
An Overview of Program Optimization Techniques

Mathias Gaunard

Maven Securities

April 27, 2017

Outline

Introduction

Part 1: Understanding the Hardware
Instruction-Level Parallelism
Thread-Level Parallelism
Caches
Branch Prediction

Part 2: Hardware-Aware Patterns
Propagation, Expansion and Specialization
Data Access Patterns
Instruction Cache
Vectorization
High-level Parallelization
Object Layout
Computation Shortcuts

1 of 76

Program Optimization

Designing Optimized Programs

■ Process big chunks of work faster
■ React faster to certain events
■ Use less resources

An Open Topic

■ Compromises need to be made depending on what you want to optimize
■ Difficult to apply to complex systems due to all variables involved
■ “Poking at things in the dark”

□ Micro-benchmarks or fine measurements introduce bias
□ Static analysis doesn’t have all the data
□ Only good measure is the whole system performance in production

2 of 76

An Overview

Goals of this Talk
■ A non-exhaustive number of topics that affect performance
■ High-level description rather than in-depth analysis
■ A few recipes around those topics
■ Optimization is fun, but often evil

□ Don’t over-engineer everyday tasks
□ Investigate algorithmic complexity first
□ Experiment, measure and optimize responsibly

3 of 76

Talk Structure

Part 1: Understanding the Hardware

■ How source code is mapped to a micro-architecutre
■ What the chip does to speed up your code
■ How the chip interacts with the outside world, aka main memory

Part 2: Writing Code for the Hardware

■ Typical patterns and source code transformations
■ Some C++ recipes and tools

4 of 76

Outline

Introduction

Part 1: Understanding the Hardware
Instruction-Level Parallelism
Thread-Level Parallelism
Caches
Branch Prediction

Part 2: Hardware-Aware Patterns
Propagation, Expansion and Specialization
Data Access Patterns
Instruction Cache
Vectorization
High-level Parallelization
Object Layout
Computation Shortcuts

4 of 76

Mapping C++ to the Hardware

C++ code

Compiler IR

Assembly

Micro-ops

5 of 76

C++ to Assembly

Figure: x86-64 assembly of simple C++ code, courtesy of gcc.godbolt.org
6 of 76

What a CPU does

Instructions Results

7 of 76

What a CPU does: Pipelining

Instructions Results

8 of 76

What a CPU does: Pipelining

Instructions Results

8 of 76

What a CPU does: Pipelining

Instructions Results

8 of 76

What a CPU does: Pipelining

Instructions Results

8 of 76

What a CPU does: Pipelining

Instructions Results

8 of 76

What a CPU does: Pipelining

Instructions Results

8 of 76

What a CPU does: Pipelining

Instructions Results

8 of 76

What a CPU does: Pipelining

Instructions Results

8 of 76

What a CPU does: Pipelining

Instructions Results

8 of 76

What a CPU does: Pipelining

Instructions Results

8 of 76

What a CPU does: Pipelining

Instructions Results

8 of 76

What a CPU does: Superscalar

9 of 76

A Superscalar Pipeline

Figure: Intel SandyBridge micro-architecture

10 of 76

Outline

Introduction

Part 1: Understanding the Hardware
Instruction-Level Parallelism
Thread-Level Parallelism
Caches
Branch Prediction

Part 2: Hardware-Aware Patterns
Propagation, Expansion and Specialization
Data Access Patterns
Instruction Cache
Vectorization
High-level Parallelization
Object Layout
Computation Shortcuts

10 of 76

Stalls in the Pipeline

Imaginary Instructions

■ load/store 3 cycles
■ add 1 cycle

Stalls (15 cycles)
r1 = load(mem[i]);
r1 = add(r1 , 2);
store(r1, mem[j])
r1 = load(mem[i+1])
r1 = add(r2 , 2)
store(r1, mem[j+1])
r1 = load(mem[i+2])
r1 = add(r23 3)
store(r1, mem[j+2])

