
Mongrel Monads
Dirty, dirty, dirty

Niall Douglas

Contents:
1. Four techniques for handling errors in modern C++

○ Integer return codes [C]
○ Exception throws [C++ 98]
○ Error codes (std::error_code et al) [C++ 11]
○ Mongrel monads!

■ std::optional<T> [C++ 17]
■ std::expected<T, E> [C++ 20 ?]

(A proposed Boost.Outcome library up for peer review end of
May brings you the proposed expected<T, E> for

standardisation today for any C++ 14 compiler)
2

Contents:
2. Benchmarking the error handling techniques

on GCC 6.2, clang 4.0 and VS2017
3. Proposed Boost.Outcome’s convenience

extensions to the WG21 proposal
○ option<T>, result<T> and outcome<T>

4. Mongrel monads by code example

3

C error handling
Integer return codes

C Integer return codes

● Define some domain of integer error codes
meaning different types of error

● Variants:
○ Use an enum rather than macros to represent the

domain (slightly more type safety)
○ Return the integer from a function directly
○ Return it via a thread local facility such as errno or

GetLastError()
○ Return it via an int* in the parameter list

5

6

struct handle {

 int fd;

 ...

};

enum errors {

 SUCCESS=0,

 NOMEM,

 NOTFOUND,

 ...

};

7

extern int openfile(struct handle **outh, const char *path) {

 *outh = malloc(sizeof(struct handle));

 if(!*outh)

 return NOMEM;

 (*outh)->fd = open(path, O_RDONLY);

 if((*outh)->fd == -1) {

 free(*outh);

 *outh = NULL;

 return NOTFOUND;

 }

 return SUCCESS;

}

C++ 98 error handling
Throwing exceptions like it’s 1998

C++ 98 Exception throws

● If an error occurs, throw an exception to
indicate the problem

● Often misused to indicate input parameters
have bad values etc

● More subtle misuse is as control flow where
better alternatives exist

● Can be really expensive, as we will see
later 9

10

// Abstract base class for some handle implementation

struct handle {

 int fd;

 ...

 virtual ~handle() {

 if(fd != -1) {

 close(fd);

 fd = -1;

 }

 }

};

class handle_ref; // Some sort of smart pointer managing a

handle *

11

extern handle_ref openfile(const char *path) {

 int fd = open(path, O_RDONLY);

 if(fd == -1) {

 throw std::runtime_error("File not found");

 }

 // RAII close the file if exception throw

 handle temp(fd);

 // Could throw std::bad_alloc or any other kind of

exception during construction

 return handle_ref(new some_derived_handle_

implementation(temp));

}

This code is C++ 98

Can anyone say what
exception type should be

thrown here instead in C++ 11?

C++ 11 error handling
The underutilised C++ 11 <system_error>,

and what does noexcept actually mean?

C++ 11 error codes

● C++ 11 brought in Boost.System as the
<system_error> header
○ Provides a C++ equivalent to C integer error codes

■ A singleton subclass of std::error_category
provides the domain (i.e. what the codes mean)

■ std::error_code is an integer and a reference to
some error_category instance

■ std::system_error subclasses std::exception to
transport a std::error_code as payload

13

C++ 11 error codes

● Not widely used in C++ 11 nor C++ 14
standard libraries which currently remain
exception throw heavy
○ BUT C++ 17’s <filesystem> uses error_code

throughout
○ As does the Networking TS (ASIO)
○ Expect to see new overloads using error_code

cropping up in future C++ standard libraries

14

C++ 11 error codes
● The cleverness of system_error is not widely

appreciated! (1)
○ Implements framework for testing semantic

equivalence between error codes
■ This means you do not need to “translate” one

error code domain into another with switch()
maps etc:

15

// Make a system-specific error code matching this error condition

std::error_code ec(std::make_error_code(std::errc::timed_out));

// Compare some system-specific error code to this error condition

if(ec == std::errc::not_enough_memory) ...

C++ 11 error codes

● The cleverness of system_error is not
widely appreciated! (2)
○ Lets you “wrap” any existing C integer

error code system without having to
recompile that C library!

