
Background
Examples

Conclusion

A furtive fumble in Hard-Core Obscenity: the
misuse of Template Meta-Programming to
implement micro-optimisations in HFT.

J.M.McGuiness1

1Count-Zero Limited

ACCU Conference, 2017

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Outline
1 Background

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

2 Examples
Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

3 Conclusion J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

HFT & Low-Latency: Issues

HFT & low-latency are performance-critical, obviously:
provides edge in the market over competition, faster is better.

Is not rocket-science:
Not safety-critical: it’s not aeroplanes, rockets nor reactors!

Perverse: to be truly fast is to do nothing!

It is message passing, copying bytes
perhaps with validation, aka risk-checks.

It requires low-level control:
of the hardware & software that interacts with it intimately.

Apologies if you know this already!
J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

HFT & Low-Latency: Issues

HFT & low-latency are performance-critical, obviously:
provides edge in the market over competition, faster is better.

Is not rocket-science:
Not safety-critical: it’s not aeroplanes, rockets nor reactors!

Perverse: to be truly fast is to do nothing!

It is message passing, copying bytes
perhaps with validation, aka risk-checks.

It requires low-level control:
of the hardware & software that interacts with it intimately.

Apologies if you know this already!
J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

HFT & Low-Latency: Issues

HFT & low-latency are performance-critical, obviously:
provides edge in the market over competition, faster is better.

Is not rocket-science:
Not safety-critical: it’s not aeroplanes, rockets nor reactors!

Perverse: to be truly fast is to do nothing!

It is message passing, copying bytes
perhaps with validation, aka risk-checks.

It requires low-level control:
of the hardware & software that interacts with it intimately.

Apologies if you know this already!
J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

HFT & Low-Latency: Issues

HFT & low-latency are performance-critical, obviously:
provides edge in the market over competition, faster is better.

Is not rocket-science:
Not safety-critical: it’s not aeroplanes, rockets nor reactors!

Perverse: to be truly fast is to do nothing!

It is message passing, copying bytes
perhaps with validation, aka risk-checks.

It requires low-level control:
of the hardware & software that interacts with it intimately.

Apologies if you know this already!
J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

HFT & Low-Latency: Issues

HFT & low-latency are performance-critical, obviously:
provides edge in the market over competition, faster is better.

Is not rocket-science:
Not safety-critical: it’s not aeroplanes, rockets nor reactors!

Perverse: to be truly fast is to do nothing!

It is message passing, copying bytes
perhaps with validation, aka risk-checks.

It requires low-level control:
of the hardware & software that interacts with it intimately.

Apologies if you know this already!
J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

HFT & Low-Latency: Issues

HFT & low-latency are performance-critical, obviously:
provides edge in the market over competition, faster is better.

Is not rocket-science:
Not safety-critical: it’s not aeroplanes, rockets nor reactors!

Perverse: to be truly fast is to do nothing!

It is message passing, copying bytes
perhaps with validation, aka risk-checks.

It requires low-level control:
of the hardware & software that interacts with it intimately.

Apologies if you know this already!
J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

HFT & Low-Latency: Issues

HFT & low-latency are performance-critical, obviously:
provides edge in the market over competition, faster is better.

Is not rocket-science:
Not safety-critical: it’s not aeroplanes, rockets nor reactors!

Perverse: to be truly fast is to do nothing!

It is message passing, copying bytes
perhaps with validation, aka risk-checks.

It requires low-level control:
of the hardware & software that interacts with it intimately.

Apologies if you know this already!
J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

HFT & Low-Latency: Issues

HFT & low-latency are performance-critical, obviously:
provides edge in the market over competition, faster is better.

Is not rocket-science:
Not safety-critical: it’s not aeroplanes, rockets nor reactors!

Perverse: to be truly fast is to do nothing!

It is message passing, copying bytes
perhaps with validation, aka risk-checks.

It requires low-level control:
of the hardware & software that interacts with it intimately.

Apologies if you know this already!
J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

AMD Bulldozer, circa 2013.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

C++ is THE Answer!

Like its predecessor C, C++ can be very low-level:

Enables the intimacy required between software & hardware.
Assembly output tuned directly from C++ statements.

Yet C++ is high-level: complex abstractions readily modeled.

Has increasingly capable libraries:

E.g. Boost.
Especially C++11, 14 & up-coming 17 standards.

I shall ignore other languages, e.g. D, Functional-Java, etc.

(garbage-collection kills performance, not low-enough level.)

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

C++ is THE Answer!

Like its predecessor C, C++ can be very low-level:

Enables the intimacy required between software & hardware.
Assembly output tuned directly from C++ statements.

Yet C++ is high-level: complex abstractions readily modeled.

Has increasingly capable libraries:

E.g. Boost.
Especially C++11, 14 & up-coming 17 standards.

I shall ignore other languages, e.g. D, Functional-Java, etc.

(garbage-collection kills performance, not low-enough level.)

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

C++ is THE Answer!

Like its predecessor C, C++ can be very low-level:

Enables the intimacy required between software & hardware.
Assembly output tuned directly from C++ statements.

