A furtive fumble in Hard-Core Obscenity: the
misuse of Template Meta-Programming to
implement micro-optimisations in HFT.

J.M.M¢Guiness!
1Count-Zero Limited

ACCU Conference, 2017

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

Outline

@ Background
@ HFT & Low-Latency: Issues
o Example Hardware.
o C++ is THE Answer!
@ Oh no, C4++ is just NOT the answer!
@ Optimization Case Studies.
© Examples
@ Performance quirks in compiler versions.
@ Static branch-prediction: use and abuse.
@ Switch-statements: can these be optimized?
@ Perversions: Counting the number of set bits. “Madness”
@ The Effect of Compiler-flags.
@ Template Madness in C++: extreme optimization.

@ Put it all together: A FIX to MIT/BIT translator.

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

HFT & Low-Latency: Issues

e HFT & low-latency are performance-critical, obviously:

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

HFT & Low-Latency: Issues

e HFT & low-latency are performance-critical, obviously:

e provides edge in the market over competition, faster is better.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

HFT & Low-Latency: Issues

e HFT & low-latency are performance-critical, obviously:

e provides edge in the market over competition, faster is better.

@ s not rocket-science:

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

HFT & Low-Latency: Issues

e HFT & low-latency are performance-critical, obviously:

e provides edge in the market over competition, faster is better.

@ Is not rocket-science:
o Not safety-critical: it's not aeroplanes, rockets nor reactors!

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

HFT & Low-Latency: Issues

e HFT & low-latency are performance-critical, obviously:

e provides edge in the market over competition, faster is better.

@ Is not rocket-science:
o Not safety-critical: it's not aeroplanes, rockets nor reactors!

o Perverse: to be truly fast is to do nothing!

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

HFT & Low-Latency: Issues

e HFT & low-latency are performance-critical, obviously:

e provides edge in the market over competition, faster is better.
@ Is not rocket-science:

o Not safety-critical: it's not aeroplanes, rockets nor reactors!

o Perverse: to be truly fast is to do nothing!

o It is message passing, copying bytes

o perhaps with validation, aka risk-checks.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

HFT & Low-Latency: Issues

e HFT & low-latency are performance-critical, obviously:

e provides edge in the market over competition, faster is better.
@ Is not rocket-science:

o Not safety-critical: it's not aeroplanes, rockets nor reactors!

o Perverse: to be truly fast is to do nothing!

o It is message passing, copying bytes

o perhaps with validation, aka risk-checks.

@ It requires low-level control:

o of the hardware & software that interacts with it intimately.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

HFT & Low-Latency: Issues

e HFT & low-latency are performance-critical, obviously:

e provides edge in the market over competition, faster is better.
@ Is not rocket-science:

o Not safety-critical: it's not aeroplanes, rockets nor reactors!

o Perverse: to be truly fast is to do nothing!

o It is message passing, copying bytes

o perhaps with validation, aka risk-checks.

@ It requires low-level control:

o of the hardware & software that interacts with it intimately.

@ Apologies if you know this already!

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware.

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

AMD Bulldozer, circa 2013.

Module block
(incl. 2 cores)

Branch
Prodiction

Instruction
Fotch.

Rosource
Monitor

L2 Data Cache
2048K8 (shared.Max)

J.M.M€Guiness Knuth, Amdahl: | spurn

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

C++ is THE Answer!

@ Like its predecessor C, C++ can be very low-level:

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

C++ is THE Answer!

@ Like its predecessor C, C++ can be very low-level:

o Enables the intimacy required between software & hardware.
o Assembly output tuned directly from C++ statements.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

C++ is THE Answer!

@ Like its predecessor C, C++ can be very low-level:

o Enables the intimacy required between software & hardware.
o Assembly output tuned directly from C++ statements.

@ Yet C++ is high-level: complex abstractions readily modeled.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

C++ is THE Answer!

@ Like its predecessor C, C++ can be very low-level:

o Enables the intimacy required between software & hardware.
o Assembly output tuned directly from C++ statements.

@ Yet C++ is high-level: complex abstractions readily modeled.

@ Has increasingly capable libraries:

e E.g. Boost.
o Especially C++11, 14 & up-coming 17 standards.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

C++ is THE Answer!

@ Like its predecessor C, C++ can be very low-level:

o Enables the intimacy required between software & hardware.
o Assembly output tuned directly from C++ statements.

@ Yet C++ is high-level: complex abstractions readily modeled.

@ Has increasingly capable libraries:
e E.g. Boost.
o Especially C++11, 14 & up-coming 17 standards.
@ | shall ignore other languages, e.g. D, Functional-Java, etc.

o (garbage-collection kills performance, not low-enough level.)

