
Asynchronous C++
History of Time

→ github.com/stevejims/acpp

Steve Simpson
steve@stackhpc.com
www.stackhpc.com

Stack
HPC



  2

Overview

1) Background

2) I/O (Is Hard)

3) Blocking

4) Theading

5) Select

6) Epoll

7) Callbacks

8) Futures

9) Coroutines

10) Summary



  3

Background



  4

Background

Systems Software Engineer

C, C++, Python



  5

Background

Bristol, UK

Thriving technology industry



  6

Background

Bristol, UK

The best place to live in the UK!



  7

Background

The internet says!



  8

Background

The internet says!

It must be true...



  9

Background

The internet says!

It must be true...



  10

Background

“

”

The “cool, classy and supremely creative” city



  11

Background

“

”

The “cool, classy and supremely creative” city

beat off stiff competition to top the list



  12

Background

● Gnodal
– 10GbE Ethernet

– ASIC Verification

– Embedded Firmware

● JustOne Database
– Agile “Big Data” RMDBS

– Based on PostgreSQL

– Storage Team Lead



  13

Background

Consultancy for HPC on OpenStack

Multi-tenant massively parallel workloads

Monitoring complex infrastructure

Stack
HPC



  14

Background

Working with University of Cambridge

2016: Deployed HPC OpenStack cluster

Medical research; brain image processing



  15

Background

Cloud orchestration platform

IaaS through API and dashboard

Multi-tenancy throughout 

Network, Compute, Storage



  16

Background

Operational visibility is critical

OpenStack is a complex, distributed application



  17

Background

Operational visibility is critical

OpenStack is a complex, distributed application

…to run  your complex, distributed applications



  18

Background - Monitoring

Gain visibility into the operation of the 
hardware and software

e.g. web site, database, cluster, disk drive



  19

I/O
(Is Hard)



  20

I/O – Trade Offs

 Performance

Testability Complexity

● Readability
● Maintainability
● Reasoning
● Risk

● ‘Speed’
● Footprint
● Utilisation
● Scalability

● Correctness
● Determinism
● Reproducibility
● Isolation



  21

I/O – Utilisation

● No I/O?
– Lucky!

● Example; focus on CPU utilisation

Time

C
P

U
%



  22

I/O – Utilisation

● Program performing two tasks
– On a single CPU; One after another

Time

C
P

U
%



  23

I/O – Utilisation

● Total runtime gauges performance
– Time to execute each task

Time

C
P

U
%

Total Runtime



  24

I/O – Utilisation

● How to improve performance?
– Must optimise runtime of tasks

Time

C
P

U
%

Total Runtime



  25

I/O – Utilisation

● Slightly different example (with I/O)

Time

C
P

U
%



  26

I/O – Utilisation

● Tasks must now fetch some data first

– Either from a disk or a network connection

– Can’t complete processing until data available

Time

C
P

U
%



  27

I/O – Utilisation

● CPU time wasted waiting for data

– Ideally we could do work in those gaps

Time

C
P

U
%

Total Runtime



  28

I/O – Utilisation

● Start second task waiting for first
– Processing second task can start much sooner

Time

C
P

U
%



  29

I/O – Utilisation

● Total runtime is reduced
– Due to increasing CPU utilisation

Time

C
P

U
%

Total Runtime



  30

I/O – Utilisation

● This is not necessarily parallelism
● This is concurrency

– When we discuss performance in this talk, it will 
focus on issues of concurrency on a single CPU

– Improving I/O performance using parallelism (with 
multiple CPUs cores) is an entire other talk



  31

I/O – Complexity

● Desire for concurrency
● Root of much complexity

– Particularly in regards to code readability
– Order of events is no longer serialised

● Our code should at least read serially
– Given an event (e.g. disk read completing)
– Able to read code executed as a consequence
– Not as simple as it sounds



  32

I/O - Testability

● Reproducible testing is hard
– I/O is often unpredictable (web site?)
– Logic can be tested with sufficient mocking
– Still need to test external interactions

● Concurrency just makes it harder
– Events can execute in different orders
– Should we exhaustively test each path?
– Or settle for something representative



  33

I/O – Example Problem

● Focus on network I/O
● Most prevalent and most explored
● Async. disk I/O is contentious topic

– Little agreement on the correct way to do it

● Local socket connections (Unix Sockets)
– TCP overhead uninteresting

● Basic example
– Little more than a lookup table
– Think of it as the worlds simplest database