Yet C++ is high-level: complex abstractions readily modeled.

Has increasingly capable libraries:

E.g. Boost.
Especially C++11, 14 & up-coming 17 standards.

I shall ignore other languages, e.g. D, Functional-Java, etc.

(garbage-collection kills performance, not low-enough level.)

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

C++ is THE Answer!

Like its predecessor C, C++ can be very low-level:

Enables the intimacy required between software & hardware.
Assembly output tuned directly from C++ statements.

Yet C++ is high-level: complex abstractions readily modeled.

Has increasingly capable libraries:

E.g. Boost.
Especially C++11, 14 & up-coming 17 standards.

I shall ignore other languages, e.g. D, Functional-Java, etc.

(garbage-collection kills performance, not low-enough level.)

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

C++ is THE Answer!

Like its predecessor C, C++ can be very low-level:

Enables the intimacy required between software & hardware.
Assembly output tuned directly from C++ statements.

Yet C++ is high-level: complex abstractions readily modeled.

Has increasingly capable libraries:

E.g. Boost.
Especially C++11, 14 & up-coming 17 standards.

I shall ignore other languages, e.g. D, Functional-Java, etc.

(garbage-collection kills performance, not low-enough level.)

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

Oh no, C++ is NOT just the answer!

There is more to low-latency than just C++:
Hardware needs to be considered:

multiple-processors (one for O/S, one for the gateway),
bus per processor; cores dedicated to tasks,
network infrastructure (including co-location), etc.

Software issues confound:
which O/S, not all distributions are equal,
tool-set support is necessary for rapid development,
configuration needed: c-groups/isolcpu, performance tuning.

Not all compilers, or even versions, are equal...
Which is faster clang, g++, icc?

Focus: g++ C++11 & 14, some results for clang v3.9 & icc.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

Oh no, C++ is NOT just the answer!

There is more to low-latency than just C++:
Hardware needs to be considered:

multiple-processors (one for O/S, one for the gateway),
bus per processor; cores dedicated to tasks,
network infrastructure (including co-location), etc.

Software issues confound:
which O/S, not all distributions are equal,
tool-set support is necessary for rapid development,
configuration needed: c-groups/isolcpu, performance tuning.

Not all compilers, or even versions, are equal...
Which is faster clang, g++, icc?

Focus: g++ C++11 & 14, some results for clang v3.9 & icc.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

Oh no, C++ is NOT just the answer!

There is more to low-latency than just C++:
Hardware needs to be considered:

multiple-processors (one for O/S, one for the gateway),
bus per processor; cores dedicated to tasks,
network infrastructure (including co-location), etc.

Software issues confound:
which O/S, not all distributions are equal,
tool-set support is necessary for rapid development,
configuration needed: c-groups/isolcpu, performance tuning.

Not all compilers, or even versions, are equal...
Which is faster clang, g++, icc?

Focus: g++ C++11 & 14, some results for clang v3.9 & icc.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

Oh no, C++ is NOT just the answer!

There is more to low-latency than just C++:
Hardware needs to be considered:

multiple-processors (one for O/S, one for the gateway),
bus per processor; cores dedicated to tasks,
network infrastructure (including co-location), etc.

Software issues confound:
which O/S, not all distributions are equal,
tool-set support is necessary for rapid development,
configuration needed: c-groups/isolcpu, performance tuning.

Not all compilers, or even versions, are equal...
Which is faster clang, g++, icc?

Focus: g++ C++11 & 14, some results for clang v3.9 & icc.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

Optimization Case Studies.

Despite the above, we choose to use C++,

which we will need to optimize.

Optimizing C++ is not trivial, some examples shall be
provided [1]:

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Counting the number of set bits.
Extreme templating: the case of memcpy().

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

Optimization Case Studies.

Despite the above, we choose to use C++,

which we will need to optimize.

Optimizing C++ is not trivial, some examples shall be
provided [1]:

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Counting the number of set bits.
Extreme templating: the case of memcpy().

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

HFT & Low-Latency: Issues
Example Hardware.
C++ is THE Answer!
Oh no, C++ is just NOT the answer!
Optimization Case Studies.

Optimization Case Studies.

Despite the above, we choose to use C++,

which we will need to optimize.

Optimizing C++ is not trivial, some examples shall be
provided [1]:

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Counting the number of set bits.
Extreme templating: the case of memcpy().

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Performance quirks in compiler versions.

Compilers normally improve with versions, don’t they?

