

Thinking Outside
the Synchronisation
e TELET]

@KeviinHenney

mEMNEE
@Al
wBaQl

CL VR B

EdERDE®
PEELEE
GE®™®
Deaghm s
GeaaMie .
CEaEDEs
e O

Edited by Kevlin Henney

Collective Wisdom
from the Experts

1§

O’REILLY*

-
Y

£ ! h WILEY SERIES IN
SOFTWARE DESIGN PATTERNS SOFTWARE DESIGN PATTERNS

PATTERN-ORIENTED PATTERN-ORIENTED
SOFTWARE SOFTWARE
ARCHITECTURE ARCHITECTURE

A Pattern Language for On Patterns and Pattern Languages

Distributed Computing

[Volume 5 |

Frank Buschmann

Frank Buschmann

Kevlin Henney

Kevlin Henney

Douglas C. Schmidt Douglas C. Schmidt

C

St

Architecture represents the
significant design decisions
that shape a system, where

significant 1s measured by
cost of change.

Grady Booch

Concurrency

Threads

Locks

Architecture 1s the art
of how to waste space.

Philip Johnson

Architecture is the art
of how to waste time.

Mutable

Shared mutable
data needs
synchronisation

Unshared mutable
data needs no
synchronisation

Unshared Shared

Shared immutable
data needs no
synchronisation

Unshared immutable
data needs no
synchronisation

Immutable

Mutable

Unshared mutable
data needs no
synchronisation

Unshared Shared

Shared immutable
data needs no
synchronisation

Unshared immutable
data needs no
synchronisation

Immutable

00t)8.1148.304411)

This is the monstrosity in love,
lady, that the will is infinite,
and the execution confined;
that the desire is boundless,
and the act a slave to limit.

William Shakespeare
Troilus and Cressida

Operation Cost in CPU Cycles

“Simple” register-register op (ADD,OR,etc.)
Memory write

Bypass delay: switch between

integer and floating-point units

“Right” branch of “if”

Floating-point/vector addition

Multiplication (integer/float/vector)

Return error and check

L1 read

L2 read

“Wrong” branch of “if” (branch misprediction)
Floating-point division

128-bit vector division

C function direct call

Integer division

C function indirect call

C++ virtual function call

L3 read

Main RAM read

NUMA: different-socket L3 read
Allocation+deallocation pair (small objects)
NUMA: different-socket main RAM read
Kernel call

Thread context switch (direct costs)

C++ Exception thrown+caught

Thread context switch (total costs,
including cache invalidation)

Distance which light travels
while the operation is performed

100

1-3
1-7

1-7

3 H
A I b 1

Not all CPU operations are created equal

101 102 103 104 105 108
=n
=
=
oo |
Coso |
Cooo

10000 - 1 million

<4
<4

Multitasking is really just rapid
attention-switching.

And that'd be a useful skill, except it
takes us a second or two to engage
In @ new situation we've graced with
our focus.

So, the sum total of attention is
actually decreased as we multitask.

Slicing your attention, in other
words, is less like slicing potatoes
than like slicing plums: you always
lose some juice.

David Weinberger

completion time
for single thread

division of
labour

1—p

A

»

(n—1)|
|

portion in
parallel

Amdahl's law

tq

1 —

(n—1) nn—1)
P n]+k 2

inter-thread
connections
(worst case)

typical
communication
overhead

Command-line tools
can be 235x faster than
your Hadoop cluster

aaaaaaaaa

template<
typename Iterator,
typename Mapping,
typename Reduction,
typename Value>
Value map reduce(
Iterator begin, Iterator end,
Mapping mapping, Reduction reduction, Value initial)

std::vector<std::thread> threads;

for(auto to map = begin; to map != end; ++to_map)
threads.push_back(std::thread(mapping, *to map));
for(auto & to join : threads)
to join.join();
return std::accumulate(begin, end, initial, reduction);