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

Oh no, C++ is NOT just the answer!

@ There is more to low-latency than just C++:

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

Oh no, C++ is NOT just the answer!

@ There is more to low-latency than just C++:
o Hardware needs to be considered:

e multiple-processors (one for O/S, one for the gateway),
o bus per processor; cores dedicated to tasks,
e network infrastructure (including co-location), etc.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

Oh no, C++ is NOT just the answer!

@ There is more to low-latency than just C++:
o Hardware needs to be considered:

e multiple-processors (one for O/S, one for the gateway),
o bus per processor; cores dedicated to tasks,
e network infrastructure (including co-location), etc.

o Software issues confound:

e which O/S, not all distributions are equal,
@ tool-set support is necessary for rapid development,
e configuration needed: c-groups/isolcpu, performance tuning.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies

Oh no, C++ is NOT just the answer!

@ There is more to low-latency than just C++:
o Hardware needs to be considered:

e multiple-processors (one for O/S, one for the gateway),
o bus per processor; cores dedicated to tasks,
e network infrastructure (including co-location), etc.

o Software issues confound:

e which O/S, not all distributions are equal,
@ tool-set support is necessary for rapid development,
e configuration needed: c-groups/isolcpu, performance tuning.

@ Not all compilers, or even versions, are equal...

e Which is faster clang, g++, icc?
e Focus: g++ C++11 & 14, some results for clang v3.9 & icc.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies.

Optimization Case Studies.

@ Despite the above, we choose to use C++,

e which we will need to optimize.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies.

Optimization Case Studies.

@ Despite the above, we choose to use C++,
e which we will need to optimize.

@ Optimizing C++ is not trivial, some examples shall be
provided [1]:

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

HFT & Low-Latency: Issues
Background Example Hardware

C++ is THE Answer!

Oh no, C++ is just NOT the answer!

Optimization Case Studies.

Optimization Case Studies.

@ Despite the above, we choose to use C++,

e which we will need to optimize.

@ Optimizing C++ is not trivial, some examples shall be
provided [1]:

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Counting the number of set bits.

Extreme templating: the case of memcpy().

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions.
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags

Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

formance quirks in compiler versions.

@ Compilers normally improve with versions, don't they?

Example code, using -03 -march=native:

#include <string.h>
const char src[20]="0123456789ABCDEFGHI";
char dest[20];
void foo() {
memcpy (dest, src, sizeof(src));

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions.
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Comparison of code generation in g++.

foo():
movabsq $3978425819141910832, Jrdx movq src(Y%rip), %rax
movabsq $5063528411713059128, Yrax movq %rax, dest(Jrip)
movl $4802631, dest+16(%rip) movq src+8(%rip), %rax
movq %rdx, dest(%rip) movq %rax, dest+8(%rip)
movq %rax, dest+8(%rip) movl src+16(%rip), %eax
ret movl %eax, dest+16(%rip)
dest: .zero 20 ret
dest:
.zero 20
src:
.string "0123456789ABCDEFGHI"

@ g++ v4.4.7 schedules the movabsq sub-optimally.

@ g++ v4.7.3 does not use any SSE instructions, and uses the
stack, so is sub-optimal.

M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions.
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Comparison of code generation in g++.

Vi8.1- 1630

foo(): foo():
movabsq $3978425819141910832, jrax vmovdqa xmm0O, XMMWORD PTR .LCO[rip]
movl $4802631, dest+16(%rip) mov DWORD PTR dest[rip+16], 4802631
movq %rax, dest(%rip) vmovaps XMMWORD PTR dest[rip], xmmO
movabsq $5063528411713059128, %rax ret
movq %rax,dest+8(%rip) dest:
ret .zero 20
dest: .zero 20 L,LCO:
.quad 3978425819141910832
.quad 5063528411713059128

@ g++ v4.8.1-v6.3.0: notice SSE instructions are better
scheduled, with no use of the stack.

@ g++ v7.0.0: back to stack usage, but used SSE: sub-optimal.
@ Very unstable output - highly dependent upon version.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions.
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags

Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Comparison of code generation in icc & clang.

icc v13.0.1-v1

clang 3.5.0-4.0.0-rc4:

fo0(): foo(): # @foo()
vmovups xmm0, XMMWORD PTR src[rip] vmovaps xmm0, xmmword ptr [rip + src]
vmovups XMMWORD PTR dest[rip], xmmO vmovaps xmmword ptr [rip + dest], xmmO
mov eax, DWORD PTR 16+src[rip] mov dword ptr [rip + dest+16], 4802631
mov DWORD PTR 16+dest[ripl, eax ret
ret dest:

dest: .zero 20

src: Ench
.long 858927408 .asciz "0123456789ABCDEFGHI"
XXXsnipXXX
.long 4802631

@ Notice fewer instructions, but use of the stack - increases
pressure on the cache, and the necessary memory-loads.