Example code, using -O3 -march=native:
#include <string.h>
const char src[20]="0123456789ABCDEFGHI";
char dest[20];
void foo() {

memcpy(dest, src, sizeof(src));
}

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Comparison of code generation in g++.

v4.4.7:
foo():

movabsq $3978425819141910832, %rdx
movabsq $5063528411713059128, %rax
movl $4802631, dest+16(%rip)
movq %rdx, dest(%rip)
movq %rax, dest+8(%rip)
ret

dest: .zero 20

v4.7.3:
foo():

movq src(%rip), %rax
movq %rax, dest(%rip)
movq src+8(%rip), %rax
movq %rax, dest+8(%rip)
movl src+16(%rip), %eax
movl %eax, dest+16(%rip)
ret

dest:
.zero 20

src:
.string "0123456789ABCDEFGHI"

g++ v4.4.7 schedules the movabsq sub-optimally.
g++ v4.7.3 does not use any SSE instructions, and uses the
stack, so is sub-optimal.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Comparison of code generation in g++.

v4.8.1 - v6.3.0:
foo():

movabsq $3978425819141910832, %rax
movl $4802631, dest+16(%rip)
movq %rax, dest(%rip)
movabsq $5063528411713059128, %rax
movq %rax,dest+8(%rip)
ret

dest: .zero 20

v7.0.0:
foo():

vmovdqa xmm0, XMMWORD PTR .LC0[rip]
mov DWORD PTR dest[rip+16], 4802631
vmovaps XMMWORD PTR dest[rip], xmm0
ret

dest:
.zero 20

,LC0:
.quad 3978425819141910832
.quad 5063528411713059128

g++ v4.8.1-v6.3.0: notice SSE instructions are better
scheduled, with no use of the stack.
g++ v7.0.0: back to stack usage, but used SSE: sub-optimal.
Very unstable output - highly dependent upon version.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Comparison of code generation in icc & clang.

icc v13.0.1-v17:
foo():

vmovups xmm0, XMMWORD PTR src[rip]
vmovups XMMWORD PTR dest[rip], xmm0
mov eax, DWORD PTR 16+src[rip]
mov DWORD PTR 16+dest[rip], eax
ret

dest:
src:

.long 858927408
XXXsnipXXX
.long 4802631

clang 3.5.0-4.0.0-rc4:
foo(): # @foo()

vmovaps xmm0, xmmword ptr [rip + src]
vmovaps xmmword ptr [rip + dest], xmm0
mov dword ptr [rip + dest+16], 4802631
ret

dest:
.zero 20

src:
.asciz "0123456789ABCDEFGHI"

Notice fewer instructions, but use of the stack - increases
pressure on the cache, and the necessary memory-loads.
clang has very stable output compared to g++.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Does this matter in reality?

0

2x107

4x107

6x107

8x107

1x108

1.2x108

1.4x108

1.6x108

1

small str ctors+dtors

2

big str ctors+dtors

3

small str =

4

big str =

5

small str replace

6

big str replace

M
ea

n_
ra

te
_(

op
er

at
ion

s/s
ec

).

Benchmark

Comparison of performance of versions of gcc.

4.7.3

4.8.4

5.1.0

5.3.0ABI11

6.3.0

Hope that performance improves with compiler version...
This is not always so: there can be significant differences!

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Static branch-prediction: use and abuse.

Which comes first? The if() bar1() or the else bar2()?
Intel [2], ARM [4] & AMD differ: older architectures use
BTFNT rule [3, 5].

Backward-Taken: for loops that jump backwards. (Not
discussed in this talk.)
Forward-Not-Taken: for if-then-else.
Intel added the 0x2e & 0x3e prefixes, but no longer used.

But super-scalar architectures still suffer costs of mis-prediction
& research into predictors is on-going and highly proprietary.

__builtin_expect() was introduced that emitted these
prefixes, now just used to guide the compiler.
The fall-through should be bar1(), not bar2()!

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Static branch-prediction: use and abuse.

Which comes first? The if() bar1() or the else bar2()?
Intel [2], ARM [4] & AMD differ: older architectures use
BTFNT rule [3, 5].

Backward-Taken: for loops that jump backwards. (Not
discussed in this talk.)
Forward-Not-Taken: for if-then-else.
Intel added the 0x2e & 0x3e prefixes, but no longer used.

But super-scalar architectures still suffer costs of mis-prediction
& research into predictors is on-going and highly proprietary.

__builtin_expect() was introduced that emitted these
prefixes, now just used to guide the compiler.
The fall-through should be bar1(), not bar2()!

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Static branch-prediction: use and abuse.

Which comes first? The if() bar1() or the else bar2()?
Intel [2], ARM [4] & AMD differ: older architectures use
BTFNT rule [3, 5].

Backward-Taken: for loops that jump backwards. (Not
discussed in this talk.)
Forward-Not-Taken: for if-then-else.
Intel added the 0x2e & 0x3e prefixes, but no longer used.

But super-scalar architectures still suffer costs of mis-prediction
& research into predictors is on-going and highly proprietary.

__builtin_expect() was introduced that emitted these
prefixes, now just used to guide the compiler.
The fall-through should be bar1(), not bar2()!

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

So how well do compilers obey the BTFNT rule?

The following code was examined with various compilers:
extern void bar1();

extern void bar2();

void foo(bool i) {

if (i) bar1();

else bar2();
}

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Generated Assembler using g++ v4.8.2-v7

At -O0 & -O1:
foo(bool):

subq $8, %rsp
testb %dil, %dil
je .L2
call bar1()
jmp .L1

.L2:
call bar2()

.L1:
addq $8, %rsp
ret

At -O2 & -O3:
foo(bool):

testb %dil, %dil

jne .L4

jmp bar2()

.L4:
jmp bar1()

Oh no! g++ switches the fall-through, so one can’t
consistently statically optimize branches in g++...[6]

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Generated Assembler using ICC v13.0.1-v17 & CLANG
v3.8.0-4.0.0rc4.