○ Out of the box system_error provides
default domains for POSIX errno and
Win32 GetLastError()

16

C++ 11 noexcept

● C++ 11 also brought us the noexcept modifier to
indicate that calling a function will never throw an
exception

● But what does noexcept mean?
a. That this function cannot return an error?
b. That the optimiser can assume that calling this

function can only exit through normal return?
c. That this function calls std::unexpected()?
d. That this function calls std::terminate()?

17

Maybe

Yes
No

Maybe

18

struct handle; // Abstract base class for some handle

implementation

class handle_ref; // Some sort of smart pointer managing a handle

*

// Non-throwing overload

extern handle_ref openfile(const char *path, std::error_code &ec)

noexcept {

 int fd = open(path, O_RDONLY);

 if(fd == -1) {

// Construct an error code in the OS errors domain

ec = std::error_code(errno, std::system_category());

return {};

 }

 auto *p = new(std::nothrow)

some_derived_handle_implementation(fd, ec);

19

 if(p == nullptr) {

close(fd);

// Construct an error code matching the generic OS error

// equivalent to the ENOMEM error condition

ec = std::make_error_code(std::errc::not_enough_memory);

return {};

 }

 if(ec) {

delete p;

return {};

 }

 return handle_ref(p);

}

20

struct handle; // Abstract base class for some handle implementation

class handle_ref; // Some sort of smart pointer managing a handle *

// Non-throwing overload

extern handle_ref openfile(const char *path, std::error_code &ec) noexcept {

 int fd = open(path, O_RDONLY);

 if(fd == -1) {

// Construct an error code in the OS errors domain

ec = std::error_code(errno, std::system_category());

return {};

 }

 auto *p = new(std::nothrow) some_derived_handle_implementation(fd, ec);

 if(p == nullptr) {

close(fd);

// Construct an error code matching the generic OS error equivalent

// to the ENOMEM error condition

ec = std::make_error_code(std::errc::not_enough_memory);

return {};

 }

 if(ec) {

delete p;

return {};

 }

 return handle_ref(p);

}

Did anyone see a bug in this
code?

You need an
ec.clear(); here

21

// Non-throwing overload defined on previous page

extern handle_ref openfile(const char *path, std::error_code

&ec) noexcept;

// Throwing overload

extern handle_ref openfile(const char *path)

{

 std::error_code ec;

 handle_ref ret(openfile(path, ec));

 if(ec)

 {

 throw std::system_error(ec);

 }

22

 return ret;

}

// If I want an exception throw due to failure to open the

file:

auto handle = openfile("somepath.txt");

// If I want to handle failure to open the file in normal

control flow:

std::error_code ec;

auto handle = openfile("somepath.txt", ec);

if(ec)

 handle_error(ec);

Questions?

C++ 20 (?) error handling
Mongrel monads: dirty, dirty, dirty

C++ 20 need for improvement
We have covered three different ways of
returning errors in C++, why do we need a fourth
way?
1. Forcing every caller to manually declare a

std::error_code to pass as &ec is unnatural,
clunky and not very “C++-ish”

2. A throwing and non-throwing overload of every
extern function doubles your public API count!

25

C++ 20 need for improvement
3. It is also error prone

○ Very easy to accidentally forget to check
for ec after a function returns

○ Very easy to forget to clear ec on entry
to a function

○ In practice it’s even easier to forget than
for C integer returns, so errors get lost or
misreported frequently

26

Remember that bug earlier?

C++ 20 need for improvement
4. The new systems languages Swift and Rust prefer to

return errors via a monadic transport of an integer with
some error code domain, and C++ needs to compete

5. std::error_code cannot be constexpr constructed
with an error category, and so cannot be used to
transport errors in constexpr

This has led the WG21 Library Evolution Working Group
(LEWG) to propose a C++ equivalent to a Swift/Rust error

transporting monad called expected<T, E>
27

LEWG expected<T, E>

Design-wise the proposed expected<T, E>
sits in between C++ 17’s std::optional<T>
and std::variant<...>

○ Like a variant, stores either a T or an E with the
same “never empty” guarantees

○ But has the API of an optional with a T state being
an “expected” thing and an E state being an
“unexpected” thing

28

29

template<class T, class E = std::error_condition>

class expected {

public:

 // all the same member functions from optional<T>

 using value_type = T;

 constexpr expected(...); // implicit usual ways of

 // constructing a T, usual assignment, swap, etc

 constexpr T* operator ->();

 constexpr T& operator *();

 constexpr explicit operator bool() const noexcept;

 constexpr bool has_value() const noexcept;

This is a defect, it should be
std::error_code and the Expected

in proposed Boost.Outcome deviates
from LEWG Expected on this

30

 constexpr T& value();

 template <class U> constexpr T value_or(U&&);

 // with these additions

 using error_type = E;

 constexpr expected(unexpected_type<E>); // type sugar for

constructing an E

 constexpr E& error();

};

// usual make functions

template <class T> constexpr expected<decay_t<T>> make_expected(T&&);

template <class E> constexpr unexpected_type<decay_t<E>>

make_unexpected(E&&);

I personally think that the use
of decay_t here is a defect

(make_expected<const
Foo>(Foo) won’t work, and that

is quite useful sometimes)

Mongrel monads

In terms of monads:
● Maybe monad => optional<T>
● Either monad => expected<T, E>

(WG21 LEWG has decided to work on the monadic
programming API for these in a separate (later) proposal.
Outcome provides its own monadic operators API as an

extension)
31

Rust’s Result<T, E> use
example, but in C++

http://rustbyexample.com/std/result.html

33

// Replicates example usage of Result<T, E> from

// http://rustbyexample.com/std/result.html

namespace checked {

 // Mathematical "errors" we want to catch

 enum class MathError {

 DivisionByZero,

 NegativeLogarithm,

 NegativeSquareRoot

 };

 using MathResult = outcome::expected<double,

MathError>;

34

 MathResult div(double x, double y) noexcept {

 if(::fabs(y) < FLT_EPSILON) {

 // This operation would fail, instead let's return the

 // reason of the failure wrapped in E

 return outcome::make_unexpected(MathError::DivisionByZero);

 }

 else {

 // This operation is valid, return the result wrapped in T

 return x / y;

 }

 }

35

 MathResult sqrt(double x) noexcept {

 if(x < 0.0)

 return

outcome::make_unexpected(MathError::NegativeSquareRoot);

 return ::sqrt(x);

 }

 MathResult ln(double x) noexcept {

 if(x < 0.0)

 return

outcome::make_unexpected(MathError::NegativeLogarithm);

 return ::log(x);

 }

}

36

double op(double x, double y) noexcept {

 checked::MathResult ratio = checked::div(x, y);

 if(!ratio) {

 std::cerr << "PANIC: MatchResult::DivisionByZero" <<

std::endl;

 std::terminate();

 }

 checked::MathResult ln = checked::ln(*ratio);

 if(!ln) {

 std::cerr << "PANIC: MatchResult::NegativeLogarithm" <<

std::endl;

 std::terminate();

 }

37

 checked::MathResult sqrt = checked::sqrt(*ln);

 if(!sqrt) {

 std::cerr << "PANIC: MatchResult::NegativeSquareRoot" <<

std::endl;

 std::terminate();

 }

 return sqrt.value();

}

int main(void) {

 // Will this fail?

 std::cout << op(1.0, 10.0) << std::endl;

 return 0;

}

A better use example
Our openfile() from before,

but using expected<T, E>

39

struct handle; // Abstract base class for some handle

implementation

class handle_ref; // Some sort of smart pointer managing a handle *

// Returns the expected opened handle on success, or an unexpected

cause of failure

extern std::experimental::expected<handle_ref, std::error_code>

openfile(const char *path) noexcept {

 int fd = open(path, O_RDONLY);

 if(fd == -1) {

return std::experimental::make_unexpected(std::error_code(errno,

std::system_category());

 }

 std::error_code ec;

 auto *p = new(std::nothrow) some_derived_handle_implementation(fd,

ec);

40

 if(p == nullptr) {

close(fd);

// C++ 11 lets you convert generic portable error_condition's into

// a platform specific error_code like this

return std::experimental::make_unexpected(

std::make_error_code(std::errc::not_enough_memory));

 }

 // The some_derived_handle_implementation constructor failed

 if(ec) {

delete p;

return std::experimental::make_unexpected(std::move(ec));

 }

 return handle_ref(p); // expected<> takes implicit conversion to

type T

}

41

auto fh_ = openfile("foo");

// C++ 11 lets you compare some platform specific error code to a

// generic portable error_condition

if(!fh_ && fh_.error() != std::errc::no_such_file_or_directory)

{

 // This is serious, abort by throwing a system_error wrapping the

error code

 throw std::system_error(std::move(fh_.error()));

}

if(fh_)

{

 handle_ref fh = std::move(fh_.value());

 fh->read(... etc

}

Questions?

