
p.1

Introduction	to	Qt	3D
ACCU	2017,	29	April	2017

Presented	by	Giuseppe	D'Angelo	<giuseppe.dangelo@kdab.com>



p.2

Overview	of	Qt	3D

Feature	Set	(page	16)

Entity	Component	System?	What's	that?	(page	23)

Hello	Donut	(page	37)

Qt	3D	ECS	Explained	(page	41)



p.3

Drawing	with	Qt	3D

Introduction	(page	47)

Geometries	(page	49)

Transformations	and	Coordinate	Systems	(page	57)

Materials	(page	67)

Texturing	(page	74)

Lights	(page	84)



p.4

The	Qt	3D	Frame	Graph

Viewports	and	Layers	(page	94)

Image-Based	Techniques	(page	100)
Rendering	to	a	Texture	(page	101)
Post-Processing	Effects	(page	110)



p.5

The	Future	of	Qt	3D

Beyond	the	Tip	of	the	Iceberg	(page	114)

The	Future	of	Qt	3D	(page	116)



p.6

The	Story	of	Qt

The	Story	of	Qt

The	Story	of	Qt

Overview	of	Qt	3D

Drawing	with	Qt	3D

The	Qt	3D	Frame	Graph

The	Future	of	Qt	3D



p.7

Meet	Qt

The	Story	of	Qt

Started	in	1994	by	Trolltech

In	January	2008,	Trolltech	was	acquired	by	Nokia.

In	October	2011,	Qt	was	opened	to	the	community	through	qt-project.org.

In	August	2012,	Qt	was	acquired	by	Digia.

In	September	2014,	Qt	activities	were	transferred	to	The	Qt	Company.



p.8

Why	Qt?

The	Story	of	Qt

Write	code	once	to	target	multiple	platforms.

Produce	compact,	high-performance	applications.

Focus	on	innovation,	not	infrastructure	coding.

Choose	the	license	that	fits	you.
Commercial,	LGPL	or	GPL

Count	on	professional	services,	support	and	training.

    15	years	of	customer	success	and	community	growth



p.9

Qt	as	a	Community	Project

The	Story	of	Qt

The	Qt	Company	is	not	the	only	company	developing	Qt.

KDAB	is	the	second	biggest	contributor.

Many	other	organizations	and	individuals	contribute.
From	bugfixes	to	entire	modules

Contributions	per	employer,	from	the	beginning	to	Q1	2017



p.10

Qt	is	used	Everywhere

The	Story	of	Qt



p.11

Qt	Architecture

The	Story	of	Qt



p.12

GUI	Technologies	usable	with	Qt

The	Story	of	Qt

QtWidgets
Desktop	integration
Mature	layouts
C++	API

QtQuick
OpenGL	and	scene	graph	based
Design	oriented
Declarative	language	and	JavaScript



p.13

What	is	Qt	Quick?

The	Story	of	Qt

 A	set	of	technologies	including:

Declarative	markup	language:	QML

Language	runtime	integrated	with	Qt

Qt	Creator	IDE	support	for	the	QML	language

Graphical	design	tool

C++	API	for	integration	with	Qt	applications



p.14

Philosophy	of	Qt	Quick

The	Story	of	Qt

Intuitive	user	interfaces

Design-oriented

Rapid	prototyping	and	production

Easy	deployment



p.15

Overview	of	Qt	3D

Overview	of	Qt	3D

The	Story	of	Qt

Overview	of	Qt	3D
Feature	Set
Entity	Component	System?	What's	that?
Hello	Donut
Qt	3D	ECS	Explained

Drawing	with	Qt	3D

The	Qt	3D	Frame	Graph

The	Future	of	Qt	3D



p.16

Overview	of	Qt	3D

Feature	Set

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Qt	3D	ECS	Explained



p.17

What	is	Qt	3D?

Feature	Set

It	is	not	about	3D!

Multi-purpose,	not	just	a	game	engine

Soft	real-time	simulation	engine

Designed	to	be	scalable

Extensible	and	flexible



p.18

Simulation	Engine

Feature	Set

The	core	is	not	inherently	about	3D

It	can	deal	with	several	functional	domains	at	once
AI,	logic,	audio,	etc.
And	of	course	it	contains	a	3D	renderer	too!

All	you	need	for	a	complex	system	simulation
Mechanical	systems
Physics
...	and	also	games



p.19

Scalability

Feature	Set

Frontend	/	backend	split
Frontend	is	lightweight	and	on	the	main	thread
Backend	executed	in	a	secondary	thread

Where	the	actual	simulation	runs

Non-blocking	frontend	/	backend	communication

Backend	maximizes	throughput	via	a	thread	pool



p.20

Extensibility	and	Flexibility

Feature	Set

Functional	domains	can	be	added	by	extending	the	runtime
...	only	if	there's	not	something	fitting	your	needs	already

Provide	both	C++	and	QML	APIs

Integrates	well	with	the	rest	of	Qt
Pulling	your	simulation	data	from	a	database	anyone?