No stalls (9 cycles)
r1 = load(mem[i]);
r2 = load(mem[i+1])
r3 = load(mem[i+2])
r1 = add(r1, 2);
r2 = add(r2, 2)
r3 = add(r3, 2)
store(r1, mem[j])
store(r2, mem[j+1])
store(r3, mem[j+2])

11 of 76

Superscalar Execution

Multiple Execution Ports

■ Some operations available on multiple ports, some only on some
■ Different ports have different types of processing units

□ ALU
□ FPU
□ Memory Control
□ Special Instructions

Port Details
■ Dynamically scheduled as new instructions are evaluated
■ Each port has its own internal pipeline
■ Some static analysis tools exist to deduce port allocation for Intel

12 of 76

Out-of-Order Execution

In-Order Execution
■ If an instruction depends on the result of a previous instruction, the processor

must wait until it retires before executing (stall)
■ Requires statically scheduling instructions for efficiency

Out-of-Order Execution
■ Instructions are queued and executed as their dependencies become available
■ Dynamic scheduling method
■ No sequential consistency, various relaxed ordering models
■ x86: total store order consistency

□ reads not reordered with other reads
□ writes not reordered with other writes
□ writes can be reordered after reads
□ reads can be reordered after writes (if not dependent)

13 of 76

Working with a OoO Superscalar Processor

Multi-Issue
■ Processors can actually issue multiple instructions per cycle
■ Study reference manuals (latency, throughput, port mappings) to see what

can be executed concurrently to maximize CPU utilization

Avoiding Stalls

■ Learn to identify them with profiling tools
■ Avoid dependencies that prevent re-ordering, such as read after write
■ Pipelining manually can still help

14 of 76

Specialized Instructions

Not All Instructions Equal

■ Some instructions handled by more ports than others
■ Even then, some instructions faster than others
■ Addition is fastest, multiplication fast, division slow
■ Single precision faster than double precision

Instruction Set Architecture Extensions
■ Special bit manipulation instructions
■ Crypography instructions
■ SIMD processing units

15 of 76

Relative Instruction Speed

Fast to Slow
■ tests
■ bitwise operations, integer add
■ floating-point add
■ integer multiplication
■ floating-point multiplication
■ floating-point division (slow!)
■ integer division (super slow!)

YMMV
■ slower instructions have a higher latency
■ high throughput can still be obtained with pipelining

16 of 76

SIMD

Instructions

Data

Results

SISD SIMD
Principles
■ Single Instruction, Multiple Data

■ Large register with multiple lanes, each
operation applied to all lanes

■ If 128-bit register, processes 4 32-bit
values or 2 64-bit values in parallel

17 of 76

SIMD Assembly

xor eax, eax
cmp rdi , rsi
je .L4

.L3:
movzx edx, WORD PTR [rdi]
add rdi , 2
add eax, edx
cmp rsi , rdi
jne .L3

.L4:

cmp rdi , rsi
je .L15
pxor xmm2, xmm2
pxor xmm3 , xmm3

.L55:
movdqa xmm0

, XMMWORD PTR [rdi]
add rdi , 16
cmp rsi , rdi
movdqa xmm4 , xmm0
movdqa xmm1 , xmm0
punpcklwd xmm4 , xmm3
punpckhwd xmm1 , xmm3
movdqa xmm0 , xmm4
paddd xmm0, xmm2
paddd xmm0, xmm1
movdqa xmm2 , xmm0
jne .L55

.L15:

General-purpose x86-64 Assembly SSE2 Assembly

18 of 76

Outline

Introduction

Part 1: Understanding the Hardware
Instruction-Level Parallelism
Thread-Level Parallelism
Caches
Branch Prediction

Part 2: Hardware-Aware Patterns
Propagation, Expansion and Specialization
Data Access Patterns
Instruction Cache
Vectorization
High-level Parallelization
Object Layout
Computation Shortcuts

18 of 76

Simultaneous Multi-Threading

Temporal Multi-Threading

■ Classical approach for multithreading on non-parallel processors
■ Time sharing, one thread at a time

SMT: An Improvement for Superscalar Processors

■ Executes concurrently multiple threads on the same superscalar core
■ Shares the processing units across the threads, maximizing port occuptation
■ Can lead to resource starvation and decreased efficiency per core
■ Also known as HyperThreading