Benchmarking
performance

Why not just throw exceptions
and save all this hassle?

Caveats benchmarking error handling
● It is surprisingly hard to come up with a representative

benchmark for error handling
● On SG14 (the WG21 study group for low latency C++

games dev, financial trading etc) significant efforts to
quantify the overhead of C++ exceptions have been
made

● The problem is that any synthetic benchmark you
choose will be too simple, and any real world code
base you modify will have been designed originally
around one particular error handling system

44

Benchmarking error handling
The benchmark presented here is very simple. For each
error handling mechanism:
● Generate ten source files each containing a single

function which calls the function in the next source
file. Access a volatile int before and after as work

● Compile each separately and link
● The final function in the call sequence either returns a

value or an error
● Iterate 100,000 times for many combinations of

compilers and options
45

Benchmarking error handling
Test hardware (MacBook Pro late 2016):
● 3.1Ghz Skylake CPU
● 25 Gb/sec memory bandwidth with 120 ns main

memory latency

● Windows Subsystem for Linux (WSL) running Ubuntu
14.04 LTS

● Microsoft Windows 10 x64 1607
● Apple macOS Sierra 10.12.3

46

47

48

Questions?

Which error handling
system should I use?

Which is best?

It really does depend on your code …
● Some techniques lend better to some code designs

than others
● Throwing exceptions (despite the cost) really can make

sense in some designs
○ 30k CPU cycles (~10 μs) is irrelevant compared to

operations lasting 10 ms

All that said, std::error_code is woefully
underused even in brand new C++ code

51

Proposed Boost.Outcome
Hopefully coming to Boost next month!

Proposed Boost.Outcome

● Comes with a high quality LEWG
expected<T, E> implementation [*]
○ Compiles into very compact assembler

● Completely standalone:
*** Header only and no Boost needed ***

● Works well on all major C++ 14 compilers
○ Minimum: clang 3.5, GCC 5, VS2015 Update 2
○ Best: clang 3.6, GCC 7, VS2017

53

Deviations from LEWG Expected 1

● P0323R1 doesn't yet specify what will be
done if you try accessing an expected which
is valueless due to exception. We throw a
bad_expected_access<void>

● Types T and E cannot be constructible into
one another. This is a fundamental design
choice to significantly reduce compile times
so it won't be fixed.

54

Deviations from LEWG Expected 2
● Instead of being its own type, unexpected_type<E>

is template aliased to an expected<void, E> which
implicitly converts into any expected<T, E>
○ Note our expected<T, E> passes the LEWG

Expected test suite!
● Our expected<T, E> defaults E to

std::error_code rather than to
std::error_condition
○ The LEWG proposal is almost certainly wrong on

this, it should be std::error_code
55

Deviations from LEWG Expected 3
● We don't implement the ordering and hashing operator

overloads due to
https://akrzemi1.wordpress.com/2014/12/02/a-g
otcha-with-optional/. The fact the LEWG proposal
does as currently proposed is a defect.

● Our Expected always defines the default, copy and
move constructors even if the the type configured is
not capable of it. That means std::
is_copy_constructible etc returns true when they
should return false. Reason? It reduces compile times

56

https://akrzemi1.wordpress.com/2014/12/02/a-gotcha-with-optional/
https://akrzemi1.wordpress.com/2014/12/02/a-gotcha-with-optional/

