
The C++ Type System is your The C++ Type System is your
FriendFriend

ACCU Bristol, April 2017ACCU Bristol, April 2017

Hubert MatthewsHubert Matthews
hubert@oxyware.comhubert@oxyware.com

Copyright © 2017 Oxyware Ltd 2/46

Why this talk?Why this talk?

Copyright © 2017 Oxyware Ltd 3/46

Safe, performant, reusable codeSafe, performant, reusable code

• General desiderata (in priority order):General desiderata (in priority order):
• We want our code to help us prevent We want our code to help us prevent

avoidable mistakes, preferably at compile avoidable mistakes, preferably at compile
timetime

• WWe want the run-time cost of this safety to be e want the run-time cost of this safety to be
zero compared to unsafe coding (or people zero compared to unsafe coding (or people
will avoid doing it)will avoid doing it)

• We want the code to be reusable and generic We want the code to be reusable and generic
(i.e. a library) so we can avoid having to (i.e. a library) so we can avoid having to
reimplement it every timereimplement it every time

Copyright © 2017 Oxyware Ltd 4/46

(Mostly) typeless programming(Mostly) typeless programming
• AssemblerAssembler

– Integer can be used as an address and Integer can be used as an address and vice versavice versa
– Machine efficiency at the cost of programmer effortMachine efficiency at the cost of programmer effort
– Translate into the language – domain knowledge is Translate into the language – domain knowledge is

embedded, not obvious or easy to decipherembedded, not obvious or easy to decipher
– Liberal use of comments (hopefully!)Liberal use of comments (hopefully!)
– High maintenance costHigh maintenance cost

• B, BCPLB, BCPL
– Hardly any type safetyHardly any type safety
– 3 * (4 + 5) gives the value 273 * (4 + 5) gives the value 27
– 3 (4 + 5) calls function at address 3 with value 93 (4 + 5) calls function at address 3 with value 9

• CC preprocessor preprocessor
– Programming with stringsProgramming with strings

Copyright © 2017 Oxyware Ltd 5/46

Machine-typed programmingMachine-typed programming

• C and primitive-based C++C and primitive-based C++
– Avoids the type puns and mistakes of assemblerAvoids the type puns and mistakes of assembler
– High machine efficiencyHigh machine efficiency
– Better programmer efficiencyBetter programmer efficiency
– Uses the underlying machine types (int, float, Uses the underlying machine types (int, float,

typed pointers) typed pointers)
– Adds structures and aggregatesAdds structures and aggregates
– Abstraction through filesAbstraction through files
– Still have to translate domain into a programStill have to translate domain into a program
– Little opportunity for compile-time checking or Little opportunity for compile-time checking or

proofsproofs

Copyright © 2017 Oxyware Ltd 6/46

Type-rich programmingType-rich programming

• Higher-level C++Higher-level C++
– Uses the C++ type system extensively to create Uses the C++ type system extensively to create

lightweight abstractions that increase the amount lightweight abstractions that increase the amount
of domain knowledge in the program without of domain knowledge in the program without
sacrificing machine efficiencysacrificing machine efficiency

– The type system is a proof system – 100% compile-The type system is a proof system – 100% compile-
time checking if a construct is illegaltime checking if a construct is illegal

– Well used, it can make code safer and more Well used, it can make code safer and more
reusablereusable

– Stroustrup is a big fan of this approachStroustrup is a big fan of this approach

Copyright © 2017 Oxyware Ltd 7/46

The miracle of compilationThe miracle of compilation

Machine
types

Machine
types

Language
types

Machine
types

Language
types

Application
types

Run time Compile time

thrown away at run time
(no memory or CPU

overhead)

asm

C

C++

what this talk is
focused on

Little white lies:
C structs, C++ RTTI

Copyright © 2017 Oxyware Ltd 8/46

Primitive or typed APIPrimitive or typed API

• Creating separate types for values catches type Creating separate types for values catches type
errors at compile timeerrors at compile time

// Is this y/m/d (ISO), d/m/y (European) or m/d/y (broken US)?