template<
typename Iterator,
typename Mapping,
typename Reduction,
typename Value>
auto map_reduce(
Iterator begin, Iterator end,
Mapping mapping, Reduction reduction, Value initial)

std::vector<std::thread> threads;

for(auto to map = begin; to map != end; ++to_map)
threads.push_back(std::thread(mapping, *to map));
for(auto & to join : threads)
to join.join();
return std::accumulate(begin, end, initial, reduction);

auto map_reduce(
auto begin, auto end, auto mapping, auto reduction, auto initial)
{

std::vector<std::thread> threads;

for(auto to map = begin; to map != end; ++to_map)
threads.push _back(std::thread(mapping, *to map));
for(auto & to join : threads)
to join.join();
return std::accumulate(begin, end, initial, reduction);

auto map_reduce(
auto begin, auto end, auto mapping, auto reduction, auto initial)
{

std::for each(std::execute::par unseq, begin, end, mapping);
return std::accumulate(begin, end, initial, reduction);

auto map_reduce(
auto begin, auto end, auto mapping, auto reduction, auto initial)
{

using namespace std::execute;

std::for_each(par _unseq, begin, end, mapping);
return std::accumulate(begin, end, initial, reduction);

auto map_reduce(
auto begin, auto end, auto mapping, auto reduction, auto initial)
{

using namespace std::execute;

std::for_each(par_unseq, begin, end, mapping);
return std: reduce(par unseq, begin, end, initial, reduction);

A large fraction of the flaws in software development
are due to programmers not fully understanding all
the possible states their code may execute in.

In a multithreaded environment, the lack of
understanding and the resulting problems are greatly
amplified, almost to the point of panic if you are
paying attention.

John Carmack
http://www.gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php

! A Calrissian
i @mattpodwysocki
OH: "take me down to concurrency city where green pretty

is grass the girls the and are”
9:30 PM - 24 Oct 2013

« 31417 €843

There are several ways to

address the problem of
deadlock...

http://www.cs.rpi.edu/academics/ courses/ fall04/os/c10/index. html

Just ignore it and hope it
doesn't happen.

Ostrich Algorithm

http://www.cs.rpi.edu/academics/ courses/ fall04/os/c10/index. html

Detection and recovery —
if it happens, take action.

http://www.cs.rpi.edu/academics/ courses/ fall04/os/c10/index. html

Dynamic avoidance by careful
resource allocation — check to
see if a resource can be
granted, and if granting it will
cause deadlock, don't grant it.

http://www.cs.rpi.edu/academics/ courses/ fall04/os/c10/index. html

Prevention — change the rules.

http://www.cs.rpi.edu/academics/ courses/ fall04/os/c10/index. html

-

habitable

Habitability is the characteristic
of source code that enables
programmers, coders, bug-fixers,
and people coming to the code
later in its life to understand its
construction and intentions and
to change it comfortably and
confidently.

Habitability makes a place
livable, like home. And this is
what we want in software — that
developers feel at home, can
place their hands on any item
without having to think deeply
about where it is.

testable

Simple Testing Can Prevent
Most Critical Failures

An Analysis of Production Failures in
Distributed Data-Intensive Systems

https://www.usenix.org/system/files/conference/osdil 4/osdil 4-paper-yuan.pdf

A majority of the production
faillures (77%) can be
reproduced by a unit test.

https://www.usenix.org/system/files/conference/osdil 4/osdil 4-paper-yuan.pdf

We want our code
to be unit testable.

What i1s a unit test?

A test is not a unit test if:

It talks to the database

It communicates across the network

It touches the file system

It can't run at the same time as any of your other
unit tests

You have to do special things to your environment
(such as editing config files) to run it.

Michael Feathers
http://www.artima.com/weblogs/viewpost.jsp ’thread=126923

A unit test is a test of behaviour
whose success or failure is wholly
determined by the correctness of
the test and the correctness of the
unit under test.

Kevlin Henney
http://www.theregister.co.uk/2007/07/28/what_are_your_units/

What do we want
from unit tests?