Entity	Component	System	is	used	to	combine	behavior	in	your	own	objects
No	deep	inheritance	hierarchy



p.21

Why	Qt	3D?

Feature	Set

Low	level	OpenGL	code	is	tedious	and	error	prone	to	write

Deep	integration	with	Qt	and	Qt	Quick,	not	a	black	box

Work	on	constrained	resources

Focus	on	innovation,	not	on	plumbing



p.22

Use	cases

Feature	Set

Automotive	IVI

Scientific,	medical	visualizations

Machine	status	displays

Interactive	manuals

Augmented	reality	(AR)

...



p.23

Overview	of	Qt	3D

Entity	Component	System?	What's	that?

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Qt	3D	ECS	Explained



p.24

ECS:	Definitions

Entity	Component	System?	What's	that?

ECS	is	an	architectural	pattern
Popular	in	game	engines
Favors	composition	over	inheritance

An	entity	is	a	general	purpose	object

An	entity	gets	its	behavior	by	combining	data

Data	comes	from	typed	components



p.25

Composition	vs	Inheritance

Entity	Component	System?	What's	that?

Let's	analyse	a	familiar	example:	Space	Invaders



p.26

Composition	vs	Inheritance	cont'd

Entity	Component	System?	What's	that?

Typical	inheritance	hierarchy



p.27

Composition	vs	Inheritance	cont'd

Entity	Component	System?	What's	that?

All	fine	until	customer	requires	new	feature:



p.28

Composition	vs	Inheritance	cont'd

Entity	Component	System?	What's	that?

Typical	solution:	Add	feature	to	base	class



p.29

Composition	vs	Inheritance	cont'd

Entity	Component	System?	What's	that?

Doesn't	scale:



p.30

Composition	vs	Inheritance	cont'd

Entity	Component	System?	What's	that?

What	about	multiple	inheritance?



p.31

Composition	vs	Inheritance	cont'd

Entity	Component	System?	What's	that?

What	about	mix-in	multiple	inheritance?



p.32

Composition	vs	Inheritance	cont'd

Entity	Component	System?	What's	that?

Does	it	scale?



p.33

Composition	vs	Inheritance	cont'd

Entity	Component	System?	What's	that?

Is	inheritance	flexible	enough?



p.34

Composition	then?

Entity	Component	System?	What's	that?

Is	traditional	fixed	composition	the	panacea?



p.35

Entity	Component	System

Entity	Component	System?	What's	that?

The	Entity/Component	data	split	gives	flexibility	to	manage	the	API

The	System	separation	moves	the	behavior	away	from	data	avoiding
dependencies	between	Components



p.36

Entity	Component	System	Wrap-up

Entity	Component	System?	What's	that?

Inheritance:
Relationships	baked	in	at	design	time
Complex	inheritance	hierarchies:	deep,	wide,	multiple	inheritance
Features	tend	to	migrate	to	base	class

Fixed	Composition
Relationships	still	baked	in	at	design	time
Fixed	maximum	feature	scope
Lots	of	functional	domain	details	in	the	scene	object
If	functional	domain	objects	contain	both	data	and	behavior	they	will
have	lots	of	inter-dependencies

Entity	Component	System
Allows	changes	at	runtime
Avoids	inheritance	limitations
Has	additional	costs:

More	QObjects
Different	to	most	OOP	developer's	experience

We	don't	have	to	bake	in	assumptions	to	Qt	3D	that	we	can't	later
change	when	adding	features.



p.37

Overview	of	Qt	3D

Hello	Donut

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Qt	3D	ECS	Explained



p.38

Hello	Donut	(C++)

Hello	Donut

Good	practice	having	root
Qt3DCore::QEntity	to
represent	the	scene

One	Qt3DCore::QEntity	per
"object"	in	the	scene

Objects	given	behavior	by
attaching
Qt3DCore::QComponent
subclasses

For	an	Qt3DCore::QEntity
to	be	drawn	it	needs:

A	mesh	geometry
describing	its	shape
A	material	describing	its
surface	appearance

Demo	qt3d/ex-hellodonut

class://Qt3DCore::QEntity
class://Qt3DCore::QEntity
class://Qt3DCore::QComponent
class://Qt3DCore::QEntity


p.39

Hello	Donut	(QML)

Hello	Donut

Good	practice	having	root
Entity	to	represent	the
scene

One	Entity	per	"object"	in
the	scene

Objects	given	behavior	by
attaching	component
subclasses

For	an	Entity	to	be	drawn	it
needs:

A	mesh	geometry
describing	its	shape
A	material	describing	its
surface	appearance

Demo	qt3d/ex-hellodonut-qml

qmlElement://Entity
qmlElement://Entity
qmlElement://Entity


p.40

C++	API	vs	QML	API

Hello	Donut

QML	API	is	a	mirror	of	the	C++	API

C++	class	names	like	the	rest	of	Qt

QML	element	names	just	don't	have	the	Q	in	front
Qt3DCore::QNode	vs	Node
Qt3DCore::QEntity	vs	Entity
...

class://Qt3DCore::QNode
qmlElement://Node
class://Qt3DCore::QEntity
qmlElement://Entity


p.41

Overview	of	Qt	3D

Qt	3D	ECS	Explained

Feature	Set

Entity	Component	System?	What's	that?

