
Designing multithreaded code for scalability

Anthony Williams

Just Software Solutions Ltd
https://www.justsoftwaresolutions.co.uk

11th April 2018

https://www.justsoftwaresolutions.co.uk


Designing multithreaded code for scalability

Scalability
Limitations
Designing for Scalability

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Scalability



Scalability

Modern C++ code runs across a wide variety of platforms:

Embedded single-core microcontrollers
Embedded multi-core systems
Multi-core desktop computers
Multi-core / multi-socket servers
Many-core / many-socket HPC systems

Plus GPUs

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Scalability

Modern C++ code runs across a wide variety of platforms:

1 CPU / 1 core
Embedded multi-core systems
Multi-core desktop computers
Multi-core / multi-socket servers
Many-core / many-socket HPC systems

Plus GPUs

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Scalability

Modern C++ code runs across a wide variety of platforms:

1 CPU / 1 core
1 CPU / 4 cores
Multi-core desktop computers
Multi-core / multi-socket servers
Many-core / many-socket HPC systems

Plus GPUs

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Scalability

Modern C++ code runs across a wide variety of platforms:

1 CPU / 1 core
1 CPU / 4 cores
1 CPU / 8 cores
Multi-core / multi-socket servers
Many-core / many-socket HPC systems

Plus GPUs

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Scalability

Modern C++ code runs across a wide variety of platforms:

1 CPU / 1 core
1 CPU / 4 cores
1 CPU / 8 cores
4 CPUs / 32 cores per CPU
Many-core / many-socket HPC systems

Plus GPUs

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Scalability

Modern C++ code runs across a wide variety of platforms:

1 CPU / 1 core
1 CPU / 4 cores
1 CPU / 8 cores
4 CPUs / 32 cores per CPU
10000 CPUs / 12 cores per CPU

Plus GPUs

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Scalability

Modern C++ code runs across a wide variety of platforms:

1 CPU / 1 core
1 CPU / 4 cores
1 CPU / 8 cores
4 CPUs / 32 cores per CPU
10000 CPUs / 12 cores per CPU
Plus GPUs

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Scalability

Modern C++ code runs across a wide variety of platforms:

1 CPU / 1 core
1 CPU / 4 cores
1 CPU / 8 cores
4 CPUs / 32 cores per CPU
10000 CPUs / 12 cores per CPU
Plus GPUs — up to 65536 cores

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Scalability

Communicating between threads has different constraints
across these systems.

Your code is scalable if it can run on any of these systems
without penalty.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Why Scalability?

Desktops are getting more cores

Phones are getting more cores
Servers are getting more CPUs and cores
Our customer’s machines are getting more CPUs and
more cores.

Our software needs to be scalable

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Why Scalability?

Desktops are getting more cores
Phones are getting more cores

Servers are getting more CPUs and cores
Our customer’s machines are getting more CPUs and
more cores.

Our software needs to be scalable

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Why Scalability?

Desktops are getting more cores
Phones are getting more cores
Servers are getting more CPUs and cores

Our customer’s machines are getting more CPUs and
more cores.

Our software needs to be scalable

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Why Scalability?

Desktops are getting more cores
Phones are getting more cores
Servers are getting more CPUs and cores
Our customer’s machines are getting more CPUs and
more cores.

Our software needs to be scalable

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Why Scalability?

Desktops are getting more cores
Phones are getting more cores
Servers are getting more CPUs and cores
Our customer’s machines are getting more CPUs and
more cores.