When a unit test
passes, it shows
the code 1s correct.

When a unit test
fails, 1t shows the
code 1s Incorrect.

isolated

immut abl ©

sequential

asynchronous

| Am Devloper

P @iamdevloper

10 Things You'll Find Shocking About Asynchronous
Operations:

5:15 PM - 12 Dec 2016
4« 135641 07446

virtual uniprocessors
>
')

A

messages/events

\J
L)
\J
|
L)
. *
.
.
.

o
*
q Q”’ >
single-threaded bubble

SERIES IN

SOFTWARE DESIGN PATTERNS

WILEY

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Paitern Language for
Distributed Computing

Frank Buschmann

Kevlin Henney

Douglas C. Schmidt

Future

Immediately return a ‘virtual’ data object—
called a future—to the client when it invokes a

service. This future [...] only provides a value
to clients when the computation is complete.

ResultType result = function() ;

ResultType result = function() ;

std: : future<Resul tType>
iou = std::async (function);

ResultType result = iou.get();

joiner<ResultType>
iou = thread (function) ;

ResultType result = 1iou() ;

"C++ Threading", ACCU Conference, April 2003
"More C++ Threading", ACCU Conference, April 2004
"N1883: Preliminary Threading Proposal for TR2", JTC1/SC22/WG21, August 2005

Instead of using threads and shared
memory as our programming model, we
can use processes and message passing.
Process here just means a protected
independent state with executing code,
not necessarily an operating system
process.

Russel Winder

"Message Passing Leads to Better Scalability in Parallel Systems"

Languages such as Erlang (and occam
before it) have shown that processes are a
very successful mechanism for
programming concurrent and parallel
systems. Such systems do not have all
the synchronization stresses that shared-
memory, multithreaded systems have.

Russel Winder

"Message Passing Leads to Better Scalability in Parallel Systems"

queues

template<typename ValueType>
class queue
{
public:
void send(const ValueType &);
bool try receive(ValueType &);
private:

s

template<typename ValueType>
class queue
{
public:
void send(const ValueType &);
bool try receive(ValueType &);
private:
std: :deque<ValueType> fifo;
}s

template<typename ValueType>
class queue

{
public:

void send(const ValueType & to_send)

{
fifo.push back(to_send);
}

template<typename ValueType>
class queue

{
public:

bool try receive(ValueType & to receive)

{

bool received = false;
if (!fifo.empty())

{
to receive = fifo.front();
fifo.pop front();
received = true;

}

return received;

I

template<typename ValueType>
class queue
{
public:
void send(const ValueType &);
bool try receive(ValueType &);
private:
std: :mutex key:
std: :deque<ValueType> fifo;
}s

void send(const ValueType & to_send)

{
std::lock guard<std::mutex> guard(key);

fifo.push _back(to_send);

bool try receive(ValueType & to receive)

{

bool received = false;
if (key.try lock())

{
std::1ock guard<std::mutex> guard(key, std::adopt lock);
if (1fifo.empty())
{
to receive = fifo.front();
fifo.pop front();
received = true;
}
}

return received;

template<typename ValueType>
class queue
{
public:
void send(const ValueType &);
bool try receive(ValueType &);
private:
std: :mutex key:
std: :deque<ValueType> fifo;
}s

template<typename ValueType>

class queue

{

public:
void send(const ValueType &);
void receive(ValueType &);
bool try receive(ValueType &);

private:
std: :mutex key:
std::condition variable any non_empty;
std: :deque<ValueType> fifo;

}s

template<typename ValueType>
class queue

{
public:

void send(const ValueType &);
bool try send(const ValueType &);
void receive(ValueType &);

bool try receive(ValueType &);

queue() ;
explicit queue(std::size_t max_size);

private:
std:
std:
std:
std:

I

:mutex key;

:condition variable _any non empty, non full;
:size t max_size;

:deque<ValueType> fifo;

template<typename ValueType>

class queue

{

public:
void send(const ValueType &);
void receive(ValueType &);
bool try receive(ValueType &);

private:
std: :mutex key:
std::condition variable any non_empty;
std: :deque<ValueType> fifo;