Date(int, int, int);

// Unambiguous and expressive

Date(Year, Month, Day);

// Helps with expressivity but not correctness as it's just a
// aliased type

using Year = int; // just a type alias

// We need a completely separate type to get safety as well

class Day { /*...*/ };

Copyright © 2017 Oxyware Ltd 9/46

Physical typesPhysical types

• Lots of possibilities for simple errors that are Lots of possibilities for simple errors that are
hard to find and debug but easy to preventhard to find and debug but easy to prevent

typedef float metres, seconds;

metres m = 3.4;
seconds s = 1.5;
auto velocity = m + s; // oops, probably meant / not +
 // but it still compiles

typedef float feet;

feet f = 5.6;
metres m2 = m + f; // physical units correct but
 // measurement system wrong

// Mars Climate Orbiter crashed because of a pound-seconds
// and newton-seconds mismatch (1999)

Copyright © 2017 Oxyware Ltd 10/46

Whole Value patternWhole Value pattern

• Holds a value but has no operations – all operations Holds a value but has no operations – all operations
done on the base type (int, here) through widening done on the base type (int, here) through widening
conversionconversion

• Safe way to pass values but not foolproofSafe way to pass values but not foolproof
• Repetitive when defining multiple typesRepetitive when defining multiple types

class Year {
public:
 explicit Year(int y) : yr(y) {}
 operator int() const { return yr; }
private:
 int yr;
};

Year operator”” _yr(unsigned long long v) { return Year(v); }

Year y = 2016_yr;

explicit c/tr to
avoid automatic

conversions

user-defined
conversion is safe:

narrow to wide

Copyright © 2017 Oxyware Ltd 11/46

Templates to the rescueTemplates to the rescue

• Removes repetition across typesRemoves repetition across types
• As efficient as primitives; functions are inlinedAs efficient as primitives; functions are inlined

enum class UnitType { yearType, monthType, dayType };

template <UnitType U>
class Unit {
public:
 explicit Unit(int v) : value(v) {}
 operator int() const { return value; }
private:
 int value;
};

using Year = Unit<UnitType::yearType>;
using Month = Unit<UnitType::monthType>;
using Day = Unit<UnitType::dayType>;

Date(Year, Month, Day); // now type-safe API

Copyright © 2017 Oxyware Ltd 12/46

Adding checking of valuesAdding checking of values

• Extra checking for types can be added for both Extra checking for types can be added for both
 run-time and compile-type checking run-time and compile-type checking

• Constexpr is very powerful keyword for thisConstexpr is very powerful keyword for this

template <UnitType U, int low, int high>
class Unit {
public:
 constexpr explicit Unit(int v) : value(v) {
 if (v < low || v > high) throw std::invalid_argument(“oops”);
 }
 constexpr operator int() const { return value; }
private:
 int value;
};

using Year = Unit<UnitType::yearType, 1900, 2100>;

Year tooSmall(1000); // throws at run-time
constexpr Year tooBig(2300); // compile-time error

Copyright © 2017 Oxyware Ltd 13/46

OperationsOperations

• Up to now we have used conversions to allow Up to now we have used conversions to allow
us to operate on our types, which is simple but us to operate on our types, which is simple but
possibly error-prone as we can't control what possibly error-prone as we can't control what
operations are valid (we get everything that operations are valid (we get everything that intint
or or float float can do)can do)

• Essentially our types are just labelsEssentially our types are just labels
• Let's add operations and remove the Let's add operations and remove the

conversion (or make it explicit)conversion (or make it explicit)

Copyright © 2017 Oxyware Ltd 14/46

OperationsOperations

• Year+Year doesn't make sense but Year+int Year+Year doesn't make sense but Year+int
does, as does Year-Year does, as does Year-Year

template <UnitType U, int low, int high>
class Unit {
public:
 constexpr explicit Unit(int v) : value(v) {
 if (v < low || v > high) throw std::invalid_argument(“oops”);
 }
 constexpr explicit operator int() const { return value; }
private:
 int value;
};

Year operator+(Year yr, int i) { return Year(int(yr)+i); }
Year operator+(int i, Year yr) { return Year(int(yr)+i); }

// define only those operations that make
// sense in the domain for a given type

Please imagine all functions are
constexpr – it makes the slides shorter!