  34

I/O – Example Problem

 ● Typical multi-user 
server example

● Key-value data to 
share between 
multiple clients

● No requests which 
modify the data

ClientClient Client

Server

Table



  35

I/O – Performance Testing

● How many operations per second
– Messages received and responses sent

● How many concurrent operations
– Concurrent connections from multiple clients

● 50,000 connections, 10 requests each
● Vary number of concurrent connections

– 1, 5, 10, 50, 100, 500, 1000, 5000, 10000, 50000



  36

I/O – Supporting Code

● “net” library
● Don’t use it!
● For educational purposes
● Wrappers around system calls
● Useful for exploring fundamental 

concepts, with minimal associated 
code noise (e.g. system calls)



  37

I/O – Supporting Code

● Socket class
– Wraps C functions
– Listen / Accept
– Send / Recv

● Bind sockets
– Local sockets used 

due to low overhead

● Connect sockets



  38

I/O – Supporting Code

github.com/stevejims/acpp



  39

Blocking



  40

Blocking

● Create resource

● Start listening

● Accept connections

● Receive messages

● ..until disconnect

● Lookup result

● Send response



  41

Blocking – Performance

Concurrent 
Connections

Execution 
Time (ms)

K-requests 
per second

1 2,616 191.1

5 ∞

10 ∞

50 ∞

100 ∞

500 ∞

1,000 ∞

5,000 ∞

10,000 ∞

50,000 ∞



  42

Blocking – Performance

1 10 100 1000 10000
0K

50K

100K

150K

200K

blocking

Concurrent Connections

R
eq

u
es

ts
 p

er
 S

ec
o

n
d



  43

Blocking – Good?

✔ As simple as it gets!

✔ Clear event order

✔ Maximally efficient

✔ Just wraps syscalls

✔ I/O easily mocked



  44

Blocking – Bad?

✗ One connection only

✗ Low CPU utilisation
Idle pending receive

✗ Inflexible
Second listener?



  45

Select



  46

Select - Overview

● Available since
Linux 2.0

– Circa 1996
● Takes a set of sockets

– Specified by bit set of 
integers - “fdset”
(file descriptor set)

– Clears bits for sockets  
which are not ready

– Must test relevant bit to 
check if socket ready



  47

Select

● 1/2
– Listener set-up
– State
– Select

● 2/2
– Accept handling
– Receive handling



  48

Select – 1/2

● Socket state
● All sockets fdset

– Add listener

● Event loop
● Select from fdset

– Returns fdset of 
ready sockets



  49

Select – 2/2

● Listener ready?

– Store socket

– Add to all fdset
● Connection ready?

– Receive message

– Get & send result
● Connection closed?

– Remove from fdset

– Release socket



  50

Select – Performance

Concurrent 
Connections

Execution 
Time (ms)

K-requests 
per second

1 3,120 160.3

5 3,457 144.6

10 3,369 148.4

50 4,313 115.9

100 6,292 79.5

500 25,596 19.5

1,000 52,008 9.6

5,000 x x

10,000 x x

50,000 x x

Blocking

1 2,616 191.1



  51

Select – Performance

Concurrent 
Connections

Execution 
Time (ms)

K-requests 
per second

1 3,120 160.3

5 3,457 144.6

10 3,369 148.4

50 4,313 115.9

100 6,292 79.5

500 25,596 19.5

1,000 52,008 9.6

5,000 x x

10,000 x x

50,000 x x



  52

Select – Performance

Concurrent 
Connections

Execution 
Time (ms)

K-requests 
per second

1 3,120 160.3

5 3,457 144.6

10 3,369 148.4

50 4,313 115.9

100 6,292 79.5

500 25,596 19.5

1,000 52,008 9.6

5,000 x x

10,000 x x

50,000 x x



  53

Select – Performance

● Compile time size of “fdset”
● There is an alternative - “poll”
● But suffers from same scaling issues

bits/typesizes.h



  54

Select – Performance

1 10 100 1000 10000
0K

50K

100K

150K

200K

select

Concurrent Connections

R
eq

u
es

ts
 p

er
 S

ec
o

n
d



  55

Select – Performance

1 10 100 1000 10000
0K

50K

100K

150K

200K

blocking

select

Concurrent Connections

R
eq

u
es

ts
 p

er
 S

ec
o

n
d



  56

Select – Good?

✔ Multiple concurrent 
connections

✔ Efficient for few 
connections



  57

Select – Bad?