}s

void send(const ValueType & to_send)

{
std::lock guard<std::mutex> guard(key);

fifo.push _back(to_send);
non_empty.notify all();

void receive(ValueType & to_receive)

{

std::lock guard<std::mutex> guard(key);
non_empty.wait(

key,

[this]

{
return !fifo.empty();
});
to _receive = fifo.front();
fifo.pop front();

template<typename ValueType>

class queue

{

public:
void send(const ValueType &);
void receive(ValueType &);
bool try receive(ValueType &);

void operator<<(const ValueType &);
void operator>>(ValueType &);

private:
std: :mutex key:
std::condition variable any non_empty;
std: :deque<ValueType> fifo;

I

template<typename ValueType>

class queue

{

public:
void send(const ValueType &);
void receive(ValueType &);
bool try receive(ValueType &);

void operator<<(const ValueType &);
receiving operator>>(ValueType &);
private:
std: :mutex key:
std::condition variable any non_empty;
std: :deque<ValueType> fifo;
}s

template<typename ValueType>
class queue

{
public:

void send(const ValueType &);
void receive(ValueType &);
bool try receive(ValueType &);

void operator<<(const ValueType & to send)

{
}

receiving operator>>(ValueType & to receive);

{
return receiving(this, to receive);

}

send(to_send);

I

class receiving

{

public:

receiving(queue * that, ValueType & to_receive)
: that(that), to_receive(to_receive)

{

}

receiving(receiving && other)
: that(other.that), to_receive(other.to_receive)

{
}

operator bool ()

{

other.that = nullptr;

auto from = that;
that = nullptr;
return from 8& from->try receive(to_receive);

}

~receiving()

{
if (that)
that->receive(to_receive);

}

private:

b

queue * that;
ValueType & to_receive;

N

buffered
bounded
asynchronous

N =00
buffered
unbounded
asynchronous

future

~1—f

buffered
bounded
asynchronous

-~

vnbuffered
bounded
synchronous

channels

C.A.R.Hoare
communicating

Sequential
Processes

& Richard Dalton
&R @richardadalton

FizzBuzz was invented to avoid the awkwardness of

realising that nobody in the room can binary search an
array.

11:29 AM - 24 Apr 2015
4« 39 %9

func fizzbuzz(n int) string {
result := ""
ifn%3==0{
result += "Fizz"
}
ifn%5==20{
result += "Buzz"

}
if result == "" {

result = strconv.Itoa(n)
}

return result

func fizzbuzzer(in <-chan int, out chan<- string) ({
for n := range in {
out<-fizzbuzz(n)

}

func main() {
request := make(chan int)
response := make(chan string)

go fizzbuzzer(request, response)

for i :=1; i <= 100; i++ {
request<-i
fmt.Println(<-response)

variable := expression

PAR
channel ! expression
channel ? wvariable

vives &
filters

SERIES IN

SOFTWARE DESIGN PATTERNS

WILEY

PATTERN-ORIENTED
SOFTWARE
ARCHITECTURE

A Paitern Language for
Distributed Computing

Frank Buschmann

Kevlin Henney

Douglas C. Schmidt

Pipes and Filters

Divide the application's task into several self-
contained data processing steps and connect

these steps to a data processing pipeline via
intermediate data buffers.

Concatenative programming is so called because it
uses function composition instead of function
application—a non-concatenative language is thus
called applicative.

This is the basic reason Unix pipes are so
powerful: they form a rudimentary string-based
concatenative programming language.

Jon Purdy

http://evincarofautumn.blogspot.com/2012/02/why-concatenative-programming-matters.html

W \\‘\"”‘-"ré ‘ D REFERENCE

%\ s Wl . ussoxronomcnoumvor

(2P0 : ‘ ‘
(¢ Nou oR n IS
. wo >
‘ : L The \\ill‘(’)»ﬁ
- .
L Boo (’

T Biororm
An /rc*" VM{K

creator of the A\

with - 1 _ i,
\

Wing
Of Ir\txt/ﬂgds | T.FHOAD

REFERENCE DICTIONARY

MATHEMATICS

paraskevidekatriaphobia, noun

= The superstitious fear of Friday 13th.