Hello	Donut

Qt	3D	ECS	Explained



p.42

Everything	is	a	QNode

Qt	3D	ECS	Explained

Qt3DCore::QNode	is	the	base	type	for	everything
It	inherits	from	QObject	and	all	its	features
Internally	implements	the	frontend/backend	communication

Qt3DCore::QEntity
It	inherits	from	Qt3DCore::QNode
It	just	aggregates	Qt3DCore::QComponents

Qt3DCore::QComponent
It	inherits	from	Qt3DCore::QNode
Actual	data	is	provided	by	its	subclasses

Qt3DCore::QTransform
Qt3DRender::QMesh
Qt3DRender::QMaterial
...

class://Qt3DCore::QNode
class://QObject
class://Qt3DCore::QEntity
class://Qt3DCore::QNode
class://Qt3DCore::QComponent
class://Qt3DCore::QComponent
class://Qt3DCore::QNode
class://Qt3DCore::QTransform
class://Qt3DRender::QMesh
class://Qt3DRender::QMaterial


p.43

Everything	is	a	QNode	cont'd

Qt	3D	ECS	Explained



p.44

You	Still	Need	a	System

Qt	3D	ECS	Explained

The	simulation	is	executed	by	Qt3DCore::QAspectEngine

Qt3DCore::QAbstractAspect	subclass	instances	are	registered	on	the
engine

Behavior	comes	from	the	aspects	processing	component	data
Aspects	control	the	functional	domains	manipulated	by	your	simulation

Qt	3D	provides
Qt3DRender::QRenderAspect
Qt3DInput::QInputAspect
Qt3DLogic::QLogicAspect

Note	that	aspects	have	no	API	of	their	own
It	is	all	provided	by	Qt3DCore::QComponent	subclasses

class://Qt3DCore::QAspectEngine
class://Qt3DCore::QAbstractAspect
class://Qt3DRender::QRenderAspect
class://Qt3DInput::QInputAspect
class://Qt3DLogic::QLogicAspect
class://Qt3DCore::QComponent


p.45

Engine	and	Application	Tasks

Qt	3D	ECS	Explained

Engine	Tasks
Create	window	and	graphics	context
Create	and	manage	GPU	buffers	and	textures
Create	and	manage	shader	programs
Create	graphics	pipeline	and	manage	state
Kickoff	the	drawing	and	compute	jobs	on	GPU!
Update	AI,	physics,	application	state,	make	coffee...

Application	Tasks
Provide	per-vertex	data
Provide	texture	image	data
Provide	shader	program	source	code
Describe	graphics	state
Describe	high-level	rendering	algorithm	(see	Frame	Graph)



p.46

Drawing	with	Qt	3D

Drawing	with	Qt	3D

The	Story	of	Qt

Overview	of	Qt	3D

Drawing	with	Qt	3D
Introduction
Geometries
Transformations	and	Coordinate	Systems
Materials
Texturing
Lights

The	Qt	3D	Frame	Graph

The	Future	of	Qt	3D



p.47

Drawing	with	Qt	3D

Introduction

Introduction

Geometries

Transformations	and	Coordinate	Systems

Materials

Texturing

Lights



p.48

The	Scene	Graph

Introduction

The	scene	graph	provides	the	spatial	representation	of	the	simulation

Qt3DCore::QEntity:	what	takes	part	in	the	simulation
Qt3DRender::GeometryRenderer:	what's	its	shape
Qt3DCore::QTransform:	where	it	is,	what	scale	it	is,	what	orientation	it
has
Qt3DRender::Material:	how	does	it	look	like

Hierarchical	transforms	are	controlled	by	the	parent/child	relationship
Similar	to	QWidget,	QQuickItem,	etc.

