
Code Smells

Improving Sense of Smell for Low-Level Debugging

Session Goals

- Raise awareness of the pros and cons of low level debugging
techniques

- Discuss metaphor of smell

- Talk about a few smells

- Try some mob programming out!

Background

What is low level?

- PƌoǆiŵitǇ to ͞the ŵetal͟ ;ŵeŵoƌǇ, pƌoĐessoƌ, aŶǇ deǀiĐesͿ
- Protocols and stacks (USB, TCP etc.)

- When every moment matters

C++…??

stdout

Used by x86, ARM, PIC, AVR, PowerPC, MIPS

The joy of TDD

- Dependency injection

- C++ has arrived on micro-controllers!

- It’s alŵost as easǇ ǁith C aŶǇǁaǇ…

- Static mocking

- Multi-threaded testing

The joy of TDD

- Low level device driver development requires
a lot of eǆpeƌiŵeŶtatioŶ… ďe patieŶt!

- Clients often find it hard to understand why
Ǉou ǁoŶ’t use Đhip ŵaŶufaĐtuƌeƌ liďƌaƌies
(despite all their code being untested trash)

- Tight code memory might preclude running
tests on target completely

The joy of TDD

- Build server integration with BDD is tricky
when circuit boards are involved 

- Protocol stacks that (almost) no-one will let
you rewrite (TCP/IP, USB, radio commsͿ… Ǉou
have to wrap them really

- Multi-threaded testing will never represent
reality on the device

Let’s talk about trace baby…

CPU/MCU trace

Pros:

• Fast, with minimal interference

• Easy to disable/enable without code

• Can get trace output without a UART

Cons:

• Usually tricky to set up

• Can be flakey (or require expensive MCU and/or debugger)

• Might Ŷot ďe pƌopeƌlǇ suppoƌted ďǇ Ǉouƌ H/W desigŶ… oƌ desktop O/S

Let’s talk about trace baby…

Serial / external

Pros:

• Human readable output can be read on a terminal so you can copy/paste and watch it
easily

• Pretty simple to get up and running

Cons:

• ReƋuiƌes a UART peƌipheƌal ;ǁhiĐh ŵeaŶs USB oŶ a PC these daǇs…Ϳ
• High level of interference with executing code and/or hardware

• Slow

Let’s talk about trace baby…

RAM

Pros:

• Doesn't require anything except a debugger, but can optionally make use of serial dumps

• Very flexible

• Low level of interference with executing code

Cons:

• Tough to actually use if you don't have serial output of some kind

• Needs a reliable debugging session

• If a lot of data is involved, it could be tricky to store it all!

Let’s talk about trace baby…

Oscilloscope

Pros:

• DoesŶ’t eǀeŶ ƌeƋuiƌe a deďuggiŶg sessioŶ

• As real-time as it gets!!

• Least iŶteƌfeƌeŶĐe ǁith eǆeĐutiŶg Đode ;still ĐaŶ Đause pƌoďleŵs though…Ϳ

Cons:

• Limited data storage

• You need a scope

• MaǇ ƌeƋuiƌe deďuggiŶg piŶs ;aŶd iŶstƌuŵeŶtatioŶ to go ǁith theŵ…Ϳ

#habitability

Example 1: Delay (C)

static void _Delay(uint16_t microseconds)
{
 uint16_t i;

 for (i = 0u; i < microseconds; i++)
 {
 /* Delay 10usec */
 CLOCK_DELAY_US(10u);
 WATCHDOG_RESET();
 }
}

Example 2: Atmel SPI lock (C)

uint32_t QSPID_IsBusy(volatile uint8_t *QspiSemaphore)
{
 if (Is_LockFree(QspiSemaphore))
 return 1;
 else
 return 0;
}

Example 3: Waltzing (C)

case GET_SECTOR_COUNT : /* Get number of sectors on the disk (DWORD) */

 if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(csd, 16)) {

 if ((csd[0] >> 6) == 1) { /* SDC version 2.00 */

 csize = csd[9] + ((WORD)csd[8] << 8) + 1;

 (DWORD)buff = (DWORD)csize << 10;

 } else { /* SDC version 1.XX or MMC*/

 n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;

 csize = (csd[8] >> 6) + ((WORD)csd[7] << 2) + ((WORD)(csd[6] & 3) << 10) + 1;

 (DWORD)buff = (DWORD)csize << (n - 9);

 }

 res = RES_OK;

 }

 break;

A helpful analogy

- No cat flap

- Put them out after dinner or whenever they ask.