19 of 76

SMP and NUMA

Shared Memory Parallelism

■ Multiple cores on a single socket (multi-core)
■ Multiple socket on a single bus (Symmetric Multi-Processing)
■ Multiple nodes inter-connected together (Non-Uniform Memory Access)

Hierarchical Affinity

■ Some cores closer to each other, cheaper communication
■ Some local memory
■ Some shared memory
■ Some remote shared memory

20 of 76

NUMA Architecture

21 of 76

Memory Allocation on NUMA

Page Granularity

■ Page can be allocated on any of the NUMA nodes
■ Mapped into virtual address space at any location
■ Typically never migrates once allocated

First Touch
■ Linux over-commits, allocates page when data is actually written to it
■ Policy is to allocate on the node where the code is being run
■ Data should be initialized or copied by each worker rather than a master

22 of 76

Effects of Multithreading

Context Switches
■ Context switching is a potentially expensive operation (∼1000 cycles)
■ Going to the kernel causes a context switch
■ The kernel will schedule and switch to other threads to the core
■ One given thread might move to other cores during its lifetime, losing some

cached content

Cache Effects
■ If a core writes to a cache line, other cores need to evict it
■ False sharing if multiple cores access independent data on the same cache line

23 of 76

Synchronization

Mutexes
■ Put thread to sleep and do something else until condition is satisfied
■ Costly but better resource management

Memory Barriers

■ Prevents out-of-ordering re-ordering
■ Combined with atomicity, allows lightweight synchronization
■ Can cause more stalls to occur

24 of 76

Outline

Introduction

Part 1: Understanding the Hardware
Instruction-Level Parallelism
Thread-Level Parallelism
Caches
Branch Prediction

Part 2: Hardware-Aware Patterns
Propagation, Expansion and Specialization
Data Access Patterns
Instruction Cache
Vectorization
High-level Parallelization
Object Layout
Computation Shortcuts

24 of 76

Memory Technology

SRAM vs DRAM
■ SRAM is faster but requires more transistors
■ SRAM is used for caches, DRAM for main memory

Cache Levels
■ Level 1, per-core, ∼3 cycles
■ Level 2, per-core, ∼10 cycles
■ Level 3, shared, ∼30-80 cycles
■ eDRAM, shared, ∼200 cycles
■ Memory, ∼300 cycles
■ NUMA, ∼600-6000 cycles

25 of 76

Loading Memory into the Cache

toy cache example
fully associative
16 bytes per line
2 lines of cache

memory

26 of 76

Loading Memory into the Cache

miss

26 of 76

Loading Memory into the Cache

hit

26 of 76

Loading Memory into the Cache

miss

26 of 76

Loading Memory into the Cache

miss, old evicted

26 of 76

Cache Associativity

Memory to Cache Mapping

■ Memory location mapped to cache locations (non-injective)
■ Can be mapped to multiple locations

Fully Associative Memory can be mapped to any cache location

Direct Mapped Memory can be mapped to 1 cache location

N-way Associative Memory can be mapped to N cache locations

27 of 76

Making Good Use of the Cache

Spatial Locality

■ Group together related pieces of data
■ Minimize latency to obtain all pieces of information you need to compute

things

Temporal Locality

■ If you’re going to reuse data from a given location, do it before it gets evicted
■ Ordering of memory access should prefer processing contiguous chunks

linearly

28 of 76

Compact Layout

Hot Objects

■ Keep hot objects small, get all data with few memory accesses
■ If big enough, align on cache boundary
■ Avoid wasted data due to padding

Local Storage

■ Prefer storing data in the object itself
■ Hold objects by value, avoid pointers to everywhere in memory

29 of 76

Impact of Padding

40 bytes, 3 cache lines, 10 wasted bytes

struct Person {
enum : uint8_t { MALE , FEMALE , OTHER } sex;
uint64_t id;
char name [20];
uint8_t age;

};

