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Where does assembler fit in?

● Most of us program in a high level language 
that is abstracted away from details of the 
hardware

● As Joel Spolsky wrote: “All non-trivial 
abstractions, to some degree, are leaky

● Let's take a “layered” look at an example 
program



  

Where does assembler fit in?

#include <iostream>
int main() {
  std::cout << "Hello, world\n";
}

main:   push    rbp
        mov     rbp, rsp
        mov     esi, OFFSET FLAT:.LC0
        ...

// Standard iostream objects -*- C++ -*-

// Copyright (C) 1997-2017 FSF, Inc.
//
// This file is part of the GNU ISO C++
...

iostream

... 55 48 89 E5  BE E5 07 40
    00 BF 60 10  60 00 E8 F6 ...

a.out (machine code)

Assembly language

Operating System

Hardware

libstdc++.so.6
libc.so.6
...

run-time libraries

hello.cpp

(conceptually)



  

Where does assembler fit in?

● Three of the commonest uses of assembly 
language are:

 During interactive debugging
 Checking compiler optimisation
 Understanding how a program runs



  

x86 introduction
● What does the CPU know about life?

 Machine registers and Memory*

● The 8086 chip had 16-bit registers:

 General: AX/BX/CX/DX/SI/DI/BP/SP
 Segment: CS/DS/ES/SS
 Special purpose: IP
 Flags

● Memory: 16-bit segment + 16-bit offset
● (*Ignoring all the details below that...)



  

x86 introduction

● Additionally, four of the 16-bit general 
purpose registers (AX-DX) could be 
accessed as two 8-bit values:

 Eg AH and AL

 Where AX = AH<<8 + AL

● The 8087 floating point co-processor added 
a register stack, ST0 – ST7, holding 80-bit 
floating point values



  

x86 introduction
● The x86 16-bit architecture evolved into a 

32-bit one for the 80386.
● The registers were Extended to 32bits:

 General: EAX/EBX/etc.
 Segment: added FS and GS 
 Special purpose: EIP
 Eflags

● The old names for the general registers 
accessed the low 16-bit values



  

x86 introduction
● The x86 32-bit architecture evolved into a 

64-bit one (originally designed by AMD)
● The general registers were widened to 64-

bits and eight new ones added:

 General: RAX/RBX/etc.
 Addition of general registers R8-R15
 Special purpose: RIP

● The old names for the general registers 
accessed the low 32-bit values

● Add 'D' to R8-R15 for the low 32-bit values



  

x86 introduction
● Meanwhile the floating point register stack 

was overlaid by 64-bit MMX registers
● Eight new 128-bit XMM registers were 

added, then increased to 16
● Widened to 256-bit YMM registers (32)
● Widened to 512-bit ZMM registers (32)
● There are also other registers, used for 

processor control, debug, and 
instrumentation



  

Don't Panic!!
● While there is a lot of complexity, much of it 

is not needed for the use cases we're 
focusing on:

 control, debug & performance registers
 segment registers (applications use a 

so-called “flat” address mode)
 XMM, YMM, ZMM registers



  

The stack frame
● When a program makes a function call it:

 Sets a new program location

 Stores where it came from

 Passes arguments from the caller

 Reserves locations for local variables

● In x64 this is all managed by a “stack 
frame”, at least in principle



  

The ideal stack frame

Function Argument 2

Function Argument 1

Return Address

Local Variable 1

RBP

Calls 'down'

Saved RBP

Local Variable 2

Local Variable 3

Next frame

Previous frame

Returns 'up'

Calls 'down'

RSP



  

The stack frame
● However, the x64 conventions both pass 

some arguments in registers, for speed.
● Both conventions also define:

 The register used for return values
 The 'non-volatile' registers (that must 

be persisted over the call)
 The 'volatile' registers (that a function 

can leave in an arbitrary state)



  

A real (Linux) stack frame

Return Address

Local Variable 1

Calls 'down'

Local Variable 2

Local Variable 3

Next frame

Previous frame

Returns 'up'

Calls 'down'

RSP

?

On Linux the first 6 arguments to a function are passed in registers: 
RDI, RSI, RDX, RCX, R8, R9, so no stack might be needed for arguments
The compiler can move RSP to where the next call needs it, and fill
in extra arguments by using addresses relative to RSP
The previous stack frame can be restored from RSP, so RBP can be
used as a general purpose register



  

A real (Windows) stack frame

Return Address

Local Variable 1

Calls 'down'

Local Variable 2

Local Variable 3

Next frame

Previous frame

Returns 'up'

Calls 'down'

RSP

?