ICC at -O2 & -O3:
foo(bool):

testb %dil, %dil #5.7
je ..B1.3 # Prob 50% #5.7
jmp bar1() #6.2

..B1.3: # Preds

..B1.1
jmp bar2()

CLANG at -O1, -O2 & -O3:
foo(bool): # @foo(bool)

testb %dil, %dil

je .LBB0_2

jmp bar1() # TAILCALL

.LBB0_2:
jmp bar2() # TAILCALL

Lower optimization levels still order the calls to bar[1|2]() in
the same manner, but the code is unoptimized.
BUT at -O2 & -O3 g++ reverses the order of the calls
compared to clang & icc!!!

Impossible to optimize for g++ and other compilers!
J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Test __builtin_expect(i, 1) with g++ v4.8.5-v5.3.0.

BUT: Adding __builtin_expect(i, 1) to the dtor of a
stack-based string caused a slowdown in g++ v4.8.5!

0

1x108

2x108

3x108

4x108

5x108

6x108

1

small str ctors+dtors

2

big str ctors+dtors

3

small str =

4

big str =

5

small str replace

6

big str replace

M
e

a
n

_
ra

te
_

(o
p

e
ra

ti
o

n
s
/s

e
c
).

Benchmark

Comparison of effect of --builtin-expect using gcc v4.8.5 and -std=c++11.

4.8.5

4.8.5 builtin-expect

0

2x1014

4x1014

6x1014

8x1014

1x1015

1.2x1015

1.4x1015

1.6x1015

1.8x1015

1

small str ctors+dtors

2

big str ctors+dtors

3

small str =

4

big str =

5

small str replace

6

big str replace

M
e

a
n

_
ra

te
_

(o
p

e
ra

ti
o

n
s
/s

e
c
).

Benchmark

Comparison of effect of --builtin-expect using gcc v5.3.0 and -std=c++14.

5.3.0

5.3.0 builtin-expect

5.3.0ABI11

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Test __builtin_expect(i, 1) with g++ v6.3.0.

0

2x1014

4x1014

6x1014

8x1014

1x1015

1.2x1015

1.4x1015

1.6x1015

1.8x1015

2x1015

1

small str ctors+dtors

2

big str ctors+dtors

3

small str =

4

big str =

5

small str replace

6

big str replace

Benchmark

Comparison of effect of --builtin-expect using gcc v6.3.0 and -std=c++14.

6.3.0

6.3.0 builtin-expect

1x106

1x107

1x108

1x109

1x1010

1x1011

1x1012

1x1013

1x1014

1x1015

1x1016

1

small str ctors+dtors

2

big str ctors+dtors

3

small str =

4

big str =

5

small str replace

6

big str replace

Benchmark

Comparison of effect of --builtin-expect using gcc v6.3.0 and -std=c++14.

6.3.0

6.3.0 builtin-expect

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Does a switch-statement have a preferential case-label?

Common lore seems to indicate that either the first case-label
or the default are somehow the statically predicted
fall-through.

For non-contiguous labels in clang, g++ & icc this is not so.

g++ uses a decision-tree algorithm[7], basically case labels are
clustered numerically, and the correct label is found using a
binary-search.

clang & icc seem to be similar. I shall focus on g++ for this
talk.

There is no static prediction!

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Does a switch-statement have a preferential case-label?

Common lore seems to indicate that either the first case-label
or the default are somehow the statically predicted
fall-through.

For non-contiguous labels in clang, g++ & icc this is not so.

g++ uses a decision-tree algorithm[7], basically case labels are
clustered numerically, and the correct label is found using a
binary-search.

clang & icc seem to be similar. I shall focus on g++ for this
talk.

There is no static prediction!

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Does a switch-statement have a preferential case-label?

Common lore seems to indicate that either the first case-label
or the default are somehow the statically predicted
fall-through.

For non-contiguous labels in clang, g++ & icc this is not so.

g++ uses a decision-tree algorithm[7], basically case labels are
clustered numerically, and the correct label is found using a
binary-search.

clang & icc seem to be similar. I shall focus on g++ for this
talk.

There is no static prediction!

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

What does this look like?

Example of simple non-contiguous labels.
extern bool bar1();
extern bool bar2();
extern bool bar3();
extern bool bar4();
extern bool bar5();
extern bool bar6();
bool foo(int i) {

switch (i) {
case 0: return bar1();
case 30: return bar2();
case 9: return bar3();
case 787: return bar4();
case 57689: return bar5();
default: return bar6();

}
}

Contiguous labels cause a jump-table to be created.
J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

g++ v5.3.0-v7 -O3 generated code.