32 bytes, 2 cache lines, 2 wasted bytes

struct Person {
uint64_t id;
enum : uint8_t { MALE , FEMALE , OTHER } sex;
uint8_t age;
char name [20];

};

30 of 76

Outline

Introduction

Part 1: Understanding the Hardware
Instruction-Level Parallelism
Thread-Level Parallelism
Caches
Branch Prediction

Part 2: Hardware-Aware Patterns
Propagation, Expansion and Specialization
Data Access Patterns
Instruction Cache
Vectorization
High-level Parallelization
Object Layout
Computation Shortcuts

30 of 76

Performance of Jumps

Taken
■ Pre-emptively fetched the right location into the cache
■ Pre-emptively started executing instructions in the pipeline
■ No latency penalty

Not Taken
■ Flush the pipeline and stall
■ Even more costly if location not in cache or worse, not paged in
■ Big penalty to both latency and throughput

31 of 76

Branchless Code

Avoiding Branches

■ Compute all paths, then select result at the end
■ Some instructions to do this natively, otherwise bitwise tricks
■ Required for SIMD computation

Performance
■ Good if all paths equally important with all similar amount of work
■ Needs to be able to compute all paths regardless of condition
■ Higher latency than a taken branch, typically good throughput

32 of 76

Static Branch Prediction

Heuristic for Cold State
■ Only used if no historical data available
■ Might not be used for modern processors
■ Easy to annotate in source code (likely/unlikely)

Jump Direction

■ Backward jump means loop, assume taken
■ Forward jump means branch, assume not-taken
■ Absolute jumps (virtual functions), assume nothing

33 of 76

Dynamic Branch Prediction

History Cache

■ Store N previous states of the branch (e.g. 32)
■ Assume that patterns repeat themselves
■ Multiple branches might map to the same cache entry

□ Possibility for branches with same history slot to collide, causing spurious
mispredictions

□ Some architectures mitigate this to some degree

Hotness
■ Control flows that happen more often will be faster
■ If some control flow you care about doesn’t happen often, you need to make

it so

34 of 76

Take Aways

■ Hardware is smart, help it be good at what it’s trying to do
■ Hierarchical parallelism, instruction and thread level
■ Different instructions have different speed
■ Memory and caches most important thing

□ Make your algorithms have good traversal orders
□ Design data structures with good object layout

35 of 76

Outline

Introduction

Part 1: Understanding the Hardware
Instruction-Level Parallelism
Thread-Level Parallelism
Caches
Branch Prediction

Part 2: Hardware-Aware Patterns
Propagation, Expansion and Specialization
Data Access Patterns
Instruction Cache
Vectorization
High-level Parallelization
Object Layout
Computation Shortcuts

35 of 76

Outline

Introduction

Part 1: Understanding the Hardware
Instruction-Level Parallelism
Thread-Level Parallelism
Caches
Branch Prediction

Part 2: Hardware-Aware Patterns
Propagation, Expansion and Specialization
Data Access Patterns
Instruction Cache
Vectorization
High-level Parallelization
Object Layout
Computation Shortcuts

35 of 76

Inlining

Problem Calling a function has some overhead
Pushing registers on stack, possibly a high cost if operating on
registers
Jumping to another address

Solution Expand the function at the call site
Also enables to optimize that call for that set of arguments

Drawbacks More code, not benefitting from sharing the same instruction cache

36 of 76

Function Call Cost and ABI (1)

37 of 76

Function Call Cost and ABI (2)

38 of 76

Specialization

Problem Some functions need to work with various different kinds of input
Supporting all cases it is slow

Solution Generate different versions of the function optimized for special
cases

Drawbacks More code, not benefitting from sharing the same instruction cache
Meta-programming and code generation techniques add extra
engineering overhead

39 of 76

What to Specialize

■ Inline to automatically enable more specialization opportunities for a given set
of arguments

■ Generate versions of algorithms for different data sizes, e.g. Fast Fourier
Transform optimized for working with 4096 or 8192 samples... Can pick on
entry with a switch.