✗ Control flow 
changed entirely

✗ Not trivial to follow 
order of events

✗ Complex state 
management

✗ Awful performance 
scaling number of 
connections



  58

Threading



  59

Threading - Overview

● Available since
Linux 2.0

– LinuxThreads

– Circa 1996
● Improved greatly in

Linux 2.6

– NPTL

– Circa 2002
● ISO C++ since 2011



  60

Threading - Overview

● Simply put:
Run a function 
asynchronously

● CPU time shared 
between threads

● OS switches 
between threads

● Even if function is 
blocked



  61

Threading

● Very similar
● Thread to accept 

new connections
● Thread to receive 

messages for each 
connection

● Sleep forever to 
prevent main exit

– Kernel switches 
between threads



  62

Threading – Compare to Blocking



  63

Threading – Performance

Concurrent 
Connections

Execution 
Time (ms)

K-requests 
per second

1 2,752 181.7

5 3,282 152.3

10 3,597 139.0

50 3,816 131.0

100 3,893 128.4

500 4,715 106.1

1,000 5,015 99.7

5,000 5,127 97.5

10,000 5,970 83.8

50,000 x x

Blocking

1 2,616 191.1

Select

1 3,120 160.3



  64

Threading – Performance

Concurrent 
Connections

Execution 
Time (ms)

K-requests 
per second

1 2,752 181.7

5 3,282 152.3

10 3,597 139.0

50 3,816 131.0

100 3,893 128.4

500 4,715 106.1

1,000 5,015 99.7

5,000 5,127 97.5

10,000 5,970 83.8

50,000 x x



  65

Threading – Performance

Concurrent 
Connections

Execution 
Time (ms)

K-requests 
per second

1 2,752 181.7

5 3,282 152.3

10 3,597 139.0

50 3,816 131.0

100 3,893 128.4

500 4,715 106.1

1,000 5,015 99.7

5,000 5,127 97.5

10,000 5,970 83.8

50,000 x x



  66

Threading - Performance

● 50,000 Threads?

(Limit depends on OS / Memory / etc..)

terminate called after throwing an instance of 
'std::system_error'
  what():  Resource temporarily unavailable



  67

Threading - Performance

1 10 100 1000 10000
0K

50K

100K

150K

200K

threading

Concurrent Connections

R
eq

u
es

ts
 p

er
 S

ec
o

n
d



  68

Threading - Performance

1 10 100 1000 10000
0K

50K

100K

150K

200K

blocking

threading

select

Concurrent Connections

R
eq

u
es

ts
 p

er
 S

ec
o

n
d



  69

Threading – Good?

✔ Multiple concurrent 
connections

✔ Very readable

✔ Similar to blocking

✔ Request handling 
reasonably efficient

✔ Easy to add new 
server listeners



  70

Threading – Bad?

✗ Shared state must 
be thread-safe

✗ Easy to introduce 
race conditions

✗ Exhaustive testing 
near impossible

✗ Thread creation 
hurts performance

✗ Context switching 
hurts performance



  71

Epoll



  72

Epoll
(BSD: kqueue)

(Windows: IOCP)



  73

Epoll - Overview

● Available since
Linux 2.6 (2.5.44)

– Circa 2003
● Kernel resource

Set of sockets

– Specified by fd
(file descriptor)

– Indicates which are 
ready (e.g. readable)

– Specifically which 
socket(s) are ready



  74

Epoll

● 1/2
– Listener set-up
– State
– Event waiting

● 2/2
– Accept handling
– Receive handling



  75

Epoll – 1/2

● Create epoll
– Add listener fd

● Event loop
● Wait on epoll

– Returns the fd of 
ready socket

● Socket state

– Lookup by fd



  76

Epoll – 2/2

● Listener ready?

– Add to epoll set

– Store socket by fd
● Connection ready

– Get socket by fd

– Receive message

– Get & send result
● Connection closed?

– Remove from epoll

– Release socket



  77

Epoll – Performance

Concurrent 
Connections

Execution 
Time (ms)

K-requests 
per second

1 3,096 161.5

5 3,030 165.0

10 3,040 164.5

50 2,994 167.0

100 3,119 160.3

500 3,172 157.6

1,000 3,249 153.9

5,000 3,376 148.1

10,000 3,345 149.5

50,000 3,216 155.5

Threading

1 2,752 181.7

5 3,282 152.3

10 3,597 139.0



  78

Epoll – Performance

Concurrent 
Connections

Execution 
Time (ms)

K-requests 
per second

1 3,096 161.5

5 3,030 165.0

10 3,040 164.5

50 2,994 167.0

100 3,119 160.3

500 3,172 157.6

1,000 3,249 153.9

5,000 3,376 148.1

10,000 3,345 149.5

50,000 3,216 155.5



  79

Epoll - Performance

1 10 100 1000 10000
0K

50K

100K

150K

200K

epoll

Concurrent Connections

R
eq

u
es

ts
 p

er
 S

ec
o

n
d



  80

Epoll - Performance

1 10 100 1000 10000
0K

50K

100K

150K

200K

blocking

threading

select

epoll

Concurrent Connections

R
eq

u
es

ts
 p

er
 S

ec
o

n
d



  81

Epoll – Good?