Copyright © 2017 Oxyware Ltd 15/46

OperationsOperations

• Every type has its own set of operationsEvery type has its own set of operations
• How to make this generic?How to make this generic?
• How do we avoid repetitive boilerplate code?How do we avoid repetitive boilerplate code?

Type Desirable operations Non-sensical operations

Date Date+int => Date
int+Date => Date
Date-Date => int
Date-int => Date
Date < Date => bool
Date == Date => bool

Date * int

Money Money * float => Money
Money / float => Money
Money < Money => bool
Money == Money => bool

Money + float
Money – float

Copyright © 2017 Oxyware Ltd 16/46

Reuse through client librariesReuse through client libraries

• Can't be used in the definition of a classCan't be used in the definition of a class
• Client has to decide to use these broad templatesClient has to decide to use these broad templates
• Only handles relational operatorsOnly handles relational operators

bool operator==(Year y1, Year y2) { return int(y1) == int(y2); }
bool operator<(Year y1, Year y2) { return int(y1) < int(y2); }

#include <utility>
using namespace std::rel_ops; // defines <=,>=,>,!=

// namespace std { namespace rel_ops {
// template <typename T>
// bool operator>(T t1, T t2) { return t2 < t1; }
// }}

bool ge = y1 >= y2;

Copyright © 2017 Oxyware Ltd 17/46

Reuse through inheritance – CRTPReuse through inheritance – CRTP
template <typename Derived>
class Ordered {
public:
 const Derived & derived() const {
 return static_cast<const Derived &>(*this);
 }
 bool operator>(const Ordered & rhs) const {
 return rhs.derived() < derived();
 }
};

class Year : public Ordered<Year> {
public:
 explicit Year(int i) : val(i) {}
 bool operator<(const Year & rhs) const { return val < rhs.val; }
private:
 int val;
};

int main() {
 Year y1(7), y2(5);
 assert(y1 > y2); // true
}

CRTP pattern:
deriving from a
template using

yourself!

downcast to
Derived is safe

Copyright © 2017 Oxyware Ltd 18/46

Reuse through inheritance – CRTPReuse through inheritance – CRTP

• The cast in Ordered::derived() is checked at The cast in Ordered::derived() is checked at
compile-time as it's a static_castcompile-time as it's a static_cast

• There is no overhead in terms of space or timeThere is no overhead in terms of space or time
• All calls are resolved at compile timeAll calls are resolved at compile time
• Compile-type polymorphismCompile-type polymorphism
• Using a virtual call instead would mean:Using a virtual call instead would mean:

● Larger class (vtable pointer)Larger class (vtable pointer)
● Run-time dispatch (virtual call)Run-time dispatch (virtual call)
● Can't be constexpr (forces run-time eval)Can't be constexpr (forces run-time eval)
● Probably not inlinedProbably not inlined
● Branch prediction can’t guessBranch prediction can’t guess

• Very common technique in libraries like BoostVery common technique in libraries like Boost