■ Static types instead of boxed dynamic ones
■ Branches on the outside of loops rather than inside

40 of 76

Outline

Introduction

Part 1: Understanding the Hardware
Instruction-Level Parallelism
Thread-Level Parallelism
Caches
Branch Prediction

Part 2: Hardware-Aware Patterns
Propagation, Expansion and Specialization
Data Access Patterns
Instruction Cache
Vectorization
High-level Parallelization
Object Layout
Computation Shortcuts

40 of 76

Scalar Promotion

Problem Memory access is expensive
Most code has implicit memory accesses everywhere
Compiler cannot always perform the necessary alias analysis to
optimize them away

Solution Explicitly perform loads and stores
Remove access to invariant data out of loops

Drawbacks Additional registers required to maintain the data as opposed to
fetching it whenever needed

41 of 76

Aliasing

void foo(int* array , int const& size , int const& value) {
for (int i=0; i<size; ++i)

array[i] = 2 * value;
}

void foo(int* array , int const& size , int const& value) {
int sz = size;
int v = value;
for (int i=0; i<sz; ++i)

array[i] = 2 * v;
}

42 of 76

Unrolling

Problem Comparing and jumping at each iteration is slow

Solution Treat more than one element per iteration

Drawbacks Larger code
Need to deal with data sizes not dividable by the unrolling size

43 of 76

Unrolling with C++ Templates

int i;
for(i=0; i<n/4*4; i+=4) {

f(i);
f(i+1);
f(i+2);
f(i+3);

}
for(; i<n; ++i)

f(i);

unroll <4>(
0, n,
[&](int i) {

f(i);
}

)

44 of 76

Pipelining and Streaming

Problem Chain of dependent operations prevent parallel execution

Solution Organize the operations in iterations and make every operation in
the chain consume the output of previous iterations

Drawbacks Higher memory requirements (buffers, registers)
More complicated to set up

45 of 76

Streaming Computation to Another Device

Dumb Solution
■ Send data to device
■ Process data on device
■ Receive result back

Pipelined Solution

Send block 0
Send block 1 Process block 0
Send block 2 Process block 1 Receive block 0
Send block 3 Process block 2 Receive block 1

Process block 3 Receive block 2
Receive block 3

Size of block must be well chosen to overlap communication and computation

46 of 76

Pipeling Loops

Some Chain in a Loop

for(size_t i=0; i!=n; ++i)
d(c(b(a(i))));

Operation Latencies

■ a, b and d: 3
■ c: 6

47 of 76

Unrolling-based Pipelining

for(size_t i=0; i!=n; i += 6) {
r0 = a(i);
r1 = a(i+1);
r2 = a(i+2);
r3 = a(i+3); r0 = b(r0);
r4 = a(i+4); r1 = b(r1);
r5 = a(i+5); r2 = b(r2);

r3 = b(r3); r0 = c(r0);
r4 = b(r4); r1 = c(r1);
r5 = b(a4); r2 = c(r2);

r3 = c(r3);
r4 = c(r4);
r5 = c(r5);

d(r0);
d(r1);
d(r2);
d(r3);
d(r4);
d(r5);

}

maxi latencyi registers and unrolling size
48 of 76

Register Rotation

r0 = a(0);
r1 = a(1);
r2 = a(2);
r3 = a(3); r0 = b(r0);

r1 = b(r1);
r2 = b(r2);

r0 = c(r0);
r1 = c(r1);

for(size_t i=0; i!=n-4; ++i) {
r4 = a(i+4); r13 = b(r3); r12 = c(r2); d(r0);

r0 = r1;
r3 = r4; r2 = r13; r1 = r12;

}

tight code with no unrolling∑
i
latencyi
steps−1 registers

49 of 76

Tiling

Problem Traversing large arrays might cause redundant access to main
memory

Solution Organize the array in smaller tiles that fits in the cache

Drawbacks Optimal size of the tile depends on the actual hardware

50 of 76

2D Traversal: the Basics

for (size_t i=0; i<numcols; ++i)
for (size_t j=0; j<numrows; ++j)

table[j*numrows + i] *= 2;

for (size_t j=0; j<numrows; ++j)
for (size_t i=0; i<numcols; ++i)

table[j*numrows + i] *= 2;

Bad

Better

51 of 76

Simple 2D Traversal

Vertical (Useless)
Horizontal (Element-
Wise Operations)

52 of 76

Tiled 2D Traversal

Cache-Aware Vertical
(Vertical Reductions)

Tiles (Stencils, Lin-
ear Algebra...)

