Graphs

From Novice to Graphanista

Dom Davis @idomdavis

"Visualise and control your IT"

"Doing bad things to innocent graphs"

Chart Appearances by Type

\square \square \square \square
 Table
 -

 Chart
 Text

 Shape
 Media
 Comment

Chart Appearances by Type

Chart Appearances by Type

Cumulative Chart Count per Slide

10

Chart Appearances by Type

A directed graph or digraph is a graph in which edges have orientations. It is written as an ordered pair $G=(V, A)$ (sometimes $G=(V, E)$) with

- Va set whose elements are called vertices, nodes, or points;
- A a set of ordered pairs of vertices, called arrows, directed edges (sometimes simply edges with the corresponding set named E instead of A), directed arcs, or directed lines.

An arrow (x, y) is considered to be directed from x to $y ; y$ is called the head and x is called the tail of the arrow; y is said to be a direct successor of x and x is said to be a direct predecessor of y. If a path leads from x to y, then y is said to be a successor of x and reachable from x, and x is said to be a predecessor of y. The arrow (y, x) is called the inverted arrow of (x, y).

A directed graph G is called symmetric if, for every arrow in G, the corresponding inverted arrow also belongs to G. A symmetric loopless directed graph $G=(V, A)$ is equivalent to a simple undirected graph $G^{\prime}=(V, E)$, where the pairs of inverse arrows in A correspond one-to-one with the edges in E; thus the number of edges in G^{\prime} is $|E|=|A| / 2$, that is half the number of arrows in G.
"A graph comprises of vertices and edges, where the edges may be directed or undirected."

Dom Davis, ACCU Conference 2018

1. Draw two circles

2. Draw the rest of the owl

$$
0.0
$$

Follows

subject - verb - object

subject - object - verb

verb - subject - object

verb - object - subject

object - verb - subject

object - subject - verb

subject - verb - object

verb(subject, object)

subject.getObject()

CYPHER

MATCH (s)-->(o) RETURN s, o

MATCH (s)<--(o) RETURN s, o

MATCH (s)--(o) RETURN s, o

MATCH (s)-->(o) RETURN s, o

MATCH (s)-[r]->(o) RETURN s, r, o

We make ritual noise
We weave the fabric of dreams
We make cities of sound
We feel the rhythm of time

Covenant - Ritual Noise

CREATE

```
(:We)-[:MAKE]->(:`Ritual noise`),
(:We)-[:WEAVE]->(:`The fabric of dreams`),
(:We)-[:BUILD]->(:`Cities of sound`),
(:We)-[:FEEL]->(:`The rhythm of time`),
```


Displaying 8 nodes, 4 relationships.

CREATE

(we:We)-[:MAKE]->(:-Ritual noise`), (we)-[:WEAVE]->(:-The fabric of dreams`), (we)-[:BUILD]->(:`Cities of sound`), (we)-[:FEEL]->(:- The rhythm of time`)
$\$$ match (n) return n

Displaying 5 nodes, 4 relationships.

CREATE (we:Lyric \{words: 'We'\})

CREATE (we:Lyric \{words: 'We'\}),
(we)-[:MAKE]->(:Lyric \{words: 'ritual noise'\}), (we)-[:WEAVE]->(:Lyric \{words: 'the fabric of dreams'\}), (we)-[:BUILD]->(:Lyric \{words: 'cities of sound'\}), (we)-[:FEEL]->(:Lyric \{words: 'the rhythm of time'\})

We make ritual noise
We weave the fabric of dreams
We make cities of sound
We feel the rhythm of time

Covenant - Ritual Noise


```
MATCH (l1:Lyric), (l2:Lyгic), (l3:Lyгic), (l4:Lyгic)
    WHERE
    l1.words = 'ritual noise' AND
    l2.words = 'the fabric of dreams' AND
    l3.words = 'cities of sound' AND
    l4.words = 'the rhythm of time'
CREATE
    (:Start)-[:NEXT]->(l1)-[:NEXT]->
    (l2)-[:NEXT]->(l3)-[:NEXT]->(l4)
```


Displaying 6 nodes, 8 relationships.

CREATE (we:Lyric \{words: 'We'\}),
(we)-[:MAKE \{line: 1\}]->(:Lyric \{words: 'ritual noise'\}), (we)-[:WEAVE \{line: 2\}]->(:Lyric \{words: 'the fabric of dreams'\}), (we)-[:BUILD \{line: 3\}]->(:Lyric \{words: 'cities of sound'\}), (we)-[:FEEL \{line: 4\}]->(:Lyric \{words: 'the rhythm of time'\})

\$ MATCH (s)-[r]->(o) RETURN s.words, toLower(type(r)), o.words ORDER BY r.line

囲
Tabla

s.words toLower(type(r))
"We" "make
"make"
"weave
"build"
"feel"
o.words

A
"We"
"We"
"We"
"ritual noise"
"the fabric of dreams"
"cities of sound"
"the rhythm of time"

Started streaming 4 records after 2 ms and completed after 2 ms .
\$ MATCH (s)-[r]->(o) RETURN s.words, toLower(type(r)), o.words ORDER BY r.line

罒	s.words	toLower(type(r))	o.words
Table	"We"	"make"	"ritual noise"
A	"We"	"weave"	"the fabric of dreams"
Text	"We"	"build"	"cities of sound"
</>	"We"	"feel"	"the rhythm of time"

$$
\begin{aligned}
& \text { MATCH (s)-[r]->(0) } \\
& \text { RETURN s.words, toLower(type(r)), o.words } \\
& \text { ORDER BY r.line }
\end{aligned}
$$

