {
y 1nt marysLamb := New(little, snow)
Iy I
type lamb struct {
size
colour
location

mary location

package main func New() lamb {
return return lamb{}

type location struct { }
X 1nt
y 1nt func (1 lamb) path() {
} // route from Ll.location to l.mary
¥
type lamb struct {
location func main() {
mary location marysLamb := New()

} }

package main

type location struct {
X 1nt
y 1nt

}

type lamb struct {
location
mary location

}

func New() lamb {
return lamb{}

}

func (1 lamb) path() {
// route from Ll.location to l.mary

}

func main() {
marysLamb := New()

}

package main

type location struct {
X 1nt
y 1nt

}

func (1 location) path(to location) {
// route from current location to new location

}

func main() {
lamb := location{@, 0}
mary := location{l, 0}
Llamb.path(mary)

s

package main

type location struct {
X 1nt
y 1nt

}

type area struct {
tl location
tr location
bl location
br location

}

func (1 location) path(to location, avoid [Jarea) {
// route from current location to new location
// avoiding the given areas

}

func main() {
lamb := location{@, 0}
mary := location{l, 0}
Llamb.path(mary, [Jarea{})
s

type name struct {
title string
givenName string
middleNames []string
surname string
suffixes []string

type name struct {
title string
givenName string
middleNames []string
surname string
suffixes []string

}
var re = regexp.MustCompile(\s+)

func (n name) String() string {

parts := []string{n.title, n.givenName}
parts = append(parts, n. mlddleNames o)
parts = append(parts, n.surname)

parts = append(parts, n.suffixes...)
fullName := strings.Join(parts, " ')
fullName = strings.TrimSpace(fullName)
fullName = re.ReplaceAllString(fullName,

return fullName

" II)

func (n name) String() string {
parts := []string{n.title}

1f n.eastern {
parts = append(parts, n.surname)

} else {
parts = append(parts, n.givenName)
}

parts = append(parts, n.middleNames...)

1f n.eastern {
parts = append(parts, n.givenName)

} else {
parts = append(parts, n.surname)

}

parts = append(parts, n.suffixes...)

fullName := strings.Join(parts, " ')

fullName = strings.TrimSpace(fullName)
fullName = re.ReplaceAllString(fullName, " ")

return fullName

(c)1992 Prince

var name string

If you're happy and you know It
Clap your hands

package main
import "fmt"

type person struct {
areHappy bool
knowIt boo L
reallyWantToShowIt bool

}

func (p person) clapHands() {
fmt.Println("Clap! Clap!")

}

func main() {
you := person{true, true, true}

1f you.areHappy && you.knowIt {
you.clapHands()

}

1f you.areHappy &8& you.knowIt {
you.clapHands()

}

1f you.areHappy &8& you.knowIt && you.reallyWantToShowIt {
1f you.areHappy && you.knowIt {
you.clapHands()
}

}
}

Opa-0pa @Opaopal3 9171 @ (O
Exploit found: "If you're happy and you know it"
allows for execution of unsigned, arbitrary
Instructions on toddler.

— . ‘

package main
import "fmt"

type person struct {
areHappy bool
knowIt boo L
reallyWantToShowIt bool

}

func (p person) clapHands() {
fmt.Println("Clap! Clap!")

}

func main() {
you := person{true, true, true}

1f you.areHappy && you.knowIt {
you.clapHands()

}

1f you.areHappy &8& you.knowIt {
you.clapHands()

}

1f you.areHappy &8& you.knowIt && you.reallyWantToShowIt {
1f you.areHappy && you.knowIt {
you.clapHands()
}

}
}

package main
import "fmt"

type person struct {
areHappy
knowIt
reallyWantToShowIt

}

boo L
boo L

boo L

func (p person) clapHands() {
fmt.Println("Clap! Clap!")

}

func main() {

you := personq{true,

true, true}

1f you.areHappy && you.knowIt {

you.clapHands()
you.clapHands()

1f you.reallyWantToShowIt {
you.clapHands()

}
}
}

package main
import "fmt"

type Person struct {
AreHappy boo L
KnowIt boo L
ReallyWantToShowIt bool

}

func (p Person) clapHands() {
fmt.Println("Clap! Clap!™)

}

func Clapper(you Person) {
1f you.AreHappy &8& you.KnowIt {
you.clapHands()

}

1f you.AreHappy &8& you.KnowIt {
you.clapHands()

}

1f you.AreHappy &8& you.KnowIt && you.ReallyWantToShowIt {
1f you.AreHappy &8& you.KnowIt {
you.clapHands()
Iy

}
}

BUS STAND
i

=

o

©

Dom Davis
@idomdavis
about.me/idomdavis