53 of 76

Outline

Introduction

Part 1: Understanding the Hardware
Instruction-Level Parallelism
Thread-Level Parallelism
Caches
Branch Prediction

Part 2: Hardware-Aware Patterns
Propagation, Expansion and Specialization
Data Access Patterns
Instruction Cache
Vectorization
High-level Parallelization
Object Layout
Computation Shortcuts

53 of 76

Instruction Cache

Code Locality

■ It’s better if code is tight and fits in the cache
■ Code that’s not hot does not need to waste space in your cache lines
■ Optimizing for cache typically conflicts a lot with other optimizations, hard to

do

Hot vs Cold
■ Group together the parts of the code that needs to be fast
■ Move the exceptional paths far away
■ Compilers can only move paths the end of the function, to make things be

further away you need to move it to another function or section

54 of 76

Exceptions and Codegen (1)

55 of 76

Exceptions and Codegen (2)

56 of 76

Outline

Introduction

Part 1: Understanding the Hardware
Instruction-Level Parallelism
Thread-Level Parallelism
Caches
Branch Prediction

Part 2: Hardware-Aware Patterns
Propagation, Expansion and Specialization
Data Access Patterns
Instruction Cache
Vectorization
High-level Parallelization
Object Layout
Computation Shortcuts

56 of 76

Vectorized Sum Algorithm

■ Compute 4 adjacent sums in parallel
■ Reduce the 4 partial sums to a single one
■ Add with leading and trailing data to get result.

57 of 76

Vectorizing with Intrinsics

uint32_t sum(uint16_t* first , uint16_t* last)
{

uint32_t result = 0;
for(; first != last; ++first)

result += *first;
return result;

}

uint32_t sum(uint16_t* first , uint16_t* last)
{

__m128i result = _mm_set1_epi32 (0);
for(; first != last; first += 8)
{

__m128i in = _mm_load_si128 ((__m128i *)first);
__m128i lo = _mm_unpacklo_epi16(in, _mm_setzero_si128 ());
__m128i hi = _mm_unpackhi_epi16(in, _mm_setzero_si128 ());

result = _mm_add_epi32(result , lo);
result = _mm_add_epi32(result , hi);

}

result = _mm_add_epi32(result ,
_mm_shuffle_epi32(result , _MM_SHUFFLE (1, 0, 3, 2))

);
result = _mm_add_epi32(result ,

_mm_shuffle_epi32(result , _MM_SHUFFLE (0, 1, 2, 3))
);
return _mm_cvtsi128_si32(result);

}

Scalar code SSE2 Intrinsics

58 of 76

C++ Libraries for SIMD computing

uint32_t sum(uint16_t* first , uint16_t* last)
{

typedef datapar <uint32_t > out_t;
out_t result = 0;
for(; first != last; first += out_t::size ())
{

result += out_t(first);
}
return result.reduce(

[](auto a, auto b) { return a + b; }
);

}

uint32_t sum(uint16_t* first , uint16_t* last)
{

typedef datapar <uint16_t > in_t;
typedef datapar <uint32_t , in_t::size ()/2> out_t;
out_t result = 0;
for(; first != last; first += in_t::size ())
{

in_t in(first);
auto [lo, hi] = datapar_cast <out_t >(in);
result += lo;
result += hi;

}
return result.reduce(

[](auto a, auto b) { return a + b; }
);

}

Promote to 32-bit on load
Load as 16-bit and
explicitly promote

Vc by Matthias Kretz
Boost.SIMD by Joel Falcou et. al
ISO C++ TS Parallelism v2

59 of 76

Outline

Introduction

Part 1: Understanding the Hardware
Instruction-Level Parallelism
Thread-Level Parallelism
Caches
Branch Prediction