Copyright © 2017 Oxyware Ltd 19/46

• AA

template <typename V, UnitSys U, int M, int L, int T>
class Quantity {
public:
 explicit Quantity(V v) : val(v) {}
 explicit operator V() const { return val; }
private:
 V val;
};

template <typename V, UnitSys U, int M, int L, int T>
auto operator+(Quantity<V, U, M, L, T> q1, Quantity<V, U, M, L, T> q2) {
 return Quantity<V, U, M, L, T>(V(q1) + V(q2));
}

template <typename V, UnitSys U,
 int M1, int L1, int T1, int M2, int L2, int T2>
auto operator/(Quantity<V, U, M1, L1, T1> q1,
 Quantity<V, U, M2, L2, T2> q2) {
 return Quantity<V, U, M1-M2, L1-L2, T1-T2>(V(q1) / V(q2));
}

using metres = Quantity<float, SIUnits, 0, 1, 0>;
using seconds = Quantity<float, SIUnits, 0, 0, 1>;

int main() {
 auto velocity = 23.1_metres / 1.5_secs;
 // auto error = 23.1_meters + 1.5_secs; // compile-time error
}

Physical
quantities

Copyright © 2017 Oxyware Ltd 20/46

Physical quantities and dimensionsPhysical quantities and dimensions

• Allows us to define operations that convert Allows us to define operations that convert
types (here the dimension exponents are types (here the dimension exponents are
calculated to give new dimension values)calculated to give new dimension values)

• Prevents physically impossible calculationsPrevents physically impossible calculations
• Prevents mixing of measurement units (e.g. Prevents mixing of measurement units (e.g.

mixing SI Units and imperial units)mixing SI Units and imperial units)
• Can be used for related “flavours” of types, Can be used for related “flavours” of types,

such as multiple currencies that are “the same such as multiple currencies that are “the same
underlying thing” but with different unitsunderlying thing” but with different units

Copyright © 2017 Oxyware Ltd 21/46

• AA

template <typename V, UnitSys U, int M, int L, int T>
class Quantity {
public:
 using value_type = V;
 static constexpr UnitSys unit_sys = U;
 static constexpr int mass_exponent = M;
 static constexpr int length_exponent = L;
 static constexpr int time_exponent = T;
 explicit Quantity(V v) : val(v) {}
 explicit operator V() const { return val; }
private:
 V val;
};

using length = Quantity<float, SIUnits, 0, 1, 0>;
using time = Quantity<length::value_type, length::unit_sys, 0, 0, 1>;

template <typename V, UnitSys U>
using Mass = Quantity<V, U, 1, 0, 0>;

template <typename Q>
void print_units(Q q) {
 if (Q::unit_sys == UnitSys::SIUnits)
 std::cout << “Using SI units\n”;
}

republish
template

parameters

Compile-time reflectionCompile-time reflection

create a compatible
type using
reflection

if-statement based
on constants will

be removed

Copyright © 2017 Oxyware Ltd 22/46

Tailoring operations – library codeTailoring operations – library code

template <typename T>
struct op_traits {
 static constexpr bool add_scalar = false;
 static constexpr bool add_value = false;
};

template <typename T, typename Requires =
std::enable_if_t<op_traits<T>::add_scalar>>

auto operator+(T t, int i)
{
 return T{t.val+i};
}

template <typename T, typename Requires =
std::enable_if_t<op_traits<T>::add_value>>

auto operator+(T t1, T t2)
{
 return T{t1.val+t2.val};
}

// same for operator+(int i, T t);

Copyright © 2017 Oxyware Ltd 23/46

Tailoring operations – client codeTailoring operations – client code

struct Year { int val; };

template <>
struct op_traits<Year> {
 static constexpr bool add_scalar = true;
};

int main() {
 Year y1{10}, y2{5};
 //auto y3 = y1 + y2; // compiler error
 auto y3 = y1 + 2;
}

• Library user defines what operations from the Library user defines what operations from the
library are valid by setting the appropriate library are valid by setting the appropriate
traitstraits

Copyright © 2017 Oxyware Ltd 24/46

Where are we now?Where are we now?
• Let's look at the generated code for an example Let's look at the generated code for an example

that puts all of these things together to see that puts all of these things together to see
how efficient it is (both code and data)how efficient it is (both code and data)
• Constexpr and user-defined literalsConstexpr and user-defined literals
• Physical dimensions and unit typesPhysical dimensions and unit types
• CRTP for operator inheritanceCRTP for operator inheritance