On Windows the first 4 arguments to a function are passed in registers: 
RCX, RDX, R8, R9. However 'shadow' stack space is always reserved,
unless it is a 'leafl' function (makes no other calls).
As before, the frame address need not be saved, nor RBP used to hold
it, provided it can be restored on exit

Four entries reserved



  

Instructions
● The x64 instruction set has a large number 

of different instructions
● Fortunately for bluffing, the vast majority of 

the assembler instructions in most compiled 
programs come from a very small subset

● I took the disassembly from three different 
binaries and analysed the opcodes used

50-60% of the program was comprised of 
only 3 different instructions

● 90-95% of the program was comprised of 
less than 20 different instructions 



  

Instructions



  

Top three instructions

● mov – roughly equivalent to assign. Can 
copy 64-bit (or other sized) values between 
registers and memory or between registers

● lea – a strange instruction: unpacked later

● call – make a function call. The target 
address can be a 32-bit relative address, or 
held in a register, or be referenced indirectly



  

Two different dialects
● Sadly the syntax has two different forms: 

Intel and AT&T. Here are a couple of mov 
examples showing some of the differences

Intel

mov rax, 5
mov dword ptr [rbp-0x44],0x5

Destination before source 
Size inferred, or using keyword
No prefix for numbers and registers
Square brackets for addressing

Common on Windows

AT&T

mov $5, %rax
movl $0x5,-0x44(%rbp)

Source before destination
Mnemonic indicates size
$/% prefix for numbers/registers
Round brackets for addressing

Common on Linux



  

mov addressing

● The mov instruction can use some simple 
arithmetic when calculating the memory 
address.

● Given
 struct s { int v1; int v2; };
 s *p;

● Then accessing 'p[idx].v2' could make 
use of an expression like: [rdi+4+rsi*8]

● This means some well-meaning attempts to 
optimise high level code may be ineffective 
(or even counter-productive)



  

Other popular instructions

● test/cmp – compare two operands. Test is 
like and and cmp is like sub, but the result is 
discarded

● push/pop – write value to stack and 
decrement the stack pointer/increment the 
stack pointer

● jmp – like goto. The target address specified 
like with call

● add/sub/mul/div – I expect you can guess 



  

How do we get assembler?
● Writing it ourselves (not really suitable for 

bluffing...)
● Compiling high-level language source code

 Most C++ compilers have a switch

 The output may or may not be complete

● Disassembling binary data
 For example, in a debugger when source 

code can't be found

 Not always straightforward



  

Assembler from source
● g++ -S hello.cpp 

 Generates 98 lines

 gcc hello.s -o hello.exe -lstdc++

● cl -FA hello.cpp
 Generates 6,704 lines (!)

 Output won't assemble (with ml.exe)

● In both cases finding the opcodes we are 
interested in can be non-trivial



  

Assembler from binary
● For example, debugging a program with no 

symbolic information using gdb:
   ┌───────────────────────────────────────────────────────────────────────────┐
   │                                                                           │
   │                                                                           │
   │                                                                           │
   │             [ No Source Available ]                                       │
   │                                                                           │
   │                                                                           │
   └───────────────────────────────────────────────────────────────────────────┘
  >│0x7ffff7b049b0 <__read_nocancel+7>      cmp    $0xfffffffffffff001,%rax    │
   │0x7ffff7b049b6 <__read_nocancel+13>     jae    0x7ffff7b049e9 <read+73>    │
   │0x7ffff7b049b8 <__read_nocancel+15>     retq                               │
   │0x7ffff7b049b9 <read+25>                sub    $0x8,%rsp                   │
   │0x7ffff7b049bd <read+29>                callq  0x7ffff7b22810 <__libc_enabl│
   │0x7ffff7b049c2 <read+34>                mov    %rax,(%rsp)                 │
   └───────────────────────────────────────────────────────────────────────────┘
native process 7959 In: __read_nocancel                L84   PC: 0x7ffff7b049b0

(gdb) layout next
(gdb) 



  

Assembler from binary
● For example, debugging a program with no 

symbolic information using WinDbg:
Breakpoint 1 hit
cmd!main:
00000000`4a158494 488bc4          mov     rax,rsp
0:000> u
cmd!main:
00000000`4a158494 488bc4          mov     rax,rsp
00000000`4a158497 48895808        mov     qword ptr [rax+8],rbx
00000000`4a15849b 48896810        mov     qword ptr [rax+10h],rbp
00000000`4a15849f 48897018        mov     qword ptr [rax+18h],rsi
00000000`4a1584a3 48897820        mov     qword ptr [rax+20h],rdi
00000000`4a1584a7 4155            push    r13
00000000`4a1584a9 4156            push    r14
00000000`4a1584ab 4157            push    r15

0:000> 



  

Assembler from binary
● Sometimes disassembly can be inaccurate

 x64 instructions are of variable length

 code and data can be mixed

● In particular disassembling backwards to 
find how you got to where you are may not 
be simple

● It may be simpler to disassemble forwards 
from the start of the current function



  