Other features of Boost.Outcome
● Ridiculously comprehensive “small book” of

documentation
● Full validation and conformance test suite
● Adds convenience alternatives to

expected<T, E> called outcome<T>,
result<T> and option<T>
○ These have stable ABI guarantees so are safe for

returning from DLL exported functions
57

Other features of Boost.Outcome
● Adds a full fat monadic programming API plus

lots of other useful extensions
● Works great with C++ exceptions disabled

○ SG14 low latency friendly
● Can be used as a “unified error handling

system” to deal with multiple error handling
systems by third party library dependencies
○ (yes I know only cranks and weirdos propose those … but

you don’t have to use that part if you don’t want to)
58

 outcome<T>, result<T>
and option<T>

Outcome’s extensions to expected<T, E>

Outcome extensions
expected<T, E> is great, but it’s a general
purpose STL primitive serving double duty:

1. Where the type of E is used to enforce error
domain type safety by being a different type per
error domain

2. Where the type of E is always std::error_code
because errors arise from many, unknown, sources

For the latter use case you need to type more
boilerplate code than is ideal

60

Outcome extensions

So to save typing boilerplate:
● option<T> = empty | T
● result<T> = empty | T | error code
● outcome<T> = empty | T | error code |

exception ptr
Hard coding the possible error types means
the API lets you skip typing boilerplate

61

Outcome extensions
outcome<int> v =

 make_errored_outcome(

 std::errc::timed_out);

...

v.value(); // throws a

system_error

outcome<int> v =

 make_exceptional_outcome(

 std::bad_alloc());

...

v.value(); // throws a

bad_alloc

62

expected<int, std::error_code> v =

 make_unexpected<std::error_code>(

 std::errc::timed_out);

try {

 v.value(); // throws

}

catch(const bad_expected_access<

std::error_code> &e) {

 // Extract the error code and rethrow

 // as asystem error which is the most

 // appropriate C++ exception type for

 // an error code

 throw std::system_error(e.error());

}

What happens if these types get out of
sync?

Outcome extensions
There is also a simple monadic functional
programming DSEL whose design annoys all the
purists
● Uses distinct overloads to choose operations

rather than distinct operators
● Allows (shock horror!) move semantics

which is a big no-no in functional
programming (but hey, this is C++!)

63

Quick demo of mongrel
monad logic

With minor puzzles!

65

using namespace BOOST_OUTCOME_V1_NAMESPACE;

error_code_extended ec;

// outcome::result<T> is like expected<T, error_code_extended>

// result<int> can therefore be either an int or an error_code_extended

// Operators & and | work intuitively ...

result<int> a(5);

result<int> b(a & 6); // a has a value, so become 6

result<int> c(b | 4); // b has a value, so remain at 6

result<int> d(a & ec); // a has a value, so become errored

result<int> e(d & 2); // d does not have a value, so remain errored

result<int> f(d | 2); // d does not have a value, so become 2

// What is the state of b, c, d, e and f?This executes constexpr, so the assembler is movl #2, %eax

66

using namespace BOOST_OUTCOME_V1_NAMESPACE;

error_code_extended ec;

// outcome<T> can be a T, an error_code_extended or an exception_ptr

// Operator >> is monadic bind (call callable with current state,

return from callable makes new monad)

outcome<std::string> a("niall");

auto x(a >> [ec](std::string) { return ec; } // returns

errored outcome<std::string>

 >> [](error_code_extended) { return

std::make_exception_ptr(5); }

 >> [](std::exception_ptr) { return; }

 >> [](outcome<std::string>::empty_type) { return

std::string("douglas"); });

// What is x? x = "douglas"

67

using namespace BOOST_OUTCOME_V1_NAMESPACE;

error_code_extended ec;

// outcome<T> can be a T, an error_code_extended or an exception_ptr

// Operator >> is monadic bind (call callable with current state,

return from callable makes new monad)

// Non-C++ monads always copy state, Outcome’s monads can also move,

just ask using a rvalue ref

outcome<std::string> a("niall");

auto z(a >> [](std::string &&v) { return std::move(v); }

 >> [](std::string &&v) { return std::move(v); }

 >> [](std::string &&v) { return std::move(v); }

 >> [](std::string &&v) { return std::move(v); });

assert(z.value() == "niall");

assert(a.value().empty());

Thank you
And let the questions begin!

Github: https://github.com/ned14/boost.outcome

Ref docs: https://ned14.github.io/boost.outcome

https://github.com/ned14/boost.outcome
https://ned14.github.io/boost.outcome/