// generated code
// g++ -O3

 movl $5, %eax
 ret

// return 5;

int main()
{
 Distance d1 = 5.2_metres;
 Distance d2 = 4.6_metres;
 Time t = 2.0_secs;
 auto v = (d1+d2+Distance(d1 > d2)) / t;
 return int(float(v));
}

Copyright © 2017 Oxyware Ltd 25/46

Where are we now? (2)Where are we now? (2)
calculate(D, D, T):
 movaps xmm3, xmm0
 addss xmm3, xmm1
 cmpltss xmm1, xmm0
 movss xmm0, dword ptr [rip+.L0]
 andps xmm0, xmm1
 addss xmm0, xmm3
 divss xmm0, xmm2
 cvttss2si eax, xmm0
 ret

calcPrim(float, float, float):
 movaps xmm3, xmm0
 addss xmm3, xmm1
 cmpltss xmm1, xmm0
 movss xmm0, dword ptr [rip+.L0]
 andps xmm0, xmm1
 addss xmm0, xmm3
 divss xmm0, xmm2
 cvttss2si eax, xmm0
 ret

int calculate(Distance d1,
 Distance d2, Time t)
{
 auto v = (d1 + d2 +
 Distance(d1 > d2)) / t;
 return int(float(v));
}

int calcPrim(float d1,
float d2, float t)

{
 auto v = (d1 + d2 +
 (d1 > d2)) / t;
 return int(float(v));
}

// clang 4.0.0 -O3 -std=c++14

Copyright © 2017 Oxyware Ltd 26/46

Templates and policiesTemplates and policies
• Another example: fixed-length strings that Another example: fixed-length strings that

prevent the sort of basic buffer overflow bugs prevent the sort of basic buffer overflow bugs
that traditionally haunt C programsthat traditionally haunt C programs

template <size_t N>
class FixedString {
public:
 static constexpr max_size = N;
 explicit FixedString(const char * p = “”) {
 strncpy(data, p, N);
 data[N-1] = 0;
 }
 size_t size() const { return strlen(data); }
private:
 char data[N];
};

truncates the
incoming string:
this is a policy

decision

Copyright © 2017 Oxyware Ltd 27/46

Templates and policiesTemplates and policies
• This class truncates its input. This may be This class truncates its input. This may be

what you want, but there are other options:what you want, but there are other options:
• Add an entry to the diagnostic log and Add an entry to the diagnostic log and

continue (if overflow is expected and OK)continue (if overflow is expected and OK)
• Throw an exception (if overflow shouldn't Throw an exception (if overflow shouldn't

happen)happen)
• Reboot the system (if overflow is a serious Reboot the system (if overflow is a serious

error)error)
• Dump a stack track and jump into the Dump a stack track and jump into the

debugger (during development and test)debugger (during development and test)

Copyright © 2017 Oxyware Ltd 28/46

Implementing policiesImplementing policies
• Let's use a policy on overflowLet's use a policy on overflow

struct Complain {
 static void overflow(size_t n, const char * s, const char * p) {
 std::cout << "Overflow of FixedString<" << n << "> and "
 "contents " << s << " when adding " << p << std::endl;
 }
};

template <size_t N, typename OverflowPolicy = Complain>
class FixedString {
public:
 constexpr explicit FixedString(const char * p = "") {
 char * s = data;
 while (s-data != N-1 && (*s++ = *p++)) {}
 if (*(p-1) != 0) OverflowPolicy::overflow(N, data, p);
 *s = 0;
 }

private:
 char data[N];
};

FixedString<8> fs1(“hello”); // no overflow
FixedString<5> fs2(“hello”); // prints msg

template <size_t N>
using NoisyString = FixedString<N, ResetOnOverflow>;

FixedString<8> fs1(“hello”); // no overflow
FixedString<5> fs2(“hello”); // prints msg

template <size_t N>
using NoisyString = FixedString<N, ResetOnOverflow>;