✔ Multiple concurrent 
connections

✔ Single threaded

✔ No race conditions

✔ Efficient scaling to 
many connections



  82

Epoll – Bad?

✗ Control flow 
changed entirely

✗ Not trivial to follow 
order of events

✗ Complex state 
management



  83

Callbacks



  84

Callbacks - Overview

● “Genre” of libraries
– C: libevent, libev, libuv
– C++: Boost ASIO
– Python: Twisted, asyncio
– Javascript: Promises

● Event loop / “reactor” pattern
● Usually wraps an OS-level primitive

– select / epoll / kqueue / IOCP



  85

Callbacks – More Epoll

● Epoll is more 
flexible than shown

● Can specify an 
arbitrary 8 bytes

– Such as a pointer

– ...to a functor?
● Returns it instead

● Avoid fd lookup



  86

Callbacks – In Theory (1)

● Pass functor into 
action to invoke on 
completion



  87

Callbacks – In Theory (1)

● Pass functor into 
action to invoke on 
completion

● Code compiles but 
will crash

● Socket needed in & 
outside lambda

● Capture reference 
of stack variable



  88

Callbacks – In Theory (2)

● Fixed by holding 
socket in shared_ptr

● No crash, but code 
is still deficient

● Will only ever:
– Process one message

– Accept one connection

● How do we loop?



  89

Callbacks – In Theory (3)

● Callbacks have to 
become recursive

● Pass the callbacks 
into themselves

– Must be reference
● Works for on_accept

● Crashes for on_recv

● Capturing variable on 
stack (again) which 
goes out of scope 



  90

Callbacks

Asynchronous Lambda
+

Reference Capture

=  :(  [1][2]

[1] usually
[2] probably



  91

Callbacks – Working Code!

● Normal setup
● Run event loop
● Accept 

connections
● Receive 

messages
● Notice how we 

read the code 
bottom to top...



  92

Callbacks – Performance

Concurrent 
Connections

Execution 
Time (ms)

K-requests 
per second

1 2,994 167.0

5 3,107 160.9

10 3,109 160.8

50 3,044 164.3

100 2,989 167.3

500 3,102 161.2

1,000 3,330 150.2

5,000 3,394 147.3

10,000 3,402 147.0

50,000 3,187 156.9



  93

Callbacks - Performance

1 10 100 1000 10000
0K

50K

100K

150K

200K

callbacks

Concurrent Connections

R
eq

u
es

ts
 p

er
 S

ec
o

n
d



  94

Callbacks - Performance

1 10 100 1000 10000
0K

50K

100K

150K

200K

epoll

callbacks

Concurrent Connections

R
eq

u
es

ts
 p

er
 S

ec
o

n
d



  95

Callbacks - Performance

1 10 100 1000 10000
0K

50K

100K

150K

200K

blocking

threading

select

epoll

callbacks

Concurrent Connections

R
eq

u
es

ts
 p

er
 S

ec
o

n
d



  96

Callbacks – Good?

✔ All the advantages of 
using epoll directly
✔ Multiple connections

✔ Single threaded

✔ No race conditions

✔ Efficient scaling

✔ Describing each 
action is clearer & 
more flexible

✔ Some similarity to 
blocking code



  97

Callbacks – Bad?

✗ Whilst clearer, control 
flow is now inverted

✗ Actions to follow event 
often must be written  
before initiating action

✗ Recursive callbacks 
required for looping

✗ Careful management 
of state lifetimes

✗ Risk of cycles due to 
shared_ptr usage



  98

Futures



  99

Futures

“Event Loop” “Threading”

Java
Future

Python
Deferred

JavaScript
Promise

C++11
std::future



  100

Futures – Event Loop Centric

● Syntactic sugar 
around callbacks

● Subjectively more 
readable code

● Especially useful 
with exceptions
– (Not shown today)

● Threads not needed 
– No need for 

synchronisation

“Event Loop”

Python
Deferred

JavaScript
Promise



  101

Futures – Threading Centric

● Similar interface
● Can be blocking or 

non-blocking
– C++11: Blocking .get
– C++?: Non-blocking?