__builtin_expect() has no effect:

foo(int):
cmpl $30, %edi
je .L3
jg .L4
testl %edi, %edi
je .L5
cmpl $9, %edi
jne .L2
jmp bar3()
L4:
cmpl $787, %edi
je .L7
cmpl $57689, %edi
jne .L2
jmp bar5()

..L2:
jmp bar6()
.L7:
jmp bar4()
.L5:
jmp bar1()
.L3:
jmp bar2()

Identical - it has no effect; icc is likewise unmodified.
But clang v3.8.0-v4.0.0rc4 is affected by
__builtin_expect() in the expected manner.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

An obvious hack:

One has to hoist the statically-predicted label out in an
if-statement, and place the switch in the else.

Modulo what we now know about static branch
prediction...Surely compilers simply “get this right”?

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Compare various Implementations and their Performance
using -O3 -std=c++14.

A perennial favourite of interviews! Sooooo tedious...
The obvious implementation:

The while-loop implementation:
constexpr inline __attribute__((const))
unsigned long
result() noexcept(true) {

const uint64_t num=843678937893;
unsigned long count=0;
do {

if (LIKELY(num&1)) {
++count;

}
} while (num>‌>=1);
return count;

}

Assembler:
movabsq $843678937893, %rax

.L2:
movq %rax, %rsi
shrq %rax
andl $1, %esi
addq %rsi, %rcx
subl $1, %edx
jne .L2
movq %rcx, k(%rip)
xorl %eax, %eax
ret

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Part 1: Now using templates to unroll the loop.

The template implementation:
template<uint8_t Val, class BitSet>
struct unroller : unroller<Val-1, BitSet>;
XXXsnipXXX
template<class T, T... args> struct
array_t;
XXXsnipXXX
template<unsigned long long Val>
struct shifter;
template<unsigned long long Val,
template<unsigned long long> class Fn,
unsigned long long... bitmasks>
struct gen_bitmasks;
XXXsnipXXX
struct count_setbits {
XXXsnipXXX

constexpr static element_type
result() noexcept(true) {
unsigned long num=843678937893;
return unroller_t::result(num);
}

};

Assembler:
movq $22, k(%rip)
xorl %eax, %eax
ret

Outrageous templating has enabled constexpr!
J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Part 2: Now using assembly.

The asm POPCNT implementation;

-mpopcnt:
#include <stdint.h>
inline uint64_t result() noexcept(true) {

const uint64_t num=843678937893;
uint64_t count=0;
__asm__ volatile (

"POPCNT %1, %0;"
:"=r"(count)
:"r"(num)
:

);
return count;

}

Assembler:
movabsq $843678937893, %rax
POPCNT %rax, %rax;
xorl %eax, %eax
ret

Contrary to popular belief: inlining happens, despite the
__asm__ block.
Result has to be dynamically computed.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Part 2: Now using builtins.

The __buiilin_popcountll

implementation; -mpopcnt:
#include <stdint.h>
constexpr inline __attribute__((const))
inline uint64_t result(uint64_t num)
noexcept(true) {

const uint64_t num=843678937893;
return __builtin_popcountll(num);

}

Assembler:
movq $22, k(%rip)
xorl %eax, %eax
ret

Note how the builtin enables the result to be computed at
compile-time, without that template malarky.
But requires a suitable ISA.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Does this matter in reality?

1x106

1x107

1x108

1x109

1

1240

g++v4.5.2

2

1241

g++v4.7.3

3

1627

g++v4.8.4

4

1643

g++v4.8.4

5

1686

g++v5.1.0

6

1686

g++v5.2.0

7

1694

clang++v3.5

8

1732

g++v4.8.4

9

1776

g++v4.8.5

NoSymbols

10

1924

clang++v3.8

11

1924

g++v5.3.0

ABI11

12

1916

g++v5.3.0

ABI11

13

1985

g++v6.3.0

Me
an

_r
ate

_(
bit

_c
ou

nts
/se

c).

Build

Comparison of count setbits performance.

Error-bars: % average deviation.

dyn::basic::count_setbits

dyn::builtin::count_setbits

dyn::lookup::count_setbits, 8-bit cache

dyn::lookup::count_setbits, 16-bit cache

dyn::lookup::count_setbits, 32-bit cache

dyn::lookup::count_setbits, 64-bit cache

v5.1.0 & v5.3.0 (kernels v4.1.15 & v4.4.6) is a disaster!
v6.3.0 (kernel v4.9.6) seems to recover the performance.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Counting set bits: conclusion.

Know thine architecture:

Without the right tools for the job, one has to work very hard
with complex templates.
With the right architecture, and compiler, much more simple
code can use builtins.

One can use assembler, and it will be fast.

But not as fast as builtins as compilers can replace code with
constants!

Review your code when updating hardware & compiler.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

The Curious Case of memcpy() and SSE.

Examined with various compilers with -O3 -std=c++14.
__attribute__((aligned(256))) const char s[]=

"And for something completely different.";
char d[sizeof(s)];
void bar1() {

std::memcpy(d, s, sizeof(s));
}

Because copying is VERY common.
Surely compilers simply “get this right”?