200

days 13th of the month Fridays consume

- (-G

1..$max | %{$start.AddDays($)} | ?{$_.Day -eq 13} | ?{$_.DayOfWeek -eq [DayOfWeek]::Friday}

channel<std::tm> all_days;

void days from(std::tm start, channel<std::tm> & days)

{
const auto day = 24 * 60 * 60;

for (auto seconds = std::mktime(&start);;)

{
seconds += day;
days << *std::localtime(&seconds);

channel<std::tm> all_days; channel<std::tm> only 13ths;

void select 13th(channel<std::tm> & in, channel<std::tm> & out)

{
for (std::tm day;;)
{
in >> day;
if (day.tm mday == 13)
out << day:;
}

channel<std::tm> only 13ths; channel<std::tm> only friday 13ths;

void select friday(channel<std::tm> & in, channel<std::tm> & out)

{
for (std::tm day;;)

{
in >> day;
if (day.tm wday == 5)
out << day;
}

channel<std::tm> only friday 13ths;

void display(channel<std::tm> & results)

{
for (std::tm day;;)

{

results >> day;

Simple filters that can be arbitrarily
chained are more easily re-used, and

more robust, than almost any other
kind of code.

Brandon Rhodes
http://rhodesmill.org/brandon/slides/2012-11-pyconca/

http://mrg.doc.ic.ac.uk/publications/fencing-off-go-1iveness-and-safety-for-channel-based-programming/

http://mrg.doc.ic.ac.uk/publications/fencing-off-go-1iveness-and-safety-for-channel-based-programming/

func Generate(ch chan<- int) {
for i = 2¢ ¢ 44 {

func Filter(in <-chan int, out chan<- int, prime int)
{
} func main() {
ch := make(chan int)
go Generate(ch)
for i := 0; ; i++ {
prime := <-ch
chl := make(chan int)
} go Filter(ch, chl, prime)
ch = chl

LAY,
¥) A
i 1 ,'

{ An Object-Oriented Concurrent

(W et

Yy 4

o/ e

Multithreading is just one
damn thing after, before, or
simultaneous with another.

Andrei Alexandrescu

Actor-based concurrency is
just one damn message after
another.

monitor
objects

class phone_book
{
public:
void update(const std::string & name, const std::string & number);
void drop(const std::string & name);
std::optional<std::string> find(const std::string & name) const;
private:
mutable std::mutex key;
std: :map<std::string, std::string> entries;

}s

void phone book::update(const std::string & name, const std::string & number)

{
std::Tock guard<std::mutex> guard(key);

entries[name] = number;

}
void phone_book: :drop(const std::string & name)
{
std::1ock guard<std::mutex> guard(key);
entries.erase(name);
}

std::optional<std::string> phone book::find(const std::string & name) const

std::1ock guard<std::mutex> guard(key);
auto found = entries.find(name);

if (found == entries.end())
return {};

else
return found->second;

phone book directory;
auto unfound = directory.find("Thomas Anderson'") ;
directory.update ("Thomas Anderson", "1");

auto found = directory.find("Thomas Anderson") ;
unfound = directory.find("Neo") ;

directory.update ("Trinity", "3");

directory.update ("Morpheus", "42");
directory.drop ("Thomas Anderson") ;
directory.update ("Neo", "1");

unfound = directory.find("Thomas Anderson") ;
found = directory.find("Neo") ;

active
objects

class phone_book
{
public:
void operator()():
void update(const std::string & name, const std::string & number);
void drop(const std::string & name);
std::future<std::optional<std::string>>
find(const std::string & name) const;
private:
std::thread self;
std: :queue<std::function<void()>> calls;
std::map<std::string, std::string> entries;