Copyright © 2017 Oxyware Ltd 29/46

Comparing policies and CRTPComparing policies and CRTP
• CRTP has to use a compile-time downcast to CRTP has to use a compile-time downcast to

access the derived class' functionality (i.e. to access the derived class' functionality (i.e. to
get itself “mixed in”)get itself “mixed in”)

• CRTP is usually used for injecting library CRTP is usually used for injecting library
functionalityfunctionality

• Policies don't need a downcast as they are a Policies don't need a downcast as they are a
pure “up call” to a static functionpure “up call” to a static function

• Policies are useful for parametrising rules and Policies are useful for parametrising rules and
validation logic (such as in constructors)validation logic (such as in constructors)

Copyright © 2017 Oxyware Ltd 30/46

Constructor validation logicConstructor validation logic
• Let's use a policy to enforce that quantities are Let's use a policy to enforce that quantities are

non-negativenon-negative

struct NonNegChecker {
 constexpr NonNegChecker(float f) {
 if (f < 0) throw std::invalid_argument("oops!");
 }
};

template <UnitType U, int M, int L, int T, class CtrCheck=NonNegChecker>
class Quantity : public Ordered<Quantity<U, M, L, T>>, public CtrCheck {
public:
 constexpr explicit Quantity(float v) : CtrCheck(v), val(v) {}
 constexpr explicit operator float() const { return val; }
 bool operator<(Quantity other) const { return val < other.val; }
private:
 float val;
};

Copyright © 2017 Oxyware Ltd 31/46

Constexpr constructor checkConstexpr constructor check
• Constexpr in effect interprets your code at Constexpr in effect interprets your code at

compile time using a cut-down version of the compile time using a cut-down version of the
compilercompiler

• C++11 version is limited, C++14 is generalC++11 version is limited, C++14 is general
• Some limitationsSome limitations

• Can't initialise the string directlyCan't initialise the string directly
• If the CtrCheck constructor doesn't complete If the CtrCheck constructor doesn't complete

correctly because an exception has been correctly because an exception has been
thrown then this becomes a compiler errorthrown then this becomes a compiler error

• If it doesn't throw then no code is generated If it doesn't throw then no code is generated
for CtrCheckfor CtrCheck

Copyright © 2017 Oxyware Ltd 32/46

Effect of constructor validation logicEffect of constructor validation logic
• So, what about the generated code?So, what about the generated code?

(compiler error)constexpr Distance d0 = -1.1_meters;

// generated code
// g++ -O3

 movl $5, %eax
 ret

int main()
{
 Distance d1 = 5.2_meters;
 Distance d2 = 4.6_meters;
 Time t = 2.0_secs;
 auto v = (d1+d2+Distance(d1 > d2)) / t;
 return int(float(v));
} same as

before

(throws at runtime)Distance d0 = -1.1_meters;

Copyright © 2017 Oxyware Ltd 33/46

Starting to define a domain typeStarting to define a domain type
• We have now restricted both the operations We have now restricted both the operations

and the range of allowed valuesand the range of allowed values

primitives: all
operations and

values

domain types:
only allowed

operations and
values

values

ops

Copyright © 2017 Oxyware Ltd 34/46

Domain types vs primitivesDomain types vs primitives
• Business rules still exist when using Business rules still exist when using

primitives: they are just distributed primitives: they are just distributed

int

code1 rules

code2 rules

code3 rules

code1

intrulescode2

code3

• Stock level == -1 (oops…)Stock level == -1 (oops…)
• NoSQL: schema on read vs schema on write NoSQL: schema on read vs schema on write

Copyright © 2017 Oxyware Ltd 35/46

Adding logic to domain typesAdding logic to domain types
• Postcode: validation, lookupPostcode: validation, lookup
• ISBN: validation, lookupISBN: validation, lookup
• Point: distance calculationsPoint: distance calculations
• Conversion between types: currency, unitsConversion between types: currency, units