Assembler from binary
● Example output when starting disassembly 
not on an instruction boundary:

Breakpoint 1 hit
cmd!main:
00000000`4a158494 488bc4          mov     rax,rsp
0:000> u rip+5
cmd!main+0x5:
00000000`4a158499 58              pop     rax
00000000`4a15849a 084889          or      byte ptr [rax-77h],cl
00000000`4a15849d 6810488970      push    70894810h
00000000`4a1584a2 184889          sbb     byte ptr [rax-77h],cl
00000000`4a1584a5 7820            js      cmd!main+0x33 (00000000`4a1584c7)
00000000`4a1584a7 4155            push    r13
00000000`4a1584a9 4156            push    r14
00000000`4a1584ab 4157            push    r15

0:000> 



  

Assembler from binary
● Usually much better when you don't need to 

use assembler when debugging.
● Check your tool chain for how to build with 

symbolic information – and how to make 
sure this is associated correctly in the 
debugger with the code being examined

● May wish to split out debugging information 
to reduce disk space usage and/or control 
access

● Find out options for debugging symbols for 
operating system and third party 
components.



  

Compiler Explorer



  

Compiler Explorer
● Left pane – type your source code

 Automatically compiled as you type

 Set compiler options as you choose

● Right pane – displays the assembler output
 Compiler Explorer filters down the output to 

focus on the important part

● Supports many different compilers
● Can be fetched from git and run locally

 Finds local compilers

 Can configure non-standard locations



  

Compiler Explorer - locally
● Download & install VirtualBox from www.virtualbox.org

● Download & install Ubuntu from www.ubuntu.com

● sudo apt install npm

● sudo apt install node.js

● sudo apt install git

● git clone 
https://github.com/mattgodbolt/compiler-explorer

● make

● Then visit http://localhost:10240 

● sudo apt install clang

 Compiler explorer automatically finds it

http://www.virtualbox.org/
http://www.ubuntu.com/
https://github.com/mattgodbolt/compiler-explorer
http://localhost:10240/


  

Compiler Explorer
● Demonstrate Compiler Explorer
● Live demo includes:

 See the stack frame set up

 Look at arguments and local variables

 Look at some trivial optimiser use

 Where do the local variables go?



  

LEA (“Load Effective Address”)

● The lea instruction allows memory 
addressing calculations without actually 
accessing any memory

● As with mov, the various addressing modes 
allow use of two or three operands, and to 
put the result anywhere (unlike add)

● Does not affect flags, and so friendly to re-
ordering /pipe-lining



  

LEA (“Load Effective Address”)
● The 'addresses' are not used to access 

memory and so the instruction can be used 
for addition of any integer values

● This can allow the compiler to use the lea 
instruction for basic arithmetic



  

Walking the stack
● The call stack is an important piece of 

information. It is useful when debugging to 
see how you got to the current location and 
it is required when transferring control by 
exception.

● In general this is a hard problem; each 
function only knows how to return its caller

● The solution for X64 is additional meta-data 
which is held in the binary and allows the 
stack frames to be deduced at runtime



  

Walking the stack
● The extra data is generated in the 

assembler using various directives
● The gcc and clang directives are prefixed 

with .cfi_, the MSVC directives have no 
common prefix

● While it is possible to walk the stack 
manually this is not 'bluff your way' material.

● You fortunately do not normally need to do 
so; debuggers use the meta-data to work up 
the stack identifying each stack frame and 
return address



  

Walking the stack
● Note that since debuggers use the meta-

data from the binaries themselves, 
examining dump files may require access to 
the binaries matching those on the machine 
where the dump was taken

● Better to check this before rather than after 
you receive your first important production 
dump file...



  

More information - Linux
● The data structures are held in the .eh_frame 

section of the binary
● There are libraries to help unwind the stack 

(e.g. http://www.nongnu.org/libunwind/)
● You find the meta-data for a target address, 

which identifies the register and offset for 
the current frame address and where the 
non-volatile registers are stored

● Repeat using the return address from the 
frame as the target address

http://www.nongnu.org/libunwind/


  

More information - Windows
● The data structures are held in the .pdata 

section and this can be examined with 
dumpbin /unwindinfo

● There is a debugging method, StackWalk64 
from dbghelp.dll to help with unwinding the 
stack

● There is a lower level call, RtlVirtualUnwind
● You can even add entries dynamically using 
RtlAddFunctionTable (few people need to do 
this; it's needed to support dynamically 
creating functions at runtime)



  

Conclusion
● While mastering the full range of X64 

assembler is hard, a basic understanding of
 common registers,

 the calling convention, and

 a handful of instructions

● will enable you to get a long way in those 
cases where you do need to delve into 
assembler

● There is a lot of data in assembler mode, 
tools such as compiler explorer may help 
you focus on the relevant parts
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