If	the	scene	is	rendered,	we	need	a	point	of	view	on	it
This	is	provided	by	Qt3DRender::QCamera

class://Qt3DCore::QEntity
class://Qt3DRender::GeometryRenderer
class://Qt3DCore::QTransform
class://Qt3DRender::Material
class://QWidget
class://QQuickItem
class://Qt3DRender::QCamera


p.49

Drawing	with	Qt	3D

Geometries

Introduction

Geometries

Transformations	and	Coordinate	Systems

Materials

Texturing

Lights



p.50

Geometries

Geometries

Qt3DRender::QRenderAspect	draws
Qt3DCore::QEntitys	with	a	shape

Qt3DRender::QGeometryRenderer's
geometry	property	specifies	the	shape

Qt	3D	provides	convenience
subclasses	of
Qt3DRender::QGeometryRenderer:

Qt3DExtras::QSphereMesh
Qt3DExtras::QCuboidMesh
Qt3DExtras::QPlaneMesh
Qt3DExtras::QTorusMesh
Qt3DExtras::QConeMesh
Qt3DExtras::QCylinderMesh

Qt	Demo	examples/qt3d/basicshapes-cpp

class://Qt3DRender::QRenderAspect
class://Qt3DCore::QEntity
class://Qt3DRender::QGeometryRenderer
class://Qt3DRender::QGeometryRenderer
class://Qt3DExtras::QSphereMesh
class://Qt3DExtras::QCuboidMesh
class://Qt3DExtras::QPlaneMesh
class://Qt3DExtras::QTorusMesh
class://Qt3DExtras::QConeMesh
class://Qt3DExtras::QCylinderMesh


p.51

More	complex	geometries

Geometries

Qt3D.Extras	comes	with	simple	common	geometries

SphereMesh,	PlaneMesh,	TorusMesh...

But	what	about	more	complex	shapes?

What	about	those	nice	assets	created	by	designers?

qmlElement://Qt3D.Extras
qmlElement://SphereMesh
qmlElement://PlaneMesh
qmlElement://TorusMesh


p.52

The	Mesh	Element

Geometries

Qt3D.Render	provides	a	generic	Mesh
element

It	can	load	any	supported	mesh	format

Point	it	to	a	file	using	its	source	property

If	the	file	contains	more	than	one	mesh,	you
can	select	one	using	the	meshName
property

Demo	qt3d/ex-mesh

qmlElement://Qt3D.Render
qmlElement://Mesh


p.53

Programmatically	Generated	Shapes

Geometries

Mesh	assumes	the	data	exists	in	a	file

What	if	I	get	my	data	from	a	database?

What	if	my	shape	is	the	result	of	some	algorithm	executed	at	runtime?

qmlElement://Mesh


p.54

Programmatically	Generated	Shapes

Geometries

We	need	a	way	to	store	mesh	data	in	memory

This	is	done	using	the	Geometry	element

Geometry	specifies	geometry	by	means	of:
Buffers	that	contain	the	actual	data
Attributes	that	define	the	data	format

There	are	multiple	strategies	for	managing	data	in	Buffers	and
Attributes

It	is	then	rendered	via	a	GeometryRenderer
Mesh,	TorusMesh	and	so	on	are	GeometryRenderers	using	their	own
geometries
The	primitiveType	controls	how	the	vertices	are	connected

qmlElement://Geometry
qmlElement://Geometry
qmlElement://Buffer
qmlElement://Attribute
qmlElement://Buffer
qmlElement://Attribute
qmlElement://GeometryRenderer
qmlElement://Mesh
qmlElement://TorusMesh
qmlElement://GeometryRenderer


p.55

Creating	Geometry

Geometries

Move	all	the	GeometryRenderer	code	on	the	C++	side

Expose	only	a	ScribbleMesh	element

Demo	qt3d/sol-geometry-step4

qmlElement://GeometryRenderer
qmlElement://ScribbleMesh


p.56

Summary

Geometries

Builtin	simple	3D	shapes	from	Qt3DExtras

Mesh	allows	loading	and	rendering	geometry	from	a	file

GeometryRenderer:
Is	a	component	for	drawing	Geometry

Geometry	specifies	geometry	by	means	of	Buffers	and	Attribute

qmlElement://Mesh
qmlElement://GeometryRenderer
qmlElement://Geometry
qmlElement://Geometry
qmlElement://Buffer
qmlElement://Attribute


p.57

Drawing	with	Qt	3D

Transformations	and	Coordinate	Systems

Introduction

Geometries

Transformations	and	Coordinate	Systems

Materials

Texturing

Lights



p.58

Important	Coordinate	Systems

Transformations	and	Coordinate	Systems

Model	Space	Local
Coordinate	system	of	individual	object

World	Space
Application	specific

Camera	or	Eye	Space
Eye	position	is	origin,	-z	axis	pointing	away	from	us

Projection	or	Clip	Space
Variable	sized	cube,	centered	at	origin

Normalised	Device	Coords
Cube	of	edge	2,	centered	at	origin	[(-1,	1),(-1,	1),(-1,	1)]