• Compile-time (units) vs run-time (currency)Compile-time (units) vs run-time (currency)
• Different coordinate systemsDifferent coordinate systems

• 5050thth anniversary of OO anniversary of OO
• Simula 1967 (one of the driving forces Simula 1967 (one of the driving forces

behind Stroustrup creating C++)behind Stroustrup creating C++)

Copyright © 2017 Oxyware Ltd 36/46

Overhead alertOverhead alert
• If we put validation logic into the constructor If we put validation logic into the constructor

then this will be called whenever we create an then this will be called whenever we create an
object, including temporariesobject, including temporaries

• Is the tradeoff of guaranteeing valid values at Is the tradeoff of guaranteeing valid values at
run-time acceptable for the increase in safety? run-time acceptable for the increase in safety?

• Should this be a compile-time option like Should this be a compile-time option like
assert and NDEBUG?assert and NDEBUG?

• Can we do this at compile time instead?Can we do this at compile time instead?

Copyright © 2017 Oxyware Ltd 37/46

Compile-time range calculationCompile-time range calculation
template <int Max>
class GuardedInt {
public:
 constexpr explicit GuardedInt(int v) : val(v) {}
 constexpr explicit operator int() const { return val; }
 constexpr int max() const { return Max; }
private:
 int val;
};

template <int Max1, int Max2>
auto operator+(GuardedInt<Max1> v1, GuardedInt<Max2> v2)
{
 return GuardedInt<Max1+Max2>(int(v1)+int(v2));
}

int main()
{
 GuardedInt<10> x(5);
 GuardedInt<15> y(10);
 auto z = x + y;
 return z.max();
}

c.f. CapnProto

Copyright © 2017 Oxyware Ltd 38/46

Scaling and errorsScaling and errors
• As systems get larger the number of possible As systems get larger the number of possible

combinations of types (and therefore combinations of types (and therefore
incompatibilities) grows even fasterincompatibilities) grows even faster

O(N) types => O(N^2) combinations/errorsO(N) types => O(N^2) combinations/errors

• Therefore as systems scale they usually Therefore as systems scale they usually
become more strongly typedbecome more strongly typed

• C++ templates have untyped parametersC++ templates have untyped parameters
• Concepts add type checking to templatesConcepts add type checking to templates

Copyright © 2017 Oxyware Ltd 39/46

Templates and “concepts lite”Templates and “concepts lite”

• “Concepts Lite” adds type checking to template arguments
• Better error messages, same or better compilation speed
• G++ 6 has concepts – let’s try them out!

OO

templates

time

Interface

Client

Server

planned
whitelist

Tmpl<T>

X
Tmpl<X> ad hocconcepts

Copyright © 2017 Oxyware Ltd 40/46

Concepts code – first attemptConcepts code – first attempt
template <typename T>
concept bool HasOpLessThan() {
 return requires(T t1, T t2) { t1 < t2; };
}

template <HasOpLessThan Derived>
class Ordered
public:
 const Derived & derived() const {
 return static_cast<const Derived &>(*this);
 }
 bool operator>(const Ordered & rhs) const {
 return rhs.derived() < derived();
 }
};

// Ordered<Year> doesn’t compile because Year is
// an incomplete type at this point – hmmm...

class Year : public Ordered<Year> { … };

constrain
template
argument

Copyright © 2017 Oxyware Ltd 41/46

Concepts code – working codeConcepts code – working code
template <typename T>
concept bool HasOpLessThan() {
 return requires(T t1, T t2) { t1 < t2; };
}

template <typename Derived>
class Ordered
public:
 const Derived & derived() const {
 return static_cast<const Derived &>(*this);
 }
 bool operator>(const Ordered & rhs) const

 requires HasOpLessThan<Derived>()
 {
 return rhs.derived() < derived();
 }
};

// Ordered<Year> now compiles because Year is
// a complete type at this point – yay!