Part 2: Hardware-Aware Patterns
Propagation, Expansion and Specialization
Data Access Patterns
Instruction Cache
Vectorization
High-level Parallelization
Object Layout
Computation Shortcuts

59 of 76

Generalizing a Multi-Core Sum

■ Split range into a number of subranges that get processed independently
■ Preferably give full cache lines to each thread to avoid false sharing
■ Accumulate the results pairwise to avoid global synchronization

60 of 76

Multi-Core SIMD Reduction

■ Combine the two approaches
■ No need for each thread to deal with leading/trailing data if splitting on cache

line boundary

61 of 76

Parallel Algorithm Skeletons

uint32_t sum(uint16_t* first , uint16_t* last)
{

return std:: reduce(datapar, first , last ,
overload(

[](uint16_t a, uint16_t b)
{

return a + b;
},
[](datapar <uint16_t > a, datapar <uint16_t > b)
{

return datapar <uint32_t , a.size()>(a)
+ datapar <uint32_t , b.size()>(b);

}
)

);
}

■ Re-usable SIMD-enabled skeleton
■ Handles leading and trailing data based on scalar overload
■ Handles SIMD vector to scalar reduction with log2(N) algorithm

■ Also parallelized on multi-core

62 of 76

Parallel Algorithm Skeletons

uint32_t sum(uint16_t* first , uint16_t* last)
{

return std:: reduce(par_datapar, first , last ,
overload(

[](uint16_t a, uint16_t b)
{

return a + b;
},
[](datapar <uint16_t > a, datapar <uint16_t > b)
{

return datapar <uint32_t , a.size()>(a)
+ datapar <uint32_t , b.size()>(b);

}
)

);
}

■ Re-usable SIMD-enabled skeleton
■ Handles leading and trailing data based on scalar overload
■ Handles SIMD vector to scalar reduction with log2(N) algorithm
■ Also parallelized on multi-core

62 of 76

Parallel Algorithm Skeletons, Polymorphic

uint32_t sum(uint16_t* first , uint16_t* last)
{

return std:: reduce(datapar , first , last ,
[](auto a, auto b)
{

return cast <uint32_t >(a) + cast <uint32_t >(b);
}

);
}

■ C++14 polymorphic lambdas allow to express a single generic overload for
both scalar and SIMD

■ Goal is to make it possible to write SIMD-agnostic code as much as possible.

63 of 76

Higher-Order Algorithms

Classic Data Parallel Skeletons
■ map, std::transform
■ fold, std::reduce

■ scan, std::inclusive_scan or std::exclusive_scan

Task Parallel Skeletons
■ graph of tasks
■ farms
■ pipelines
■ wavefronts

64 of 76

Why Think in Skeletons

Code Speed

■ Well-studied patterns, good algorithms in research
■ Plenty of tuned implementations
■ Composable for layers of backends

Productivity Speed

■ Embed optimization techniques for a given problem in a box
■ Reuse box with minimal extra work
■ Abstraction decouples the algorithm from the optimization

65 of 76

Outline

Introduction

Part 1: Understanding the Hardware
Instruction-Level Parallelism
Thread-Level Parallelism
Caches
Branch Prediction

Part 2: Hardware-Aware Patterns
Propagation, Expansion and Specialization
Data Access Patterns
Instruction Cache
Vectorization
High-level Parallelization
Object Layout
Computation Shortcuts

65 of 76

Array-of-Structures vs Structures-of-Arrays

struct Sample
{

double portfolio_value;
double external_flow;

};

double time_weighted_return(vector <Sample > const& samples)
{

double ret = 1.;
for(size_t i=1; i<samples.size (); ++i)
{

ret *= (samples[i]. portfolio_value - samples[i]. external_flow)
/ samples[i-1]. portfolio_value;

}
return ret;

}

struct Samples
{

vector <double > portfolio_values;
vector <double > external_flows;

};

double time_weighted_return(Samples const& samples)
{

double ret = 1.;
for(size_t i=1; i<samples.portfolio_values.size (); ++i)
{

ret *= (samples.portfolio_values[i] - samples.external_flows[i])
/ samples.portfolio_values[i-1];