Window	Coords
Pixel	position	in	window



p.59

Qt3DCore::QTransform

Transformations	and	Coordinate	Systems

Objects	in	the	scene	generally	needs	to	be	transformed

Inherits	from	Qt3DCore::QComponent

Represents	an	affine	transformation

Three	ways	of	using	it:
Through	properties:	scale3D,	rotation,	translation
Through	helper	functions:	rotateAround()
Through	the	matrix	property

class://Qt3DCore::QComponent


p.60

Transforms	cont'd

Transformations	and	Coordinate	Systems

1 #include	<Qt3DCore/QEntity>
2 #include	<Qt3DCore/QTransform>
3 ...
4
5 auto	rootEntity	=	QSharedPointer<Qt3DCore::QEntity>::create();
6 auto	rootTransform	=	new	Qt3DCore::QTransform(rootEntity);
7 rootTransform->setScale3D(QVector3D(1.0f,	2.0f,	1.5f));
8 rootTransform->setTranslation(QVector3D(0.0f,	0.0f,	-1.0f));
9 rootEntity->addComponent(rootTransform);

10
11 auto	childEntity	=	new	Qt3DCore::QEntity(rootEntity.data());
12 auto	childTransform	=	new	Qt3DCore::QTransform;
13 childTransform->setTranslation(QVector3D(0.0f,	1.0f,	0.0f));
14 childEntity->addComponent(childTransform);	//	Takes	ownership



p.61

Transforms	cont'd

Transformations	and	Coordinate	Systems

1 import	Qt3D.Core	2.0
2
3 Entity	{
4    components:	[
5        Transform	{
6            scale3D:	Qt.vector3d(1,	2,	1.5)
7            translation:	Qt.vector3d(0,	0,	-1)
8        }
9    ]

10
11    Entity	{
12        components:	[
13            Transform	{	translation:	Qt.vector3d(0,	1,	0)	}
14        ]
15    }
16 }



p.62

Controlling	Matrices	in	Qt	3D

Transformations	and	Coordinate	Systems

The	model	to	world	matrices	are	controlled	by	the	Transform	components
on	Entitys

How	do	we	control	the	view	and	projection	matrices?

Camera	to	the	rescue:
View	matrix	controlled	by:	position,	upVector	and	viewCenter	properties
Projection	matrix	controlled	by	the	attached	CameraLens	component

qmlElement://Transform
qmlElement://Entity
qmlElement://Camera
qmlElement://CameraLens


p.63

Projection	Matrix

Transformations	and	Coordinate	Systems

Let	the	CameraLens	component	worry	about	the	maths

Type	of	projection	determined	by	the	projectionType	property

Perpective	projection	controlled	by:
fieldOfView	-	this	is	the	vertical	field	of	view
aspectRatio
nearPlane,	farPlane

Orthographic	projection	controlled	by:
left,	right
bottom,	top
nearPlane,	farPlane

qmlElement://CameraLens


p.64

Transforming	Coordinate	Systems

Transformations	and	Coordinate	Systems

How	does	this	look	in	practice?
1 #version	150
2
3 in	vec3	vertexPosition;
4 in	vec3	vertexNormal;
5
6 out	vec3	worldPosition;
7 out	vec3	worldNormal;
8
9 uniform	mat4	modelMatrix;

10 uniform	mat3	modelNormalMatrix;
11 uniform	mat4	mvp;
12
13 void	main()
14 {
15     worldPosition	=	vec3(modelMatrix	*	vec4(vertexPosition,	1.0));
16     worldNormal	=	normalize(modelNormalMatrix	*	vertexNormal);
17     gl_Position	=	mvp	*	vec4(vertexPosition,	1.0);
18 }



p.65

Transformations	Lab

Transformations	and	Coordinate	Systems

Create	a	model	solar	system

Use	provided	scene	of	OrbitingBodys

Each	planet	has	some	properties	already	configured

Complete	the	OrbitingBody	to	apply	transformations	for:
Planet	size
Orbital	radius
Orbital	phase	(position	in	orbit)
Orbital	inclination

Add	moons	to	some	planets

Make	the	camera	zoom	in	and	track	a	planet	when	you	click	on	it

Demo	qt3d/sol-solar-system

qmlElement://OrbitingBody
qmlElement://OrbitingBody


p.66

Summary

Transformations	and	Coordinate	Systems

There	are	several	coordinate	systems	to	be	aware	of

You	can	transform	between	coordinate	systems	using	matrices

Qt	3D	automatically	provides	common	transformation	matrices	as	GLSL
shader	uniforms

The	view	matrix	is	controlled	by	the	Camera	entity

The	projection	matrix	is	controlled	by	the	CameraLens	component

qmlElement://Camera
qmlElement://CameraLens


p.67

Drawing	with	Qt	3D

Materials

Introduction

Geometries

Transformations	and	Coordinate	Systems

Materials

Texturing

Lights



p.68

Materials

Materials

If	a	Qt3DCore::QEntity	only	has	a
shape	it	won't	be	visible

The	Qt3DRender::QMaterial
component	provides	a	surface
appearance

Qt	3D	provides	convenience	subclasses
of	Qt3DRender::QMaterial:

Qt3DExtras::QPhongMaterial
Qt3DExtras::QPhongAlphaMaterial
Qt3DExtras::QDiffuseMapMaterial
Qt3DExtras::QDiffuseSpecularMapMaterial
Qt3DExtras::QGoochMaterial
...