@ clang has very stable output compared to g++.

M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions.
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags

Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Does this matter in reality?

Comparison of performance of versions of gcc.

8
1.6x10' T T T T
4.7.3 |——
4.8.4 Idi—d
1.4x10°% 5.1.0 —
5.3.0ABI11
6.3.0
1.2x10°% —
=)
&
‘B 1x10® —
2
S
s
3 7
g &0 —
o
<
7 -
o ex10
S
i
=
4x10” —
2x107 —
° 1 !
1 2 3 4
small str ctors+dtors big str ctors+dtors small str = big str = small str replace big str replace

nchmarl

e Hope that performance improves With compiler version...
e This is not always so: there can be significant differences!

Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Static branch-prediction: use and abuse.

@ Which comes first? The if () bar1() or the else bar2()?
o Intel [2], ARM [4] & AMD differ: older architectures use
BTFNT rule [3, 5].

o Backward-Taken: for loops that jump backwards. (Not
discussed in this talk.)

o Forward-Not-Taken: for if-then-else.

o Intel added the 0x2e & 0x3e prefixes, but no longer used.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Static branch-prediction: use and abuse.

@ Which comes first? The if () bar1() or the else bar2()?
o Intel [2], ARM [4] & AMD differ: older architectures use
BTFNT rule [3, 5].

o Backward-Taken: for loops that jump backwards. (Not
discussed in this talk.)

o Forward-Not-Taken: for if-then-else.

o Intel added the 0x2e & 0x3e prefixes, but no longer used.

o But super-scalar architectures still suffer costs of mis-prediction
& research into predictors is on-going and highly proprietary.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Static branch-prediction: use and abuse.

@ Which comes first? The if () bar1() or the else bar2()?
o Intel [2], ARM [4] & AMD differ: older architectures use
BTFNT rule [3, 5].

o Backward-Taken: for loops that jump backwards. (Not
discussed in this talk.)

o Forward-Not-Taken: for if-then-else.

o Intel added the 0x2e & 0x3e prefixes, but no longer used.

o But super-scalar architectures still suffer costs of mis-prediction
& research into predictors is on-going and highly proprietary.

prefixes, now just used to guide the compiler.
@ The fall-through should be bar1(), not bar2()!

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

@ __builtin_expect() was introduced that emitted these

Performance quirks in compiler versions
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

So how well do compilers obey the BTENT rule?

The following code was examined with various compiler

extern void bar1();

extern void bar2();

void foo(bool i) {
if (i) bari();
else bar2();

M.M€Guiness Knuth, Amdahl: | spurn thee!

Examples

Performance quirks in compiler versions
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?

Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags

Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Generated Assembler using g++ v4.8.2-v7

At -O0 & -O1:

foo(bool) :
subq $8, %rsp
testb %dil, %dil
je .L2
call bari()
jmp .L1
L2:
call bar2()
L1
addq $8, %rsp
ret

At -02 & -03:

foo(bool):
testb %dil, %dil
jne .L4

jmp bar2()
olLALS
jmp baril()

@ Oh no! g++ switches the fall-through, so one can't
consistently statically optimize branches in g++...[6]

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

Examples

Performance quirks in compiler versions

Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags

Template Madness in C++: extreme optimization

Put it all together: A FIX to MIT/BIT translator

Generated Assembler using ICC v13.0.1-v17 & CLANG

v3.8.0-4.0.0rc4.

ICC at -02 & -03:

foo(bool):
testb %dil, %dil #5.7
je ..B1.3 # Prob 50% #5.7
jmp baril() #6.2
..B1.3: # Preds

..B1.1
jmp bar2()

CLANG at -O1, -02 & -03:

foo(bool): # @foo(bool)
testb %dil, %dil

je .LBBO_2

jmp bari() # TAILCALL
.LBBO_2:

jmp bar2() # TAILCALL

@ Lower optimization levels still order the calls to bar [112] () in
the same manner, but the code is unoptimized.
e BUT at -0O2 & -O3 g+ reverses the order of the calls

J.M.M€Guiness

Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags

Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

__builtin_expect(i, 1) with g++ v4.8.5-v5.3.0.

e BUT: Adding __builtin_expect(i, 1) to the dtor of a
stack-based string caused a slowdown in g++ v4.8.5!