\$ MATCH (s)-[r]->(o) RETURN s.words, toLower(type(r)), o.words ORDER BY r.line

罒	s.words	toLower(type(r))	o.words
Table	"We"	"make"	"ritual noise"
A	"We"	"weave"	"the fabric of dreams"
Text	"We"	"build"	"cities of sound"
</>	"We"	"feel"	"the rhythm of time"

1 MATCH (s \{words: "We"\})-[r1]->(o)
OPTIONAL MATCH (o)-[r2 \{line: r1.line\}]->(n1)
OPTIONAL MATCH (n1)-[r3 \{line: r1.line\}]->(n2)
RETURN r1.line, s.words, toLower(type(r1)), o.words, toLower(type(r2)), n1.words,
toLower(type(r3)), n2.words
ORDER BY r1.line

䍜	r1.line	s.words	toLower(type(r1))	o.words	toLower(type(r2))	n1.words	toLower(type(r3))	n2.words
Table	1	"We"	"make"	"ritual noise"	(empty)	(empty)	(empty)	(empty)
$\underset{\text { Text }}{\mathbf{A}}$	2	"We"	"weave"	"the fabric of dreams"	(empty)	(empty)	(empty)	(empty)
	3	"We"	"build"	"cities of sound"	(empty)	(empty)	(empty)	(empty)
$\begin{aligned} & \langle/\rangle \\ & \text { code } \end{aligned}$	4	"We"	"feel"	"the rhythm of time"	(empty)	(empty)	(empty)	(empty)
	5	"We"	"make"	"ritual noise"	(empty)	(empty)	(empty)	(empty)
	6	"We"	"weave"	"the fabric of dreams"	(empty)	(empty)	(empty)	(empty)
	7	"We"	"build"	"cities of sound"	(empty)	(empty)	(empty)	(empty)
	8	"We"	"feel"	"the rhythm of time"	(empty)	(empty)	(empty)	(empty)
	9	"We"	"make"	"ritual noise"	"wired"	"to the world"	"under"	"our fingertips"
	10	"We"	"take"	"special care"	"listen"	"to the words"	"spoken"	"in confidence"
	11	"We"	"make"	"ritual noise"	"shouting"	"to be heard"	"cooling"	"our burning lips"
	12	"We"	"break"	"down the gates"	"open"	"up our wounds"	"bleeding"	"for innocence"
	13	"We"	"make"	"ritual noise"	(empty)	(empty)	(empty)	(empty)
	14	"We"	"weave"	"the fabric of dreams"	(empty)	(empty)	(empty)	(empty)
	15	"We"	"build"	"cities of sound"	(empty)	(empty)	(empty)	(empty)
	16	"We"	"feel"	"the rhythm of time"	(empty)	(empty)	(empty)	(empty)

Started streaming 28 records after 5 ms and completed after 5 ms .
https://github.com/domdavis/ritualnoise/

(graphs)-[:ARE]->(everywhere)

\$ MATCH (s)-[r]->(o) RETURN s.words, toLower(type(r)), o.words ORDER BY r.line

罒	s.words	toLower(type(r))	o.words
Table	"We"	"make"	"ritual noise"
A	"We"	"weave"	"the fabric of dreams"
Text	"We"	"build"	"cities of sound"
</>	"We"	"feel"	"the rhythm of time"

```
\{
    "name": "react-app",
    "version": "0.1.0",
    "ргivate": true,
    "dependencies": \{
        "react": "^16.3.0",
        "react-dom": "^16.3.0"
        "react-scripts": "1.1.2"
    \},
    "scripts": \{
        "start": "react-scripts start",
        "build": "react-scripts build",
        "test": "react-scripts test --env=jsdom",
        "eject": "react-scripts eject"
    \}
\}
```

"Typing ability is inversely proportional to the number of people watching."

Dom's first Law

https://github.com/domdavis/accu

MODELLING
"A person has a position at a company."

(:Person \{name: "Dom Davis"\})
(:Person)-[:HAS_NAME]->(:`Dom Davis`)
(:Person \{name: "Dom Davis"\})
-[:HAS_ROLE \{type: "Primary"\}]->(:Role \{title: "CTO"\}) -[:IN_COMPANY]->(:Company \{name: "Tech Marionette"\})
-[:HAS_ROLE \{type: "Primary"\}]->
(:Person \{name: "Dom Davis"\})
-[:HAS_PRIMARY_ROLE]->(:Role \{title: "CTO"\})
-[:IN_COMPANY]->(:Company \{name: "Tech Marionette"\})

```
(r:Role {title: "CTO"}),
(:Person {name: "Dom Davis"})-[:HAS_ROLE]->(r)
    -[:IN_COMPANY]->(:Company {name: "Tech Marionette"}),
(r)-[:TYPE]->(:Ргimary)
```


Drive the model from the language of the domain


```
(:Stuff \{
    property1: "some value",
    // : : :
    propertyN: "some other value"
\})
```


(: Concept \{ properties: ["A", "B", "C"] \})

Stuff has properties

$$
\begin{aligned}
& \text { (:Stuff)-[:HAS]->(p:Рroperty) } \\
& \text { SET p.Name }=\text { "A", P.Value }=\text { "foo" }
\end{aligned}
$$

(:Stuff)-[:ALIAS]->(:Ргорегty)

(:Thing)-[:ALIAS]->(:Thing)

(s)-[:ALIAS \{name: "Dom"\}]->(o),
(s)-[:ALIAS \{name: "Dominic"\}]->(o),
(s)-[:ALIAS \{name: "Cidomdavis"\}]->(o)

(g:Graph)-[:DESCRIBED_BY]->(g)

NO SQL

Dom Davis
@idomdavis
about.me/idomdavis