Demo	qt3d/ex-hellodonut-qml-uber

Qt	Demo	examples/qt3d/materials-cpp

Qt	Demo	examples/qt3d/materials

class://Qt3DCore::QEntity
class://Qt3DRender::QMaterial
class://Qt3DRender::QMaterial
class://Qt3DExtras::QPhongMaterial
class://Qt3DExtras::QPhongAlphaMaterial
class://Qt3DExtras::QDiffuseMapMaterial
class://Qt3DExtras::QDiffuseSpecularMapMaterial
class://Qt3DExtras::QGoochMaterial


p.69

Custom	Material	example

Materials

1 import	Qt3D.Render	2.0
2 ...
3
4 Material	{
5     effect:	Effect	{
6         techniques:	[
7             Technique	{
8                 filterKeys:	FilterKey	{	name:	"renderingStyle";	value:	"forward"	}
9

10                 graphicsApiFilter	{
11                     api:	GraphicsApiFilter.OpenGL
12                     majorVersion:	3
13                     minorVersion:	2
14                     profile:	GraphicsApiFilter.CoreProfile
15                 }
16
17                 renderPasses:	RenderPass	{
18                     shaderProgram:	ShaderProgram	{
19                         vertexShaderCode:	loadSource("qrc:/customshader.vert")
20                         fragmentShaderCode:	loadSource("qrc:/customshader.frag")
21                     }
22                 }
23             }
24         ]
25     }
26 }

Demo	qt3d/ex-glsl



p.70

Varying	Degrees	of	Change

Materials

Shaders	can	have	constant	variables:
const	float	pi	=	3.14159;
const	vec2	resolution	=	vec2(	1024.0,	768.0	);

Geometry	can	provide	per-vertex	attributes:
Position
Normal	vectors
Texture	coordinates
Colors
Temperature
Density
Fluffiness...

What	about	in	between	these	extremes?



p.71

Shader	Uniform	Variables

Materials

Shader	Uniform	Variables:

Middle	ground	between	per-vertex	and	constant

Constant	for	a	particular	GeometryRenderer

Declared	with	uniform	keyword	in	the	shader	code

Common	to	the	entire	shader	program	(must	be	consistent)

Use	as	any	other	constant	in	GLSL
uniform	vec4	lightPosition;

Provided	by	Parameter	elements

Set	on	the	parameters	property	of:
RenderPass
Technique
Effect
Material

The	effective	value	set	for	the	uniform	is	cascaded

qmlElement://GeometryRenderer
qmlElement://Parameter
qmlElement://RenderPass
qmlElement://Technique
qmlElement://Effect
qmlElement://Material


p.72

Shader	Uniform	Variables	cont'd

Materials

1 import	Qt3D.Render	2.0
2 ...
3
4 Material	{
5     parameters:	Parameter	{	name:	"colorTint";	value:	"yellow"	}
6
7     effect:	Effect	{
8         parameters:	Parameter	{	name:	"colorTint";	value:	"green"	}
9

10         techniques:	[
11             Technique	{
12                 parameters:	Parameter	{	name:	"colorTint";	value:	"blue"	}
13
14                 filterKeys:	FilterKey	{	name:	"renderingStyle";	value:	"forward"	}
15
16                 graphicsApiFilter	{	...	}
17
18                 renderPasses:	RenderPass	{
19                     parameters:	Parameter	{	name:	"colorTint";	value:	"red"	}
20
21                     shaderProgram:	ShaderProgram	{
22                         vertexShaderCode:	loadSource("qrc:/tintingshader.vert")
23                         fragmentShaderCode:	loadSource("qrc:/tintingshader.frag")
24                     }
25                 }
26             }
27         ]
28     }
29 }



p.73

Example:	Custom	Material	with	Parameters

Materials

1 import	Qt3D.Render	2.0
2 import	QtQuick	2.0
3 ...
4
5 Material	{
6     parameters:	Parameter	{
7         name:	"darkness";
8         value:	0
9

10         SequentialAnimation	on	value	{
11             loops:	Animation.Infinite
12
13             NumberAnimation	{
14                 from:	0;	to:	1
15                 duration:	1000
16             }
17
18             NumberAnimation	{
19                 from:	1;	to:	0
20                 duration:	1000
21             }
22         }
23     }
24
25     effect:	Effect	{	...	}
26 }

Demo	qt3d/ex-glsl-animated



p.74

Drawing	with	Qt	3D

Texturing

Introduction

Geometries

Transformations	and	Coordinate	Systems

Materials

Texturing

Lights



p.75

Why	Texture?