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Assembly output from g++.

v4.9.0-6.3.0: -m[no-]avx: no

effect & v7 with -mno-sse.

bar1():
movabsq $2338053640979508801, %rax
movq %rax, d(%rip)
movabsq $7956005065853857651, %rax
movq %rax, d+8(%rip)
movabsq $7308339910637985895, %rax
movq %rax, d+16(%rip)
movabsq $7379539555062146420, %rax
movq %rax, d+24(%rip)
movabsq $13075866425910630, %rax
movq %rax, d+32(%rip)
ret

d:
.zero 40

v7: with -mavx.

bar1():
vmovdqa .LC0(%rip), %xmm0
movabsq $13075866425910630, %rax
movq %rax, d+32(%rip)
vmovaps %xmm0, d(%rip)
vmovdqa .LC1(%rip), %xmm0
vmovaps %xmm0, d+16(%rip)
ret

d: .LC0:
.quad 2338053640979508801
.quad 7956005065853857651

.LC1:
.quad 7308339910637985895
.quad 7379539555062146420

Earlier g++ should use SSE? All other options: no effect.
g++ v7: o.k., AVX used, but stack too: win-lose.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Assembly output from clang v3.5.0-4.0.0rc4.

-mno-avx
bar1(): # @bar1()

movabsq $13075866425910630, %rax
movq %rax, d+32(%rip)
movaps s+16(%rip), %xmm0
movaps %xmm0, d+16(%rip)
movaps s(%rip), %xmm0
movaps %xmm0, d(%rip)
retq

d:
s:

.asciz "And for something completely
different."

-mavx
bar1(): # @bar1()

movabsq $13075866425910630, %rax
movq %rax, d+32(%rip)
vmovaps s(%rip), %ymm0
vmovaps %xmm0, d(%rip)
vzeroupper
retq

d:
s:

.asciz "And for something completely
different."

Note how the SSE registers are now used, unlike g++ and
fewer instructions, no stack too!

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Assembly output from icc v13.0.1 -std=c++11.

-mno-avx
bar1():

movaps s(%rip), %xmm0 #205.3
movaps %xmm0, d(%rip) #205.3
movaps 16+s(%rip), %xmm1 #205.3
movaps %xmm1, 16+d(%rip) #205.3
movq 32+s(%rip), %rax #205.3
movq %rax, 32+d(%rip) #205.3
ret #206.1

d:
s:

.byte 65

...

.byte 0

-mavx
bar1():

vmovups 16+s(%rip), %xmm0 #205.3
vmovups %xmm0, 16+d(%rip) #205.3
movq 32+s(%rip), %rax #205.3
movq %rax, 32+d(%rip) #205.3
vmovups s(%rip), %xmm1 #205.3
vmovups %xmm1, d(%rip) #205.3
ret #206.1

d:
s:

.byte 65

...

.byte 0

c.f. clang: SSE registers used, but a totally different schedule.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Assembly output from icc v17.0.0 -std=c++14.

-mno-avx
bar1():

vmovups s(%rip), %ymm0
vmovups %ymm0, d(%rip)
movq 32+s(%rip), %rax
movq %rax, 32+d(%rip)
vzeroupper
ret

d:s:

-mavx
bar1():

vmovups s(%rip), %xmm0
vmovups %xmm0, d(%rip)
vmovups 16+s(%rip), %xmm1
vmovups %xmm1, 16+d(%rip)
movq 32+s(%rip), %rax
movq %rax, 32+d(%rip)
ret

d:s:

In this case it looks like using -mavx slows things down!

arrrrgggghhhhhhhhhhhh!!!!!!!!

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Let’s go Mad...

Can blatant templating make an even faster memcpy()?

Examined with various compilers with -O3 -std=c++14 -mavx.
template<

std::size_t SrcSz, std::size_t DestSz, class Unit,
std::size_t SmallestBuff=min<std::size_t, SrcSz, DestSz>::value,
std::size_t Div=SmallestBuff/sizeof(Unit), std::size_t Rem=SmallestBuff%sizeof(Unit)

> struct aligned_unroller {
// ... An awful lot of template insanity. Omitted to avoid being arrested.

};
template< std::size_t SrcSz, std::size_t DestSz > inline void constexpr
memcpy_opt(char const (&src)[SrcSz], char (&dest)[DestSz]) noexcept(true) {

using unrolled_256_op_t=private_::aligned_unroller< SrcSz, DestSz, __m256i >;
using unrolled_128_op_t=private_::aligned_unroller< SrcSz-unrolled_256_op_t::end,

DestSz-unrolled_256_op_t::end, __m128i >;
// XXXsnipXXX
// Unroll the copy in the hope that the compiler will notice the sequence of copies and

optimize it.
unrolled_256_op_t::result(

[&src, &dest](std::size_t i) {
reinterpret_cast<__m256i*>(dest)[i]= reinterpret_cast<__m256i const *>(src)[i];

}
);
// XXXsnipXXX

}

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Assembly output from g++.

v4.9.0.
bar():

movq s+32(%rip), %rax
vmovdqa s(%rip), %ymm0
vmovdqa %ymm0, d(%rip)
movq %rax, d+32(%rip)
vzeroupper
ret

s:
.string "And for something completely

different."
d:

.zero 40

v5.1.0-7.
bar():

vmovups s+32(%rip), %ymm0
movabsq $13075866425910630, %rax
vmovups %ymm0, d+32(%rip)
movq %rax, d+32(%rip)
vzeroupper
ret

d:
s:

.string "And for something completely
different."