class Year : public Ordered<Year> { … };

constrain
member
function
instead

unconstrained
template
argument

Copyright © 2017 Oxyware Ltd 42/46

Error messages without conceptsError messages without concepts
struct X : Ordered<X> {};
const bool x = X() > X();

conc_ordered.cpp: In instantiation of ‘bool
Ordered<Derived>::operator>(const Ordered<Derived>&) [with Derived
= X]’:
conc_ordered.cpp:31:24: required from here
conc_ordered.cpp:18:30: error: no match for ‘operator<’ (operand
types are ‘const X’ and ‘const X’)
 return rhs.derived() < derived();

Copyright © 2017 Oxyware Ltd 43/46

Error messages with conceptsError messages with concepts
struct X : Ordered<X> {};
const bool x = X() > X();

conc_ordered.cpp:31:20: error: no match for ‘operator>’ (operand
types are ‘X’ and ‘X’)
 const bool x = X() > X();
                ~~~~^~~~~
conc_ordered.cpp:16:10: note: candidate: bool 
Ordered<Derived>::operator>(const Ordered<Derived>&) requires 
(HasOpLessThan<Derived>)() [with Derived = X]
     bool operator>(const Ordered & rhs) requires 
HasOpLessThan<Derived>() {
          ^~~~~~~~
conc_ordered.cpp:16:10: note:   constraints not satisfied
conc_ordered.cpp:4:14: note: within ‘template<class T> concept 
bool HasOpLessThan() [with T = X]’
 concept bool HasOpLessThan() {
              ^~~~~~~~~~~~~
conc_ordered.cpp:4:14: note:     with ‘X t1’
conc_ordered.cpp:4:14: note:     with ‘X t2’
conc_ordered.cpp:4:14: note: the required expression ‘(t1 < t2)’ 
would be ill-formed



Copyright © 2017 Oxyware Ltd 44/46

FixedString with and without conceptsFixedString with and without concepts
struct X {};
FixedString<4, X> x;

FixedString.cpp: In instantiation of ‘constexpr FixedString<N, 
OverflowPolicy>::FixedString(const char*) [with long unsigned int 
N = 4ul; OverflowPolicy = X]’:
FixedString.cpp:79:23:   required from here
FixedString.cpp:40:37: error: ‘overflow’ is not a member of ‘X’
             OverflowPolicy::overflow(N, data, p);
             ~~~~~~~~~~~~~~~~~~~~~~~~^~~~~~~~~~~~

FixedString.cpp: In function ‘int main()’:
FixedString.cpp:79:21: error: template constraint failure
 FixedString<4, X> x;
 ^
FixedString.cpp:79:21: note: constraints not satisfied
FixedString.cpp:6:14: note: within ‘template<class T> concept bool
HasOverflow() [with T = X]’
 concept bool HasOverflow() {
 ^~~~~~~~~~~
FixedString.cpp:6:14: note: the required expression ‘T::
overflow(0, "", "")’ would be ill-formed

Copyright © 2017 Oxyware Ltd 45/46

Stuff not coveredStuff not covered

How well does
this scale?

Who is doing
this now?

Implicit vs.
explicit

interfaces

std::optional and
total functions

std::variant and
types for state

machines

Too much
typing?

Type erasure for
fun and profit

Compilation
times

Types and
reflection

Copyright © 2017 Oxyware Ltd 46/46

SummarySummary

• Defining lightweight domain abstractions Defining lightweight domain abstractions
allows us to have safer code with more allows us to have safer code with more
domain knowledge embedded in the codedomain knowledge embedded in the code

• Zero or small runtime overhead in terms of Zero or small runtime overhead in terms of
CPU or memoryCPU or memory

• Can create reusable domain-specific librariesCan create reusable domain-specific libraries

(Disclaimer: There is no guarantee your programs (Disclaimer: There is no guarantee your programs
will end up being only a single instruction when will end up being only a single instruction when
using these techniques)using these techniques)