Texturing

The	devil	is	in	the	details!



p.76

What	is	Texturing?

Texturing

Encoded	information	(color,	normal,	height,	...)

Made	available	to	the	graphics	API	and	GPU

Indexed	by	per-vertex	attribute	-	texture	coordinates

Shaders	perform	texture	lookups

Use	resulting	data	in	calculations

Demo	qt3d/ex-simpletexture



p.77

Accessing	Textures

Texturing

Several	texture	types
1D	-	Indexed	color	maps,	gradients,	complicated	functions
2D	-	Color,	specular	(gloss)	maps,	normal	(bump)	maps,	height	maps
3D	-	Volumetric	techniques,	density	functions,	terrain	generation
Cube	Maps	-	Environment	mapping,	reflection,	refraction
...

Many	filtering	options
Nearest
Linear
Mipmaps

Hardware	supports	multiple	Texture	Units



p.78

Textures

Texturing

Some	materials	can	vary	data	across	the	surface

This	is	handled	by	using	a	texture
A	texture	consists	of	one	or	more	images

Subclasses	of	Qt3DRender::QAbstractTexture	provide	different	types	of
texture:

1D	-	useful	for	lookup	functions	such	as	gradients
2D	-	most	common	type,	used	for	general	image	data
3D	-	useful	for	volumetric	data
Arrays	of	2D	-	used	when	optimizing	(see	later)
...

Qt3DRender::QTextureLoader	can	load	all	types	of	texture	from
supported	file	types

class://Qt3DRender::QAbstractTexture
class://Qt3DRender::QTextureLoader


p.79

Accessing	Textures	cont'd

Texturing

1 import	Qt3D.Render	2.0
2 ...
3
4 Material	{
5     parameters:	[
6         ...,
7         Parameter	{
8             name:	"baseTexture"
9             value:	Texture2D	{

10                 minificationFilter:	Texture.Linear
11                 magnificationFilter:	Texture.Linear
12                 wrapMode	{
13                     x:	WrapMode.Repeat
14                     y:	WrapMode.Repeat
15                 }
16                 generateMipMaps:	true
17                 maximumAnisotropy:	16.0
18
19                 TextureImage	{
20                     source:	"bricks.png"
21                 }
22             }
23         },
24         ...
25     ]
26     ...
27 }



p.80

Textures	in	Shaders

Texturing

Textures	accessed	in	shaders	via	sampler	variables

Opaque	type	used	to	access	texture	unit	hardware

Declared	as	uniform	variable
uniform	sampler2D	diffuseTexture;

Uniform	is	associated	with	texture	unit	thanks	to	Parameter
name:	"baseTexture"

Texture	coordinates	passed	in	as	per-vertex	attribute	(or	calculated)
in	vec2	texCoords;

Lookup	value	with	texture(	sampler,	texCoords	)	function
vec4	color	=	texture(	baseTexture,	texCoords	);

Use	value
fragColor	=	color;

qmlElement://Parameter


p.81

Textures	in	Shaders	cont'd.

Texturing

Make	lots	of	data	available	to	shaders

No	"right"	way	of	using	textures

Simple	through	to	complex
Just	use	texture	value	as	fragment	color
Model	atmospheric	scattering	and	extinction

Lots	of	available	techniques

Embellish	and	experiment

Use	your	imagination!



p.82

Texturing	the	Earth

Texturing

Render	the	Earth	using	multiple	textures

Using	multiple	textures	at	the	same	time

Demo	qt3d/sol-earth



p.83

Summary

Texturing

Qt	3D	uses	GLSL	shader	programs

Shaders	execute	on	the	GPU	and	can	process	large	amounts	of	data

Material,	Effect,	Technique,	RenderPass,	ShaderProgram	allow	for
custom	materials

GLSL	uniforms	set	via	Parameters
Parameters	are	cascaded	to	allow	reusing	Material,	Effect,
Technique,	RenderPass	elements

Qt	3D	lighting	system	is	an	application	of	uniform	variables	and
Parameters

qmlElement://Material
qmlElement://Effect
qmlElement://Technique
qmlElement://RenderPass
qmlElement://ShaderProgram
qmlElement://Parameter
qmlElement://Material
qmlElement://Effect
qmlElement://Technique
qmlElement://RenderPass
qmlElement://Parameter


p.84

Drawing	with	Qt	3D

Lights

Introduction

Geometries

Transformations	and	Coordinate	Systems

Materials

Texturing

Lights



p.85

Introduction

Lights

Even	with	shapes	and	materials	we	would	see	nothing

We	need	some	lights
...	luckily	Qt	3D	sets	a	default	one	for	us	if	none	is	provided

In	general	we	want	some	control	of	the	scene	lighting

Light	components	are	provided	by	Qt3DRender::QAbstractLight	and	its
subclasses

Lights	don't	appear	in	the	scene,	we	only	see	their	effects	on	other	entities
DirectionalLight
PointLight
SpotLight