All look good apart from the stack usage.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Assembly output from clang & icc.

clang v3.8.0-v4.0.0rc4 with -mavx.
.LCPI1_0:

.quad 2338053640979508801

.quad 7956005065853857651

.quad 7308339910637985895

.quad 7379539555062146420
bar(): # @bar()

vmovaps .LCPI1_0(%rip), %ymm0
vmovaps %ymm0, d(%rip)
movabsq $13075866425910630, %rax
movq %rax, d+32(%rip)
vzeroupper
retq

d:
.zero 40

icc v13.0.1.
bar():

movl $s, %eax #198.14
movl $d, %ecx #198.17
vmovdqu (%rax), %ymm0 #154.44
vmovdqu %ymm0, (%rcx) #153.37
movq 32(%rax), %rdx #166.44
movq %rdx, 32(%rcx) #165.37
vzeroupper #199.1
ret #199.1

d:
s:

.byte 65

...

.byte 0

Judicious use of micro-optimized templates can provide a
performance enhancement.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Assembly output from icc.

icc v16.
bar():

vmovups 32+s(%rip), %ymm0
movq 32+s(%rip), %rax
vmovups %ymm0, 32+d(%rip)
movq %rax, 32+d(%rip)
vzeroupper
retq

d:s:

icc v17.
bar():

movl $s, %edi
movl $d, %esi
jmp void memcpy_opt<40ul, 40ul>(char

const (&) [40ul], char (&) [40ul])
vmovups 32(%rdi), %ymm0
movq 32(%rdi), %rax
vmovups %ymm0, 32(%rsi)
movq %rax, 32(%rsi)
vzeroupper
ret

d:s:

Use of micro-optimized templates can do unexpected things:

icc v17 produces suboptimal results.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Again, does this matter?

0

1x107

2x107

3x107

4x107

5x107

6x107

7x107

1

big string ctor-dtor

2

big string assign

3

small string replace

4

big string replace

M
ea

n_
ra

te
_(

op
er

at
io

ns
/s

ec
).

Test

Comparison of std::memcpy vs memcpy_opt, g++ v6.3.0.

std::memcpy

memcpy_opt

5x106

1x107

1.5x107

2x107

2.5x107

3x107

3.5x107

4x107

1

big string ctor-dtor

2

big string assign

3

small string replace

4

big string replace

M
ea

n_
ra

te
_(

op
er

at
io

ns
/s

ec
).

Test

Comparison of std::memcpy vs memcpy_opt, clang v3.9.1.

std::memcpy

memcpy_opt

No statistical differences in general.
g++: optimizations confounded by use of stack.
clang: similar pattern to g++, but much slower.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

The impact of compiler version on performance.

1x106

1x107

1x108

1x109

1x1010

1x1011

1x1012

1x1013

1x1014

1x1015

1x1016

1

1414

g++v4.7.3

2

1627

g++v4.8.4

3

1643

g++v4.8.4

4

1686

g++v5.1.0

5

1686

g++v4.8.4

6

1719

g++v4.9.3

7

1735

g++v4.8.4

8

1776

g++v4.8.5

NoSymbols

9

1916

g++v5.3.0

10

1916

g++v5.3.0

ABI11

11

1924

clang++v3.8

12

1924

g++v5.3.0

ABI11

13

2000

g++v6.3.0

14

2000

clangv3.9.1

M
e

a
n

_
ra

te
_

(o
p

e
ra

ti
o

n
s
/s

e
c
).

Build

Comparison of stack-string ctor and dtor performance.

Error-bars: % average deviation.

jmmcg::stack_string small string

std::string small string

__gnucxx::__vstring small string

jmmcg::stack_string big string

std::string big string

__gnucxx::__vstring big string

1x106

1x107

1x108

1x109

1x1010

1x1011

1x1012

1x1013

1x1014

1x1015

1x1016

1

1414

g++v4.7.3

2

1627

g++v4.8.4

3

1643

g++v4.8.4

4

1686

g++v5.1.0

5

1696

g++v4.8.4

6

1719

g++v4.9.3

7

1735

g++v4.8.4

8

1776

g++v4.8.5

NoSymbols

9

1916

g++v5.3.0

10

1916

g++v5.3.0

ABI11

11

1924

clang++v3.8

12

1924

g++v5.3.0

ABI11

13

2000

g++v6.3.0

14

2000

clangv3.9.1

M
e

a
n

_
ra

te
_

(o
p

e
ra

ti
o

n
s
/s

e
c
).

Build

Comparison of stack-string ctor, dtor and assignment performance.