Comparison of effect of ~builtin-expect using gec v4.8.5 and -std=c++11 Comparison of effect of -builtin-expect using gec v5.3.0 and -std=c++14.
s s
a0 : T T 1840 T T
485 bt 530 bt
485 bullin-expect b=t } 530 bultin-expect ==t
16¢10" 5.3.0ABI11 b
sxi0® -
14x10' —
T s .
8 ot - 8 12x10° R
2 2
2 2
5 s .
® B0 i
J— g
§ o - - g
o o st i
® e
q d
c c
§ 20" - - g oxi0* R
H H
ax10™ —
w0’ [~ -
210" —
0 L 0
2 3 4 5 6 1 2 3 4 5 5
smallsrcorssdlors b st clorssclors smalstr = bigstr= smal st replace: big st replce small s cors+dlors big st ctorsvdlors smallstr = bgstr= smallsreplace big st eplac

Benchmark Benchmark

Knuth, Amdahl: | spurn thee!

Examples

Test __builtin_expect (i,

Performance quirks in compiler versions

Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags

Template Madness in C++: extreme optimization

Put it all together: A FIX to MIT/BIT translator

1) with g++ v6.3.0.

Comparison of effect of ~-builtin-expect using gec v6.3.0 and -std=c++14.

Comparison of effect of --builtin-expect using gec v6.3.0 and -std=c++14.

210" T T T T
630 bt

1.8¢10" 6.3.0 buiin-expect b=te=d _|

16x10"®
1.4x10'®
1.2x10'%

1xt0'®

810"

10" T T T T
630 Iped
630 bultin-expect bemd_|

1x10'®

w0

ix10®

1102

0"

110

6x10 4 w0
axt0™ - 1x10°
0™ - 10"
0 ¥ L ¥ * I I I I
Benchmark Benchmark

| spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Does a switch-statement have a preferential case-label?

@ Common lore seems to indicate that either the first case-label
or the default are somehow the statically predicted
fall-through.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Does a switch-statement have a preferential case-label?

@ Common lore seems to indicate that either the first case-label
or the default are somehow the statically predicted
fall-through.

@ For non-contiguous labels in clang, g++ & icc this is not so.

o g++ uses a decision-tree algorithm[7], basically case labels are
clustered numerically, and the correct label is found using a
binary-search.

o clang & icc seem to be similar. | shall focus on g++ for this
talk.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Does a switch-statement have a preferential case-label?

@ Common lore seems to indicate that either the first case-label
or the default are somehow the statically predicted
fall-through.

@ For non-contiguous labels in clang, g++ & icc this is not so.

o g++ uses a decision-tree algorithm[7], basically case labels are
clustered numerically, and the correct label is found using a
binary-search.

o clang & icc seem to be similar. | shall focus on g++ for this
talk.

o There is no static prediction!

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C4++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

What does this look like?

Example of simple n

extern bool bari();

extern bool bar2();

extern bool bar3();

extern bool bar4();

extern bool bar5(Q);

extern bool bar6();

bool foo(int i) {

switch (i) {

case 0: return bari();
case 30: return bar2();
case 9: return bar3();
case 787: return bard();
case 57689: return bar5();
default: return bar6();

@ Contiguous labels cause a jump-table to be created.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags

Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

g++ v5.3.0-v7 -O3 generated code.

uiltin_expect() has no effect:

foo(int): o olL2R

cmpl $30, %edi jmp bar6()
je .L3

jg .L4 Jmp ‘bara()
testl %edi, %edi
je .L5 jmp
cmpl $9, %edi

Sne .12 jmp bar2()
Jmp bar3()

Jmp “bar1()

L4

cmpl $787, ‘hedi
je .L7

cmpl $57689, Y%edi
jne .L2

jmp bar5()

@ Identical - it has no effect; icc is likewise unmodified.

@ But clang v3.8.0-v4.0.0rc4 is affected by
_builtin_expect () in the expected manner.

M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

An obvious hack:

@ One has to hoist the statically-predicted label out in an
if-statement, and place the switch in the else.

e Modulo what we now know about static branch
prediction...Surely compilers simply “get this right"?

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness’
The Effect of Compiler-flags
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Compare various Implementations and their Performance
using -03 -std=c++14.

@ A perennial favourite of interviews! Sooooo tedious...

@ The obvious implementation:

constexpr inline __attribute__((const)) movabsq $843678937893, Yrax
unsigned long .L2: . o
result() noexcept(true) { movq %rax, %rsi
const uint64_t num=843678937893; shrq Yrax
unsigned long count=0; andl $1, Y%esi
do { addq %rsi, %rex
if (LIKELY (num&1)) { subl $1, %edx
R +¥count ; jne .L2
} while (num>>=1); movq :/-rcx, }4('/.r1p)
return count; xorl Jeax, jeax
3} ’ ret

M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags

Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Part 1: Now using templates to unroll the loop.

