
@PeterHilton

http://hilton.org.uk/

Documentation for

software developers

http://hilton.org.uk/

What’s wrong with

software system

documentation?

2@PeterHilton •

README-Driven

Development

README Driven Development

‘… we have projects with short, badly written, or

entirely missing documentation…

There must be some middle ground between reams of

technical specifications and no specifications at all.  
And in fact there is.

That middle ground is the humble README.’

http://tom.preston-werner.com/2010/08/23/readme-driven-development.html 4@PeterHilton •

http://tom.preston-werner.com/2010/08/23/readme-driven-development.html

Why doesn’t software

always have a good

README?

5@PeterHilton •

Group exercise

1. Pick the top ten things to include in a README, one

README section heading per sticky note.

2. Number your README sections 1 to 10 in order of

importance.

3. Stick your notes in a column on the flip chart.

4. Choose one person per group to present your top 10.

6@PeterHilton •

Peter’s (current) top 10 README sections

1. What it is

2. Purpose

3. Usage/examples

4. Installation

5. Asking questions

6. Building from source

7. Contributing

8. Authors/maintainers

9. License

10. Testing

7@PeterHilton •

Other suggestions

8@PeterHilton •

Code of conduct

Status (does it work?)

Scope

Components

Architecture

Prerequisites

Jargon

Inputs & outputs

Deployment

Target users - who it’s for

How it works

Copyright information

Contributors

To do list

Change log

Features

Three questions to ask about any tool

1. Who invented this tool?

2. What problem was he/she trying to solve?

3. Do I have that problem?

‘Many people […] are prone to believing the people who

developed the tools have done their thinking for them’

https://vanguard-method.net/library/systems-principles/three-questions-to-ask-about-any-tool/ 9@PeterHilton •

https://vanguard-method.net/library/systems-principles/three-questions-to-ask-about-any-tool/

Bonus exercise

1. Pick some GitHub repos, e.g. software you use

2. Note the repo URL and number of stars

3. Award 1 point for each section on my list the README has 
(What it is, Purpose, Usage/examples, Installation, Asking

questions, Building from source, Contributing, Authors/

maintainers, License, Testing)

4. Award 0.5 points for a link to the info on another page
10@PeterHilton •

The README is  
(the short version of)

the complete system

documentation
12@PeterHilton •

Technical writing

techniques

Checklist of technical writing techniques

1. Start with the ‘why?’ - explain benefits up-front

2. Examples before definitions

3. Just-in-time, not just-in-case

4. Teach this stuff!

5. Don’t humiliate the reader

6. Handle or declare new concepts

7. ‘So what and why do I care?’
14@PeterHilton •

Exercise (in pairs)

1. Review the checklist on the handout.

2. Read the answers to the Stack Overflow question.

3. Use the checklist to find opportunities to improve the

text.

4. Highlight the text and mark it with the checklist number.

15@PeterHilton •

A monad is a data type that
encapsulates a value and to which
essentially two operations can be
applied:
• return x creates a value of the

monad type that encapsulates x
• m >>= f (read it as ‘the bind

operator’) applies the function
f to the value in the monad m

That’s what a monad is. There are

a few more technicalities, but
basically those two operations
define a monad. The real question
is what a monad does, and that
depends on the monad — lists are
monads, Maybes are monads, IO
operations are monads. All that it
means when we say those things
are monads is that they have the
monad interface of return and
>>=.

Stack Overflow answer stackoverflow.com/a/2705860 by Chuck stackoverflow.com/u/50742 - CC BY-SA 3.0

http://stackoverflow.com/a/2705860
http://stackoverflow.com/u/50742

In OO terms, a monad is a fluent
container.
The minimum requirement is a

definition of class <A>
Something that supports a
constructor Something(A a) and
at least one method Something
flatMap(Function<A,
Something>).
Arguably, it also counts if your

monad class has any methods
with signature Something

work() which preserves the
class’s rules -- the compiler bakes
in flatMap at compile time.
Why is a monad useful? Because

it is a container that allows chain-
able operations that preserve
semantics. For example,
Optional<?> preserves the
semantics of isPresent for
Optional<String>,
Optional<Integer>,
Optional<MyClass>, etc. […]

