
Code Smells

Improving Sense of Smell for Low-Level Debugging

Session Goals

- Raise awareness of the pros and cons of low level debugging
techniques

- Discuss metaphor of smell

- Talk about a few smells

- Try some mob programming out!

Background

What is low level?

- P o i it to the etal e o , p o esso , a de i es

- Protocols and stacks (USB, TCP etc.)

- When every moment matters

C++…??

stdout

Used by x86, ARM, PIC, AVR, PowerPC, MIPS

The joy of TDD

- Dependency injection

- C++ has arrived on micro-controllers!

- It’s al ost as eas ith C a a …

- Static mocking

- Multi-threaded testing

The joy of TDD

- Low level device driver development requires
a lot of e pe i e tatio … e patie t!

- Clients often find it hard to understand why
ou o ’t use hip a ufa tu e li a ies

(despite all their code being untested trash)

- Tight code memory might preclude running
tests on target completely

The joy of TDD

- Build server integration with BDD is tricky
when circuit boards are involved

- Protocol stacks that (almost) no-one will let
you rewrite (TCP/IP, USB, radio comms … ou
have to wrap them really

- Multi-threaded testing will never represent
reality on the device

Let’s talk about trace baby…

CPU/MCU trace

Pros:

• Fast, with minimal interference

• Easy to disable/enable without code

• Can get trace output without a UART

Cons:

• Usually tricky to set up

• Can be flakey (or require expensive MCU and/or debugger)

• Might ot e p ope l suppo ted ou H/W desig … o desktop O/S

Let’s talk about trace baby…

Serial / external

Pros:

• Human readable output can be read on a terminal so you can copy/paste and watch it
easily

• Pretty simple to get up and running

Cons:

• Re ui es a UART pe iphe al hi h ea s USB o a PC these da s…

• High level of interference with executing code and/or hardware

• Slow

Let’s talk about trace baby…

RAM

Pros:

• Doesn't require anything except a debugger, but can optionally make use of serial dumps

• Very flexible

• Low level of interference with executing code

Cons:

• Tough to actually use if you don't have serial output of some kind

• Needs a reliable debugging session

• If a lot of data is involved, it could be tricky to store it all!

Let’s talk about trace baby…

Oscilloscope

Pros:

• Does ’t e e e ui e a de uggi g sessio

• As real-time as it gets!!

• Least i te fe e e ith e e uti g ode still a ause p o le s though…

Cons:

• Limited data storage

• You need a scope

• Ma e ui e de uggi g pi s a d i st u e tatio to go ith the …

#habitability

Example 1: Delay (C)

static void _Delay(uint16_t microseconds)
{
 uint16_t i;

 for (i = 0u; i < microseconds; i++)
 {
 /* Delay 10usec */
 CLOCK_DELAY_US(10u);
 WATCHDOG_RESET();
 }
}

Example 2: Atmel SPI lock (C)

uint32_t QSPID_IsBusy(volatile uint8_t *QspiSemaphore)
{
 if (Is_LockFree(QspiSemaphore))
 return 1;
 else
 return 0;
}

Example 3: Waltzing (C)

case GET_SECTOR_COUNT : /* Get number of sectors on the disk (DWORD) */

 if ((send_cmd(CMD9, 0) == 0) && rcvr_datablock(csd, 16)) {

 if ((csd[0] >> 6) == 1) { /* SDC version 2.00 */

 csize = csd[9] + ((WORD)csd[8] << 8) + 1;

 (DWORD)buff = (DWORD)csize << 10;

 } else { /* SDC version 1.XX or MMC*/

 n = (csd[5] & 15) + ((csd[10] & 128) >> 7) + ((csd[9] & 3) << 1) + 2;

 csize = (csd[8] >> 6) + ((WORD)csd[7] << 2) + ((WORD)(csd[6] & 3) << 10) + 1;

 (DWORD)buff = (DWORD)csize << (n - 9);

 }

 res = RES_OK;

 }

 break;

A helpful analogy

- No cat flap

- Put them out after dinner or whenever they ask.