The template implementatio Assembler:
template<uint8_t Val, class BitSet> movq $22, k(%rip)
struct unroller : wunroller<Val-1, BitSet>; xorl %eax, %eax
XXXsnipXXX ret
template<class T, T... args> struct

array_t;

XXXsnipXXX

template<unsigned long long Val>

struct shifter;

template<unsigned long long Val,

template<unsigned long long> class Fn,

unsigned long long... bitmasks>

struct gen_bitmasks;

XXXsnipXXX

struct count_setbits {

XXXsnipXXX
constexpr static element_type
result() noexcept(true) {
unsigned long num=843678937893;
return unroller_t::result (num);
3

3

o Outrageous templating has enabled constexpr!

J.M.M€Guiness Knuth, Amdahl: | spurn

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness’
The Effect of Compiler-flags
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Part 2: Now using assembly.

The asm popent implementation; Assembler:

movabsq $843678937893, Yrax
POPCNT %rax, %rax;
#include <stdint.h> xorl jeax, jeax
inline uint64_t result() noexcept(true) { ret

const uint64_t num=843678937893;

uint64_t count=0;

__asm__ volatile (

"POPCNT %1, %0;"

:"=r" (count)
:"z" (num)

-mpopcnt:

5
return count;

o Contrary to popular belief: inlining happens, despite the
_asm__ block.

@ Result has to be dynamically computed.

M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Part 2: Now using builtins.

The __buiilin_popcountll Assembler:

movq $22, k(%rip)
xorl %eax, %eax
ret

implementation; -mpopcnt:

#include <stdint.h>
constexpr inline __attribute__((const))
inline uint64_t result(uint64_t num)
noexcept (true) {
const uint64_t num=843678937893;
return __builtin_popcountll (num) ;

@ Note how the builtin enables the result to be computed at
compile-time, without that template malarky.

@ But requires a suitable ISA.

M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness’
The Effect of Compiler-flags

Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Does this matter in reality?

Comparison of count setbits performance.
Error-bars: % average deviation.

o
a0 T T T T T T T T T
dyn::basici:count_setbits ———
dyn:builtin::count_setbits F——
F dyn::lookup\:count_setbits, 8-bit cache
L unt_setbits, 16-bit cache
dyn::lookup::cdunt_setbits, 32-bit cache
r dyn::lookup::colynt_setbits, 64-bit cache
=
8 1x10® -
z
=1
s
3
8 F
]
= B
@ - L
<
l:I T
7 —
8 1x10° 3
= E
1x10° 1 1 1 1 1 1 1 1 1 1 1
1 2 3 a 5 6 7 s ° 10 11 12 13
1240 1241 1627 1643 1686 1686 1694 1732 1776 1924 1924 1916 1985
G+4V4.5.2 gH+vA.7.3 gH+va.B.4 g++va.B.4 GH+VE.1.0 G++VE.2.BIang++v3. G ++v4.8.4 g++va.B.51ang++v3. i ++v5.3.0 g++v5.3.0 g++v6.3.0
NoSymbols ABI11 ABIT1

v5.1.0 & v5.3.0 (kernels v4.1.15"& v4.4.6) is a disaster!
v6.3.0 (kernel v4.9.6) seems to recover the performance.

Knuth, Amdah

| spurn

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Counting set bits: conclusion.

@ Know thine architecture:

e Without the right tools for the job, one has to work very hard
with complex templates.

o With the right architecture, and compiler, much more simple
code can use builtins.

@ One can use assembler, and it will be fast.

o But not as fast as builtins as compilers can replace code with
constants!

@ Review your code when updating hardware & compiler.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

The Curious Case of memcpy () and SSE.

Examined with various compilers with -O3 -std=c++14.

__attribute__((aligned(256))) const char s[]=
"And for something completely different.";
char d[sizeof(s)];
void bar1() {
std: :memcpy(d, s, sizeof(s));
}

@ Because copying is VERY common.

@ Surely compilers simply “get this right'™?