}
return ret;

}

AoS SoA

■ AoS more natural, humans organize things into objects
■ SoA makes it easier to vectorize, contiguous memory makes load/store easy
■ AoS is more compact as it puts things into the same cache line

□ usually translates to better latency but worse throughput

66 of 76

Outline

Introduction

Part 1: Understanding the Hardware
Instruction-Level Parallelism
Thread-Level Parallelism
Caches
Branch Prediction

Part 2: Hardware-Aware Patterns
Propagation, Expansion and Specialization
Data Access Patterns
Instruction Cache
Vectorization
High-level Parallelization
Object Layout
Computation Shortcuts

66 of 76

Strength Reduction

Replace operations by cheaper ones

■ Multiplication by addition
■ Exponentiation by multiplication
■ Division by multiplication by reciprocal

67 of 76

Linearization of Multi-Dimensional Access

template <class T>
struct Matrix
{

Matrix(size_t width , size_t height)
: data(static_cast <T*>(operator new(width*height)))
, width(width)
, height(height)

{}

T* data;
size_t width;
size_t height;

T& operator ()(size_t j, size_t i) {
return data[j*width+i];

}
};

68 of 76

Linearization of Multi-Dimensional Access (2)

template <class T>
Matrix <T> identity(size_t width , size_t height)
{

Matrix <T> m(width , height);
for (size_t j=0; j<m.height; ++j) {

for (size_t i=0; i<m.width; ++i)
m(j, i) = 0.0;

m(j, j) = 1.0;
}

69 of 76

Linearization of Multi-Dimensional Access (3)

template <class T>
Matrix <T> identity(size_t width , size_t height)
{

Matrix <T> m(width , height);
for (size_t i=0; i<width*height;) {

data[i++] = 1.0;
for (size_t j=i+width; i<j; ++i)

data[i] = 0.0;
}
return m;

}

70 of 76

Newton-Rhapson Method

■ Use ”some way” to get an initial approximation y0 of a function f(x)
■ Find g(y) so that g(f(x)) = 0

■ Refine with

yi+1 = yi −
g(yi)
g′(yi)

■ Repeat until happy

71 of 76

Common Approximations

Reciprocal 1/x

■ Dedicated instructions for y0
■ Refine with yi+1 = yi + yi(1− xyi)
■ Can be used to implement fast division

Inverse Square Root 1/sqrt(x)

■ Quake III method 0x5f3759df or dedicated instructions for y0
■ Refine with yi+1 = yi(1.5− 0.5 ∗ x ∗ yi ∗ yi)

72 of 76

Mixed Precision Techniques

Idea
■ Convert input from double to single precision
■ Compute result in single precision
■ Convert it back to double precision
■ Refine iteratively

Application

■ Single precision is much faster on GPU
■ Successfully deployed for some linear algebra problems

73 of 76

Fast Polynomial Evaluation

Polynoms

■ Functions approximated by polynoms by intervals
■ p(x) = a0 + a1x+ a2x2 + a3x3 + a4x4

Horner

p(x) = a0 + x(a1 + x(a2 + x(a3 + xa4)))

r = a4;
r = fma(r, x, a3);
r = fma(r, x, a2);
r = fma(r, x, a1);
r = fma(r, x, a0);

Optimal number of additions and multiplications, which can be fused

74 of 76

Estrin’s Scheme

p(x) = (a0 + a1x) + (a2 + a3x)x2 + a4x4

■ Not as efficient, but can run multiple fmas in parallel
■ Better utilisation of superscalar processors
■ Only performs well for certain sizes

75 of 76

Questions?

76 of 76

	Introduction
	Part 1: Understanding the Hardware
	Instruction-Level Parallelism
	Thread-Level Parallelism
	Caches
	Branch Prediction

	Part 2: Hardware-Aware Patterns
	Propagation, Expansion and Specialization
	Data Access Patterns
	Instruction Cache
	Vectorization
	High-level Parallelization
	Object Layout
	Computation Shortcuts