- They have litter trays...

- Go out for a few hours, come back, smells like crap in the house

Why is that?

How can I notice the bad smells?

- Regularly breathe fresh air

- Check the litter

- Have visitors

Another helpful analogy: nose training

Example 4: Ring around the roses (C)

bool RingBuffer_Write(RingBuffer *ringBuffer, uint8_t item)

{
 uint32_t size = ringBuffer->size;

 if (ringBuffer->count == size)
 return false;

 uint32_t end = ringBuffer->end;
 ringBuffer->items[end] = item;

 ringBuffer->end = (ringBuffer->end + 1) % size;

 ringBuffer->count++;
 return true;
}

Example 5: Creating a thread (C++0x)
void Core::CreateThread(void *stackBuffer,
 uint32_t stackSize,
 void (*entryPoint) (),
 uint8_t priority)
{
 Critical_DisallowInterrupts();
 KeyaSmartAssert(mCreatedThreadCount < Config::MaxNumberOfThreads);

 uint8_t nextSlot = 0U;
 for (uint32_t i = 0; i < Config::MaxNumberOfThreads; i++) {
 if (threadPool[i].Status == ThreadStatus_Free) {
 nextSlot = i;
 break;
 }
 }

 KeyaSmartAssert(nextSlot < Config::MaxNumberOfThreads);

 // Good to go
 threadPool[nextSlot].Status = ThreadStatus_Active;
 threadPool[nextSlot].StackBottom = stackBuffer;
 threadPool[nextSlot].SavedStackPointer =
 Context_InitialiseStackFrames(stackBuffer, stackSize, entryPoint, threadShutdown);

 threadPool[nextSlot].EntryPoint = entryPoint;
 threadPool[nextSlot].Priority = priority;
 mCreatedThreadCount++;
 Critical_AllowInterrupts();
}

Is this unit testable?

Example 5b: Creating a thread test

TEST_F(TestScheduler, First_thread_is_not_free_after_it_is_created)
{
 uint8_t mockStack[TestScheduler::MockStackSize];

 // Given
 // .. Scheduler is initialised

 // When
 Scheduler::Core::CreateThread(mockStack, sizeof(mockStack), ArbitraryThreadMain);

 // Then... all are free except index returned
 for (uint8_t i = IndexOfFirstUserThread; i < Config::MaxNumberOfThreads; i++) {
 ThreadStatus threadStatus = Scheduler::Core::GetThreadStatus(i);

 if (i == IndexOfFirstUserThread) {
 ASSERT_EQ(ThreadStatus_Active, threadStatus);
 } else {
 ASSERT_EQ(ThreadStatus_Free, threadStatus);
 }
 }

 // Then... that thread was created inside a critical section,
 // plus another for the timer and kernel threads
 ASSERT_TRUE(AssertCriticalSectionWasEnteredAndLeftNTimes(3));
}

Example 5b: Kernel thread switch

TEST_F(TestScheduler,
 Start_also_causes_an_initial_context_switch_into_the_kernel_thread)
{
 // Given
 // At least one user thread is needed to stop the Start() method from asserting out.
 uint8_t mockStack[TestScheduler::MockStackSize];
 Scheduler::Core::CreateThread(mockStack, sizeof(mockStack), ArbitraryThreadMain);

 // When
 Scheduler::Core::Start();

 // Then
 ASSERT_EQ(mockContext.SwitchToKernelCalls, 1U);
 ASSERT_TRUE(MockContext_IsKernelThreadCurrentThread());
}

#habitability
#goodsmells
#badsmells

A typical embedded setup

arm-none-eabi toolchain (limited to C++0x)

GDB

OpenOCD

.

ST-Link

ARM STM32 (Cortex M4 core)

The Story

- Client asks us to port some code and extend it

- Some unit tests

- T it out o the e ta get, ith ou s hedule , a d e’ e
having problems

Mob Programming Session Rulez

1. Driver focuses on driving

2. Navigator pools ideas of group and tells driver what to do

3. Rotate every 5 minutes

4. Focus on the task in hand