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Assembly output from g++.

v4.9.0-6.3.0: -m[no-Javx: mno v7 th -mavx
effect & v7 with -mno-sse. barlQ:
vmovdga .LCO(%rip), %xmmO
bar1(): movabsq $13075866425910630, j%rax
movabsq $2338053640979508801, Y%rax movq %rax, d+32(jrip)
movq %rax, d(%rip) vmovaps %xmm0, d(%rip)
movabsq $7956005065853857651, jrax vmovdqa .LC1(%rip), %xmmO
movq %rax, d+8(%rip) vmovaps %xmm0, d+16(%rip)
movabsq $7308339910637985895, Jrax ret
movq %rax, d+16(%rip) d: .LCO:
movabsq $7379539555062146420, jrax .quad 2338053640979508801
movq %rax, d+24(%rip) .quad 7956005065853857651
movabsq $13075866425910630, Y%rax .LC1:
movq %rax, d+32(%rip) .quad 7308339910637985895
ret .quad 7379539555062146420
d:
.zero 40

e Earlier g++ should use SSE? All other options: no effect.
@ g++ v7: o.k., AVX used, but stack too: win-lose.

Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.

Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Assembly output from clang v3.5.0-4.0.0rc4.

-MNno-avx

-mavx

bar1(): # @bari() bari(): # Gbari()
movabsq $13075866425910630, %rax movabsq $13075866425910630, Yrax
movq %rax, d+32(%rip) movq %rax, d+32(Jrip)
movaps s+16(%rip), %xmmO vmovaps s(%rip), %ymmO
movaps %xmmO, d+16(%rip) vmovaps %xmm0, d(%rip)
movaps s (%rip), %xmmO vzeroupper
movaps %xmm0O, d(%rip) retq
retq d:
d: s:
o5 .asciz "And for something completely
.asciz "And for something completely different."
different."

@ Note how the SSE registers are now used, unlike g++ and
fewer instructions, no stack too!

M.M€Guiness Knuth, Amdahl: | spurn thee!

Examples

Performance quirks in compiler versions

Static branch-prediction: use and abuse
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.

Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Assembly output from icc v13.0.1 -std=c++11.

-Mno-avx

barl1():
movaps s(%rip), %xmm0 #205.3
movaps %xmmO, d(%rip) #205.3
movaps 16+s(%rip), %xmml #205.3
movaps %xmml, 16+d(%rip) #205.3
movq 32+s(%rip), %rax #205.3
movq %rax, 32+d(/rip) #205.3

ret #206.1
d:
s:
.byte 65
‘byte 0

-mavx

bar1():
vmovups 16+s(%rip), %xmm0 #205.3
vmovups %xmmO, 16+d(jrip) #205.3
movq 32+s(%rip), %rax #205.3
movq %rax, 32+d(%rip) #205.3
vmovups s(%rip), %xmml #205.3
vmovups %xmmi, d(jrip) #205.3

ret #206.1
d:
&8
.byte 65
‘byte 0

e c.f. clang: SSE registers used, but a totally different schedule.

Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.
Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator

Assembly output from icc v17.0.0 -std=c++14.

-mavx

bar1(): bar1():
vmovups s(Jrip), %ymmO vmovups s(%rip), %xmm0
vmovups %ymmO, d(%rip) vmovups %xmm0, d(%rip)
movq 32+s(Y%rip), %rax vmovups 16+s(%rip), %xmml
movq %rax, 32+d(%rip) vmovups %xmmi, 16+d(%rip)
vzeroupper movq 32+s(Y%rip), %rax
ret movq %rax, 32+d(%rip)
gg ret
) d:
S

@ In this case it looks like using -mavx slows things down!

M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions.
Static branch-prediction: use and abuse.
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags.

Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator.

e Can blatant templating make an even faster memcpy ()?

Examined with various compilers wit

template<
std::size_t SrcSz, std::size_t DestSz, class Unit,
std::size_t SmallestBuff=min<std::size_t, SrcSz, DestSz>::value,
std::size_t Div=SmallestBuff/sizeof(Unit), std::size_t Rem=SmallestBuffYsizeof (Unit)
> struct aligned_unroller {
// ... An awful lot of template insanity. Omitted to avoid being arrested.

témplate< std::size_t SrcSz, std::size_t DestSz > inline void constexpr
memcpy_opt (char const (&src) [SrcSz], char (&dest) [DestSz]) noexcept(true) {
using unrolled 256_op_t=private_::aligned_unroller< SrcSz, DestSz, __m256i >;
using unrolled_128_op_t=private aligned_unroller< SrcSz-unrolled_256_op_t::end,
DestSz-unrolled_256_op_t::end, __m128i >;
// XXXsnipXXX
// Unroll the copy in the hope that the compiler will notice the sequence of copies and
optimize it.
unrolled_256_op_t::result(
[&src, &dest] (std::size_t i) {
reinterpret_cast<__m256i*>(dest) [i]= reinterpret_cast<__m256i const *>(src)[i];
}