}s

phone book directory;
directory () ;

auto unfound = directory.find("Thomas Anderson") .get() ;
directory.update ("Thomas Anderson", "1");

auto found = directory.find("Thomas Anderson") .get();
unfound = directory.find("Neo") .get() ;

directory.update ("Trinity", "3");
directory.update ("Morpheus", "42");
directory.drop("Thomas Anderson") ;
directory.update ("Neo", "1");

unfound = directory.find("Thomas Anderson") .get() ;
found = directory.find("Neo") .get() ;

actors

[The Self and the Objct | World j r

& m, mw»

Greenberg and Mitchell o arvaid i

Ob_]ect Relafmns in Psychoanalytlc Theo

B 5

™= - >/

Stack

alphabet(Stack) =

wpush, pop, popped, empty}

trace(Stack) =

)

(push),

(pop, empty),

(push, push),

(push, pop, popped),

(push, push, pop, popped),
(push, pop, popped, pop, empty),
-

._———9[Empty }(FN%w)[Non-Empty]

T pop / popped [

pop / empty push
pop / popped

empty() ->
receive
{push, Top} ->
non_empty (Top) ;
{pop, Return} ->
Return ! empty
end

emp%y().

non_empty(Value) ->
receive
{push, Top} ->
non_empty(Top),
non_empty(Value);
{pop, Return} ->
Return ! {popped, Value}
end.

Stack = spawn(stack, empty, []).

Stack ! {pop, self()}.
Stack ! {push, 42}.
Stack ! {pop, self()}.
Stack ! {push, 20}.
Stack ! {push, 17}.
Stack ! {pop, self()}.
Stack ! {pop, self()}.

void phone book(queue<std::any> &);
struct entry

{
std::string name, number;
Jig
struct no_entry
{
std::string name;
}s
struct find
{

std::string name;
queue<std::any> & there;

}s

void phone book(queue<std::any> & here)

{

std: :map<std::string, std::string> entries;
for (std::any request;;)

{
here >> request;
if (auto update = std::any cast<entry>(&request))
entries[update->name] = update->number;
else if (auto drop = std::any cast<no_entry>(&request))
entries.erase(drop->name) ;
else if (auto Tookup = std::any cast<find>(&request))
{
auto found = entries.find(1ookup->name);
if (found == entries.end())
Tookup->there << no_entry { Tookup->name };
else
lookup->there << entry { found->first, found->second };
}
}

void phone book(queue<std::any> & here)

{

std: :map<std::string, std::string> entries;
for (std::any request;;)

{
here >> request;
request
|| [&](entry & update) { entries[update->name] = update->number; }
|| [&](no_entry & drop) { entries.erase(drop->name); }
|| [&](find & Tookup)
{
auto found = entries.find(1ookup->name);
if (found == entries.end())
Tookup->there << no_entry { Tookup->name };
else
lookup->there << entry { found->first, found->second };
e
}
}

queue<std: :any> directory;
std: : thread (phone_book, std::ref(directory)) .detach()

queue<std: :any> here;

directory << find { "Thomas Anderson'", here };
std: :any unfound;

here >> unfound; // no_entry { "Thomas Anderson" }

directory << entry { "Thomas Anderson", "1" };
directory << find { "Thomas Anderson'", here };

std: :any found;
here >> found; // entry { "Thomas Anderson", 1 }

directory << entry { "Trinity", "3" };
directory << entry { "Morpheus", "42" };
directory << no_entry { "Thomas Anderson" };
directory << entry { "Neo", "1" };

directory << find { "Neo", here };
here >> found; // entry { "Neo", 1 }

Programming in a functional style makes
the state presented to your code explicit,
which makes it much easier to reason
about, and, in a completely pure system,
makes thread race conditions impossible.

John Carmack

http://www.gamasutra.com/view/news/169296/Indepth_Functional_programming_in_C.php

Think outside the
synchronisation
quadrant...

All computers
wait at the
same speed.