● Useful when thread 
consumes data 
from another

● Provides necessary 
safety (sync)

“Threading”

Java
Future

C++11
std::future



  102

Futures – Threading Centric

● Suitable for I/O
– But not necessary

● Threads not 
required for 
concurrent I/O

● Better suited to 
parallel compute
– Particularly when 

using thread pools

“Threading”

Java
Future

C++11
std::future



  103

Coroutines



  104

Coroutines - Overview

● Concept, not library or OS feature
– “User-space” threads
– Cooperatively, manually scheduled

● Lots of confusing terminology
– Stackful Coroutines / Fibers
– Stackless: Mechanically like callbacks

● Library & Language implementations
– C#, EcmaScript 7, Python 3.5, Boost::Coroutine
– In progress for ISO C++ TS (Not C++17)



  105

Coroutines

● Similar to Threads
● Coroutine to accept 

new connections
● Coroutine to 

receive messages 
for each connection

● Event loop

– Switches coroutines
– On socket readiness



  106

Coroutines – Compare to Threading



  107

Coroutines – Compare to Blocking



  108

Coroutines – Performance

Concurrent 
Connections

Execution 
Time (ms)

K-requests 
per second

1 2,997 166.8

5 3,142 159.1

10 3,114 160.6

50 3,124 160.1

100 3,182 157.2

500 3,414 146.5

1,000 3,537 141.4

5,000 3,591 139.3

10,000 3,538 141.3

50,000 3,364 148.6



  109

Coroutines - Performance

1 10 100 1000 10000
0K

50K

100K

150K

200K

coroutines

Concurrent Connections

R
eq

u
es

ts
 p

er
 S

ec
o

n
d



  110

Coroutines - Performance

1 10 100 1000 10000
0K

50K

100K

150K

200K

callbacks

coroutines

Concurrent Connections

R
eq

u
es

ts
 p

er
 S

ec
o

n
d



  111

Coroutines - Performance

1 10 100 1000 10000
0K

50K

100K

150K

200K

threading

callbacks

coroutines

Concurrent Connections

R
eq

u
es

ts
 p

er
 S

ec
o

n
d



  112

Coroutines - Performance

1 10 100 1000 10000
0K

50K

100K

150K

200K

blocking
threading
select
epoll
callbacks
coroutines

Concurrent Connections

R
eq

u
es

ts
 p

er
 S

ec
o

n
d



  113

Coroutines – Good?

✔ Advantages of threading

✔ Concurrency

✔ Readability w.r.t. blocking

✔ Flexibility

✔ Advantages of callbacks

✔ Performance scales better 
than threads (#connections)

✔ Avoiding race conditions

✔ State management hugely 
simplified by having stacks



  114

Coroutines – Bad?

✗ Performance slightly 
behind of callbacks

✗ Mechanism of coroutines is 
scary and non-standard

✗ Involves complex saving & 
restoring register state

✗ Debugger support is sparse

✗ How do I get a backtrace for 
all running coroutines?
Like: thread apply all bt

✗ Must propagate “yield”

✗ Require “resumable” version 
of every function



  115

Summary



  116

Summary - Oversimplification

Performance Testability Complexity

Blocking ✘ ✔✔ ✔✔
Threading ✘ ✘✘ ✔✔
Select ✘✘ ✘✘ ✘✘
Epoll ✔✔ ✘✘ ✘✘
Callbacks ✔✔ ✔ ✘
Coroutines ✔ ✔ ✔✔



  117

Summary 

● Software with I/O is challenging
– Especially doing it efficiently
– Most software needs to do I/O

● This talk only scratches the surface
– Lots of good material on this topic

● Boost documentation (Coroutine, Fiber, ASIO)
● Coroutines C++ standardisation proposal papers

– Passed over disk I/O; conceptually similar



  118

Summary – Advice?

● Keep it simple
– Choose a model and use it consistently

● Use an established library
● Callbacks are... OK

– Be careful of object lifetime

● Coroutines are looking promising
– Be aware of similarity to other mechanisms
– Potentially long wait for standardisation 



  119

Thanks

steve@stackhpc.com



  120

Bonus Content

● Green Threads
– Threads scheduled in userspace, like Fibers
– Try to be transparent, look like real threads
– More common in VM languages (e.g. Java)

● “NxM”
– M coroutines or tasks
– Scheduled onto N real OS threads
– Improve performance using multiple CPU cores