Error-bars: % average deviation.

jmmcg::stack_string small string

std::string small string

__gnucxx::__vstring small string

jmmcg::stack_string big string

std::string big string

__gnucxx::__vstring big string

1x106

1x107

1x108

1x109

1x1010

1x1011

1

1414

g++v4.7.3

2

1627

g++v4.8.4

3

1643

g++v4.8.4

4

1686

g++v5.1.0

5

1696

g++v4.8.4

6

1719

g++v4.9.3

7

1735

g++v4.8.4

8

1776

g++v4.8.5

NoSymbols

9

1916

g++v5.3.0

10

1916

g++v5.3.0

ABI11

11

1924

clang++v3.8

12

1924

g++v5.3.0

ABI11

13

2000

clangv3.9.1

M
e

a
n

_
ra

te
_

(o
p

e
ra

ti
o

n
s
/s

e
c
).

Build

Comparison of stack-string ctor, dtor and replace performance.

Error-bars: % average deviation.

jmmcg::stack_string small string

std::string small string

__gnucxx::__vstring small string

jmmcg::stack_string big string

std::string big string

__gnucxx::__vstring big string

Warning! Different y-scales.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

Software optimisations, compiler versions.

10

20

30

40

50

60

70

80

90

100

110

120

1
1850

g++v4.8.5
boost-v1.57

2
1862

g++v5.3.0

3
1870

g++v5.3.0

4
1868

g++v5.4.0
boost-v1.63

5
1868

g++v6.3.0

6
1985

g++v6.3.0

7
2000

g++v5.4.0

8
2000

g++v6.3.0

9
2032

g++v6.3.0

10
2032

g++v6.3.0
jmmcg::asio

11
2032

g++v6.3.0 -O2
boost::asio

Me
an

_ro
un

d-t
rip

_(m
icr

os
ec

).

Build

Comparison of MIT-based link performance.
Error-bars: % average deviation.

Simulator (BIT)
Link (BIT)

Newer versions of g++ make better use of optimizations.
J.M.McGuiness Knuth, Amdahl: I spurn thee!

Background
Examples

Conclusion

The Situation is so Complex...

One must profile, profile and profile again - takes a lot of time.

Time the critical code; experiment with removing parts.
Unit tests vital; record performance to maintain SLAs.

Highly-tuned code is very sensitive to the version of compiler.

Choosing the right compiler is hard: re-optimizations are
hugely costly without good tests.
The g++ 6.3.0 improves upon 5-serie, but still needs work...

Outlook:

No one compiler appears to be best - choice is crucial.
Newest versions of clang have not been investigated.

J.M.McGuiness Knuth, Amdahl: I spurn thee!

For Further Reading

For Further Reading I

http://libjmmcg.sf.net/

Jeff Andrews
Branch and Loop Reorganization to Prevent Mispredicts
https://software.intel.com/en-us/articles/
branch-and-loop-reorganization-to-prevent-mispredicts/

Agner Fog
The microarchitecture of Intel, AMD and VIA CPUs
http:
//www.agner.org/optimize/microarchitecture.pdf

J.M.McGuiness Knuth, Amdahl: I spurn thee!

http://libjmmcg.sf.net/
https://software.intel.com/en-us/articles/branch-and-loop-reorganization-to-prevent-mispredicts/
https://software.intel.com/en-us/articles/branch-and-loop-reorganization-to-prevent-mispredicts/
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf

For Further Reading

For Further Reading II

ARM11 MPCore Processor Technical Reference Manual
http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ddi0360f/ch06s02s03.html

Prof. Bhargav C Goradiya, Trusit Shah
Implementation of Backward Taken and Forward Not Taken
Prediction Techniques in SimpleScalar
http://ijarcsse.com/docs/papers/Volume_3/6_
June2013/V3I6-0492.pdf

https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66573

J.M.McGuiness Knuth, Amdahl: I spurn thee!

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0360f/ch06s02s03.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0360f/ch06s02s03.html
http://ijarcsse.com/docs/papers/Volume_3/6_June2013/V3I6-0492.pdf
http://ijarcsse.com/docs/papers/Volume_3/6_June2013/V3I6-0492.pdf
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66573

For Further Reading

For Further Reading III

Jasper Neumann and Jens Henrik Gobbert
Improving Switch Statement Performance with Hashing
Optimized at Compile Time
http://programming.sirrida.de/hashsuper.pdf

J.M.McGuiness Knuth, Amdahl: I spurn thee!

http://programming.sirrida.de/hashsuper.pdf

	Background
	HFT & Low-Latency: Issues
	Example Hardware.
	C++ is THE Answer!
	Oh no, C++ is just NOT the answer!
	Optimization Case Studies.

	Examples
	Performance quirks in compiler versions.
	Static branch-prediction: use and abuse.
	Switch-statements: can these be optimized?
	Perversions: Counting the number of set bits. ``Madness''
	The Effect of Compiler-flags.
	Template Madness in C++: extreme optimization.
	Put it all together: A FIX to MIT/BIT translator.

	Conclusion
	Appendix