- They have litter trays...

- Go out for a few hours, come back, smells like crap in the house

Why is that?

How can I notice the bad smells?

- Regularly breathe fresh air

- Check the litter

- Have visitors

Another helpful analogy: nose training

Example 4: Ring around the roses (C)

bool RingBuffer_Write(RingBuffer *ringBuffer, uint8_t item)

{
 uint32_t size = ringBuffer->size;

 if (ringBuffer->count == size)
 return false;

 uint32_t end = ringBuffer->end;
 ringBuffer->items[end] = item;

 ringBuffer->end = (ringBuffer->end + 1) % size;

 ringBuffer->count++;
 return true;
}

Example 5: Creating a thread (C++0x)
void Core::CreateThread(void *stackBuffer,
 uint32_t stackSize,
 void (*entryPoint) (),
 uint8_t priority)
{
 Critical_DisallowInterrupts();
 KeyaSmartAssert(mCreatedThreadCount < Config::MaxNumberOfThreads);

 uint8_t nextSlot = 0U;
 for (uint32_t i = 0; i < Config::MaxNumberOfThreads; i++) {
 if (threadPool[i].Status == ThreadStatus_Free) {
 nextSlot = i;
 break;
 }
 }

 KeyaSmartAssert(nextSlot < Config::MaxNumberOfThreads);

 // Good to go
 threadPool[nextSlot].Status = ThreadStatus_Active;
 threadPool[nextSlot].StackBottom = stackBuffer;
 threadPool[nextSlot].SavedStackPointer =
 Context_InitialiseStackFrames(stackBuffer, stackSize, entryPoint, threadShutdown);

 threadPool[nextSlot].EntryPoint = entryPoint;
 threadPool[nextSlot].Priority = priority;
 mCreatedThreadCount++;
 Critical_AllowInterrupts();
}

Is this unit testable?

Example 5b: Creating a thread test

TEST_F(TestScheduler, First_thread_is_not_free_after_it_is_created)
{
 uint8_t mockStack[TestScheduler::MockStackSize];

 // Given
 // .. Scheduler is initialised

 // When
 Scheduler::Core::CreateThread(mockStack, sizeof(mockStack), ArbitraryThreadMain);

 // Then... all are free except index returned
 for (uint8_t i = IndexOfFirstUserThread; i < Config::MaxNumberOfThreads; i++) {
 ThreadStatus threadStatus = Scheduler::Core::GetThreadStatus(i);

 if (i == IndexOfFirstUserThread) {
 ASSERT_EQ(ThreadStatus_Active, threadStatus);
 } else {
 ASSERT_EQ(ThreadStatus_Free, threadStatus);
 }
 }

 // Then... that thread was created inside a critical section,
 // plus another for the timer and kernel threads
 ASSERT_TRUE(AssertCriticalSectionWasEnteredAndLeftNTimes(3));
}

Example 5b: Kernel thread switch

TEST_F(TestScheduler,
 Start_also_causes_an_initial_context_switch_into_the_kernel_thread)
{
 // Given
 // At least one user thread is needed to stop the Start() method from asserting out.
 uint8_t mockStack[TestScheduler::MockStackSize];
 Scheduler::Core::CreateThread(mockStack, sizeof(mockStack), ArbitraryThreadMain);

 // When
 Scheduler::Core::Start();

 // Then
 ASSERT_EQ(mockContext.SwitchToKernelCalls, 1U);
 ASSERT_TRUE(MockContext_IsKernelThreadCurrentThread());
}

#habitability
#goodsmells
#badsmells

A typical embedded setup

arm-none-eabi toolchain (limited to C++0x)

GDB

OpenOCD

.

ST-Link

ARM STM32 (Cortex M4 core)

The Story

- Client asks us to port some code and extend it

- Some unit tests

- TƌǇ it out oŶ the Ŷeǁ taƌget, ǁith ouƌ sĐheduleƌ, aŶd ǁe’ƌe
having problems

Mob Programming Session Rulez

1. Driver focuses on driving

2. Navigator pools ideas of group and tells driver what to do

3. Rotate every 5 minutes

4. Focus on the task in hand