Our software needs to be scalable

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Limitations



Limitations: Mutex contention

Mutex: Mutual Exclusion

A mutex is a means of preventing concurrent execution.

instead of picking up Djikstra’s cute acronym we
should have called the basic synchronization object
"the bottleneck" (David Butenhof)

=⇒ For scalable solutions, we need to avoid mutex
contention.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Limitations: Mutex contention

Mutex: Mutual Exclusion

A mutex is a means of preventing concurrent execution.

instead of picking up Djikstra’s cute acronym we
should have called the basic synchronization object
"the bottleneck" (David Butenhof)

=⇒ For scalable solutions, we need to avoid mutex
contention.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Limitations: Atomic contention

Atomic operations can suffer from contention too:

Read-Modify-Write operations always affect the latest values

=⇒ RMW operations on a single location need to be
serialized by the CPUs

=⇒ For scalable solutions, we need to be sparing with RMW
operations

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Limitations: Atomic contention

Atomic operations can suffer from contention too:

Read-Modify-Write operations always affect the latest values

=⇒ RMW operations on a single location need to be
serialized by the CPUs

=⇒ For scalable solutions, we need to be sparing with RMW
operations

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Limitations: False Sharing

CPUs synchronize memory at the granularity of a cache line.

Cache lines are typically 16-128 bytes

=⇒ objects that are on the same cache line are essentially the
same object for contention purposes

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Limitations: Cache Ping-Pong



Limitations: Cache Ping-Pong

Cache Ping-Pong is where a cacheline is continuously
shuttled back and forth between two processors. This occurs
when two threads are accessing either:

the same atomic variable
different variables on the same cache line

This can have a big performance impact, because transferring
cache lines is slow.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Limitations: Speed of Light

The speed of light is 3x108m/s

CPU clocks are around 3GHz

=⇒ The speed of light is around 10cm/tick

=⇒ There is a hard upper limit on communication speed for
multi-socket systems

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Limitations: Speed of Light

The speed of light is 3x108m/s

CPU clocks are around 3GHz

=⇒ The speed of light is around 10cm/tick

=⇒ There is a hard upper limit on communication speed for
multi-socket systems

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Limitations: Memory bandwidth

Intel Xeon Phi 7295:
115.2Gb/s Memory bandwidth
1.5Ghz Clock speed
72 Cores

=⇒ 76.8 bytes per clock
=⇒ 1.1 bytes per clock per core

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Designing for Scalability



Strategies: Batch Communications

Can you avoid intermediate synchronization?

Each thread works on its own data, and only modifies shared
data at the end

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Batch Communication Example

std::vector<unsigned> const values=get_values();
std::atomic<unsigned long long> total{0};
unsigned const num_threads=...;
std::vector<joining_thread> threads(num_threads);
for(unsigned t=0;t<num_threads;++t){

threads[t]=joining_thread([&,t]{
auto start=...;
auto end=...;
std::for_each(start,end,[&](auto x){

total+=x;
});

});
}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Batch Communication Costs

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Batch Communication Example

std::vector<unsigned> const values=get_values();
std::atomic<unsigned long long> total{0};
unsigned const num_threads=...;
std::vector<joining_thread> threads(num_threads);
for(unsigned t=0;t<num_threads;++t){

threads[t]=joining_thread([&,t]{
auto start=...;
auto end=...;
auto local_total=std::accumulate(start,end,0ull);
total+=local_total;

});
}

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Batch Communication Costs

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Batch Communication Example

std::vector<unsigned> const values=get_values();
unsigned const num_threads=...;
std::vector<std::future<unsigned long long>> futures(

num_threads);
for(unsigned t=0;t<num_threads;++t){

futures[t]=std::async(std::launch::async,[&,t]{
auto start=...;
auto end=...;
return std::accumulate(start,end,0ull);

});
}
unsigned long long total=0;
for(auto& f:futures) total+=f.get();

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Batch Communication Costs

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Batch Communication Costs

Sum of 100000000 elements on 4 threads:

Run Time Ratio to serial
Serial 0.081s 1

All atomic 9.74s 120x slower!
End atomic 0.052s 1.6x faster

Futures 0.052s 1.6x faster

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Contended Lists

Suppose we have a linked list, accessible by multiple threads,
and we might need to add or remove elements. What can we
do?