Stack Overflow answer stackoverflow.com/a/40876132 by Rob stackoverflow.com/u/1282219 - CC BY-SA 3.0

http://stackoverflow.com/a/40876132
http://stackoverflow.com/u/1282219/rob

You should first understand what
a functor is. Before that,
understand higher-order
functions.
A higher-order function is simply
a function that takes a function as
an argument.
A functor is any type construction
T for which there exists a higher-
order function, call it map, that
transforms a function of type a ->
b (given any two types a and b)

into a function T a -> T b. This
map function must also obey the
laws of identity and composition
such that the following
expressions return true for all x, p,
and q (Haskell notation):
map id = id 
map (p . q) = map p . map q

For example, a type constructor
called List is a functor if it comes
equipped with a function of type
(a -> b) -> List a -> List b

Stack Overflow answer stackoverflow.com/a/143132 by Apocalisp stackoverflow.com/u/3434 - CC BY-SA 3

http://stackoverflow.com/a/143132
http://stackoverflow.com/u/3434/rob

More techniques (for longer text)

1. ‘What are you trying to say here?’

2. ‘Give three big take-aways!’

3. Get to the ‘how’

4. Don’t ask the reader to rewind

5. ‘What are you trying to say? Write that down!’

6. Don’t count words

7. Avoid cheerleading - say why it’s better
19@PeterHilton •

Documentation process

design

Software documentation process

How does software documentation fit into your project?

Who writes the documentation?

When do they write or update it?

21@PeterHilton •

Group exercise 1. Documentation tasks (5 min)

1. Identify and name documentation tasks

2. Make a timeline to indicate flow: 
arrange simultaneous tasks vertically

3. Use your phone for photo back-ups!

22@PeterHilton •

Group exercise 2. Process events (5 min)

What happens during the software development process in

between the documentation tasks?

How do you know a task should start, or that it is complete?

1. Add interesting events in between your tasks.

2. Use different colour stickies.

23@PeterHilton •

Group exercise 3. Documentation roles (5 min)

1. List roles involved in your process, on a separate piece of

paper.

2. Choose a good name for each role.

3. Annotate the sticky notes for the tasks with the role name

or initials.

24@PeterHilton •

Documentation process wrap-up

Which documentation tasks do you include in your process?

How much time should your team spend on documentation

each week?

How do you use documentation to reduce project risk?

What tools and production pipelines do you use?

25@PeterHilton •

Workshop wrap-up (retrospective)

What went well?

Would could have gone better?

What would you change?

26@PeterHilton •

Other documentation

topics

Bonus topics

1. Reducing the need for documentation

2. Documentation types

3. Production pipelines

4. Agile software development documentation

5. Code comments 😬

28@PeterHilton •

Reducing the need for documentation

Simplified/standard architecture (fewer diagrams)

Better naming and cleaner code (fewer code comments)

Automated acceptance tests (replacing functional specs)

Automated builds (shorter installation instructions)

However, we cannot replace many kinds of docs with code.

29@PeterHilton •

Documentation types

README

Installation instructions

Tutorial

API reference

Contributor’s guide

Architecture diagram

Component inventory

UML diagrams (various)

Data dictionary

Business process model

Business rules

Architecture Decision Record

30@PeterHilton •

Production pipelines

Word processor docs 😭

Wiki, e.g. Confluence

Google Docs

Markdown + GitHub repo

Markdown + Jekyll

(GitHub Pages)

AsciiDoc → HTML + PDF

reStructuredText + Sphinx

(readthedocs.org)

31@PeterHilton •

http://readthedocs.org

Agile documentation

The purpose of documentation is risk reduction.

Agile software development manages risks differently.

From a lean software development perspective,

documentation is waste. Minimum Viable Docs FTW!

How do you include documentation in agile development?
32@PeterHilton •

Code comments 😬

Comments are a feature of almost all languages,

but remain an almost taboo topic.

Developers will go to bizarre lengths to avoid comments

but usually fail to write code so good they don’t need any.

Comments are not the enemy:

meetings are the enemy!

33@PeterHilton •

Wrap-up

Wrapping up

We need system documentation,

but we don’t usually need very much.

Technical writing is not a mysterious black art:

as with coding, you can learn techniques and improve.

Session feedback welcome in person or via Twitter

I’m here all week! 35@PeterHilton •

@PeterHilton

http://hilton.org.uk/http://hilton.org.uk/presentations/documentation-workshop

Ask for details about this workshop at your company

http://hilton.org.uk/
http://hilton.org.uk/presentations/documentation-workshop