DR
// XXXsnipXXX

J.M.M€Guiness Knuth, Amdahl: | spurn

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags

Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator

Assembly output from g++.

v5.1.0-7.

bar() : bar () :
movq s+32(%rip), %rax vmovups s+32(%rip), %ymmO
vmovdqa s()rip), %ymmO movabsq $13075866425910630, %rax
vmovdqa %ymmO, d(%rip) vmovups %ymm0, d+32(%rip)
movq %rax, d+32(%rip) movq %rax, d+32(%rip)
vzeroupper vzeroupper
ret ret
s: d:
.string "And for something completely 8
different." .string "And for something completely
different."
.zero 40

@ All look good apart from the stack usage.

Knuth, Amdahl: | spurn thee!

Examples

Performance quirks in compiler versions

Static branch-prediction: use and abuse
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags

Template Madness in C++: extreme optimization.

Put it all together: A FIX to MIT/BIT translator

Assembly output from clang & icc.

clang v3

.LCPI1_0:
.quad 2338053640979508801
.quad 7956005065853857651
.quad 7308339910637985895
.quad 7379539555062146420
bar(): # @bar()
vmovaps .LCPI1_0(%rip), %ymmO
vmovaps %ymmO, d(%rip)
movabsq $13075866425910630, Y%rax
movq %rax, d+32(%rip)
vzeroupper
retq

.zero 40

bar () :
movl $s, %eax #198.14
movl $d, %ecx #198.17
vmovdqu (%rax), %ymmO #154.44
vmovdqu %ymmO, (%rcx) #153.37
movq 32(%rax), %rdx #166.44
movq %rdx, 32(%rcx) #165.37
vzeroupper #199.1

ret #199.1
d:
s:
.byte 65
:ﬁ&te (]

@ Judicious use of micro-optimized templates can provide a

performance enhancement.

Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags
Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator

Assembly output from icc.

bar() : bar () :
vmovups 32+s (}%rip), %ymmO movl $s, %edi
movq 32+s(Y%rip), %rax movl $d, %esi
vmovups %ymm0, 32+d(%rip) jmp void memcpy_opt<40ul, 40ul>(char
movq %rax, 32+d(%rip) const (&) [40ull, char (&) [40ull)
vzeroupper vmovups 32(%rdi), %ymmO
retq movq 32(%rdi), Y%rax
d: vmovups %ymmO, 32(%rsi)
. movq %rax, 32(%rsi)
vzeroupper
ret

no.

@ Use of micro-optimized templates can do unexpected things:

e icc v17 produces suboptimal results.

M.M€Guiness Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags

Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator

Again, does this matter?

Comparison of std:memcpy vs memcpy_opt, g++ v6.3.0. Comparison of std::memcpy vs memcpy_opt, clang v3.9.1
0’ : et T T
std:momepy it stt:momepy it
memeay._opt b=l memcoy_opt Nt
0’ 307
a0 o
] H
2 2
£ a0’ 2 2500
s g
2 2
& £
d g
2507 2 20
< <
3 3
= s’ = isa0
a0’ e’
o L L Sa0° L L
' 2 a 4 '
big sting assign smal sting eplace g sving ropac
Test Test

o No statistical differences in general.

e g+-+: optimizations confounded by use of stack.
e clang: similar pattern to g+, but much slower.

Knuth, Amdahl: | spurn thee!

Performance quirks in compiler versions

Static branch-prediction: use and abuse
Switch-statements: can these be optimized?
Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags

Examples

Template Madness in C++: extreme optimization.
Put it all together: A FIX to MIT/BIT translator

The impact of compiler version on performance.

Conpaiso ofstack-sting loranddr perormarce.
irortrs: s averagedeiaon.

Compariso f stacksting cor,dor and assignment peromaree.
Emoctar: s averagedeviaion.

Compariso ofstaksting o, dor andreplce perrmarce.
vt s averagedeiaon.

! T T T T T T 1 T T e T T T T T T T T T T T e T T T T T T 1
e st g g F——1 s s s F——1 e sk gl g F——1
i vyl [sy T P
Ji e v go_gralong g _uimgsalsong
. [| i s . o s sty | . e sk gy g
o st | i sssmgigung | - ® | T sty - o
e g i ¥4 _gneac_ntrgasong 9| Pwor_uwgigg 1y
g [Fwe | [1 3 M\
g [g |
4 H 4
L 1 5wl
i i
gt 1 8 g
s K B
§ wo 1 . § il
Wi 1 i |
£ f
g ¥
i =y 1
Y I T R .
IR non e 21 4 s s R B R
WO B0 6 B TH U M N6 W6 6N 6 20 20 WeOWD WO B W WD WS B N6 W6 W W A0 W0 weow w e WS oMo e we e ww 2w
Slfgrtes A e glgrtes Buig St it

e Warning! Different y-scales.