Use a mutex for the whole list
Use a mutex for each link in the list
Use std::atomic<std::shared_ptr<Node*> > for
the node links
Use std::atomic<Node*> for the node links, and a Safe
Reclamation scheme to ensure Nodes can be removed
safely

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Contended Lists: Costs

Whole list mutex =⇒ big bottleneck
Node mutex =⇒ lots of small bottlenecks
std::atomic<std::shared_ptr<Node*> > =⇒
spin-locks, or RMW operations
std::atomic<Node*> =⇒ low-cost for readers, big
cost for writers

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Safe Reclamation Options

Garbage Collection
RCU
Hazard Pointers

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Safe Reclamation: RCU

Readers just record entry/exit to the read function.

Writers make atomic changes, then wait for a grace period
before deleting removed objects.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Safe Reclamation: RCU

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


RCU costs

In user space:
Read side:

Atomic read of global marker
Two atomic writes to a per-thread location

Write side:
Atomic write of global marker
Multiple atomic reads of all per-thread locations for readers
Mutex locks, delays and spin-loops until all readers ready

In kernel space:
Read side: no overhead!
Write side:

Blocking wait until all processors have cycled a time slice

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Safe Reclamation: Hazard Pointers

Readers store hazard pointers referring to objects being
accessed

Writers make atomic changes, then check the hazard pointers
to see if it is safe to delete an object.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Hazard Pointers Costs

Read side:
Two (or more) atomic writes to a per-thread hazard pointer
Spin-loop ensuring value hasn’t changed while updating
hazard pointer

Write side:
Atomic RMW operation adding to reclamation list
Objects not immediately destroyed
Period reclamation checks: when N objects are queued for
reclamation

N depends on configuration parameters and number of
threads
Each reclamation does atomic reads of all per-thread hazard
pointers for readers
Cost of retiring objects varies by orders of magnitude

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Standard Support for Safe Reclamation

There is a proposal under discussion for both RCU and Hazard
Pointers, with a sample implementation:

P0566R4: Proposed Wording for Concurrent Data Structures:
Hazard Pointer and Read-Copy-Update (RCU)
http://wg21.link/p0566

RCU implementation:
https://github.com/paulmckrcu/RCUCPPbindings

Hazard Pointer implementation:
https://github.com/facebook/folly/tree/master/
folly/experimental/hazptr

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

http://wg21.link/p0566
https://github.com/paulmckrcu/RCUCPPbindings
https://github.com/facebook/folly/tree/master/folly/experimental/hazptr
https://github.com/facebook/folly/tree/master/folly/experimental/hazptr
https://www.justsoftwaresolutions.co.uk


Sequential Consistency vs Eventual Consistency

Sequential Consistency:
All threads see the same view of shared state
Single Total Order of operations
This requires serialization, or extensive communication

Eventual Consistency:
Threads may see different views of shared state
Provided each thread has a self-consistent view all is well
All changes propagate to all threads eventually
Cannot write a Single Total Order of operations
Much less communication required

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Sequential Consistency vs Eventual Consistency

Sequential Consistency is easier to reason about.
Eventual Consistency is more scalable.

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


Summary

Multithreaded code needs to be scalable
Avoid contention
Avoid cache ping-pong
Use Safe Reclamation schemes
Use Eventual Consistency

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

https://www.justsoftwaresolutions.co.uk


My Book

C++ Concurrency in Action:
Practical Multithreading,

Second Edition

Covers C++17 and the
Concurrency TS

Early Access Edition now
available

http://stdthread.com/book

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

http://stdthread.com/book
https://www.justsoftwaresolutions.co.uk


Just::Thread Pro

just::thread Pro provides an actor framework, a concurrent
hash map, a concurrent queue, synchronized values and a

complete implementation of the C++ Concurrency TS, including
a lock-free implementation of atomic_shared_ptr.

http://stdthread.co.uk

Anthony Williams Just Software Solutions Ltd https://www.justsoftwaresolutions.co.uk

Designing multithreaded code for scalability

http://stdthread.co.uk
https://www.justsoftwaresolutions.co.uk


Questions?