€ss

Knuth, Amdahl

| spurn thee

Performance quirks in compiler versions
Static branch-prediction: use and abuse
Switch-statements: can these be optimized?

Examples Perversions: Counting the number of set bits. “Madness”
The Effect of Compiler-flags

Template Madness in C++: extreme optimization
Put it all together: A FIX to MIT/BIT translator.

Software optimisations, compiler versions.

Comparison of MIT-based link performance.
Error-bars: % average deviation

T T T T T
Simulator (BIT) ——+——|

110 }\ Link (BIT) < _|

90 | —

80 — + % . —

60 — + / \ —

50

ip_(microsec).

T
g
7]

Mean_round-tri

a0 — —

30

20 = —

10 L L L L L L L L L
1 2 3 a s 6 7 8 9 10 11
1850 1862 1870 1868 1868 é?@% 2000 2000 2032 2032 2032
g++v4.8.5 g++v5.3.0 g++v5.83.0 g++v5.4.0 g++v6.3.0 g+iv6.3.0 g++v5.4.0 g++v6.3.0 g++V6.3.0 g++V6.3.0g9++V6.3.0 -OZ
boost-v1.57 boost-v1.63 jmmcg::asio boost::asio

@ Newer versions of g++ make better use of optimizations.

Conclusion

The Situation is so Complex...

@ One must profile, profile and profile again - takes a lot of time.

e Time the critical code; experiment with removing parts.
o Unit tests vital; record performance to maintain SLAs.

@ Highly-tuned code is very sensitive to the version of compiler.

o Choosing the right compiler is hard: re-optimizations are
hugely costly without good tests.
e The g++ 6.3.0 improves upon 5-serie, but still needs work...

o Outlook:

o No one compiler appears to be best - choice is crucial.
o Newest versions of clang have not been investigated.

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

For Further Reading

For Further Reading |

¥ http://libjmmcg.sf.net/

¥ Jeff Andrews
Branch and Loop Reorganization to Prevent Mispredicts
https://software.intel.com/en-us/articles/
branch-and-loop-reorganization-to-prevent-mispredicts/

¥ Agner Fog
The microarchitecture of Intel, AMD and VIA CPUs
http:
//www.agner.org/optimize/microarchitecture.pdf

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

http://libjmmcg.sf.net/
https://software.intel.com/en-us/articles/branch-and-loop-reorganization-to-prevent-mispredicts/
https://software.intel.com/en-us/articles/branch-and-loop-reorganization-to-prevent-mispredicts/
http://www.agner.org/optimize/microarchitecture.pdf
http://www.agner.org/optimize/microarchitecture.pdf

For Further Reading

For Further Reading Il

¥ ARM11 MPCore Processor Technical Reference Manual
http://infocenter.arm.com/help/index. jsp?topic=
/com.arm.doc.ddi0360f/ch06s02s03.html

¥ Prof. Bhargav C Goradiya, Trusit Shah
Implementation of Backward Taken and Forward Not Taken
Prediction Techniques in SimpleScalar
http://ijarcsse.com/docs/papers/Volume_3/6_
June2013/V3I6-0492.pdf

¥ https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66573

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0360f/ch06s02s03.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0360f/ch06s02s03.html
http://ijarcsse.com/docs/papers/Volume_3/6_June2013/V3I6-0492.pdf
http://ijarcsse.com/docs/papers/Volume_3/6_June2013/V3I6-0492.pdf
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=66573

For Further Reading

For Further Reading IlI

¥ Jasper Neumann and Jens Henrik Gobbert

Improving Switch Statement Performance with Hashing
Optimized at Compile Time

http://programming.sirrida.de/hashsuper.pdf

J.M.M€Guiness Knuth, Amdahl: | spurn thee!

http://programming.sirrida.de/hashsuper.pdf

	Background
	HFT & Low-Latency: Issues
	Example Hardware.
	C++ is THE Answer!
	Oh no, C++ is just NOT the answer!
	Optimization Case Studies.

	Examples
	Performance quirks in compiler versions.
	Static branch-prediction: use and abuse.
	Switch-statements: can these be optimized?
	Perversions: Counting the number of set bits. ``Madness''
	The Effect of Compiler-flags.
	Template Madness in C++: extreme optimization.
	Put it all together: A FIX to MIT/BIT translator.

	Conclusion
	Appendix