Demo	qt3d/ex-lights-qml

class://Qt3DRender::QAbstractLight
qmlElement://DirectionalLight
qmlElement://PointLight
qmlElement://SpotLight


p.86

Summary

Lights

Entitys	containing	Transforms	provide	a	scene	graph

Qt3D.Extras	module	provides	some	common	building	blocks:
Basic	geometric	primitives
Phong-like	materials

Qt3D.Render	module	provides	some	common	light	types

qmlElement://Entity
qmlElement://Transform
qmlElement://Qt3D.Extras
qmlElement://Qt3D.Render


p.87

The	Qt	3D	Frame	Graph

The	Qt	3D	Frame	Graph

The	Story	of	Qt

Overview	of	Qt	3D

Drawing	with	Qt	3D

The	Qt	3D	Frame	Graph
Viewports	and	Layers
Image-Based	Techniques

The	Future	of	Qt	3D



p.88

What	is	the	Frame	Graph	For?

The	Qt	3D	Frame	Graph

With	what	we	have	seen	so	far,	we	can:
Draw	geometry	loaded	from	disk	or	generated	dynamically
Use	custom	materials	with	shaders	to	change	surface	appearance
Make	use	of	textures	to	increase	surface	details

What	about	shadows?

What	about	transparency?

What	about	post	processing	effects?

All	these	and	others	require	control	over	how	we	render	the	Scene	Graph

The	Frame	Graph	describes	the	rendering	algorithm



p.89

Render	Settings

The	Qt	3D	Frame	Graph

RenderSettings	is	a	Component	allowing	to	control	the	render	aspect

Only	one	instance	is	allowed

It	is	generally	set	on	the	root	Entity	of	the	scene

Its	activeFramegraph	property	is	the	root	of	the	Frame	Graph
Can	be	a	pre-made	Frame	Graph	like	ForwardRenderer
Or	your	own,	generally	starting	with	RenderSurfaceSelector

It	also	allows	to	control	picking	via	the	pickingSettings	grouped	property
By	default	it	uses	bounding	sphere	volume	picking
   (PickingSettings.BoundingVolumePicking)
Some	scenes	require	the	more	expensive	triangle	picking
   (PickingSettings.TrianglePicking)

This	module	is	focusing	on	writing	Frame	Graphs	for	different	uses

qmlElement://RenderSettings
qmlElement://Component
qmlElement://Entity
qmlElement://ForwardRenderer
qmlElement://RenderSurfaceSelector


p.90

Structure	and	Behavior

The	Qt	3D	Frame	Graph

The	nodes	of	the	Frame	Graph	form	a	tree

The	entities	of	the	Scene	Graph	form	a	tree

The	Frame	Graph	and	Scene	Graph	are	linearized	into	render	commands



p.91

Render	Views

The	Qt	3D	Frame	Graph

The	Frame	Graph	is	traversed	in	a	depth	first	manner	to	look	for	leaf	nodes

The	Scene	Graph	is	rendered	for	leaf	nodes	only

Each	leaf	node	generates	a	RenderView	in	the	backend



p.92

Commands	Submission

The	Qt	3D	Frame	Graph

The	linearization	of	the	Frame	Graph	is	multi-threaded

Submission	of	the	commands	is	then	done	by	a	specific	thread



p.93

The	Simplest	Frame	Graph

The	Qt	3D	Frame	Graph

It	is	important	to	structure	your	Frame	Graph	properly	for	performance
reasons

Might	lead	to	deep	and	narrow	trees
Simplest	case	being	a	one	pass	forward	renderer



p.94

The	Qt	3D	Frame	Graph

Viewports	and	Layers

Viewports	and	Layers

Image-Based	Techniques



p.95

Several	Points	of	View	on	a	Scene

Viewports	and	Layers

Camera	describes	a	point	of	view	on	a
scene

Viewport	allows	to	split	the	render	surface
in	several	areas

They	can	be	nested	for	further	splitting

CameraSelector	allows	to	select	a	camera
to	render	in	a	Viewport

ClearBuffers	decribes	which	buffers	are
cleared	during	the	rendering

Generally	necessary	to	get	anything	on
screen
Also	an	easy	way	to	control	background
color

To	avoid	a	branch	to	trigger	a	rendering
give	it	a	NoDraw	element	as	leaf

qmlElement://Camera
qmlElement://Viewport
qmlElement://CameraSelector
qmlElement://Viewport
qmlElement://ClearBuffers
qmlElement://NoDraw


p.96

Several	Points	of	View	on	a	Scene	cont'd

Viewports	and	Layers



p.97

Several	Points	of	View	on	a	Scene	cont'd

Viewports	and	Layers

Demo	qt3d/ex-viewports



p.98

Showing	Different	Scenes	in	Viewports

Viewports	and	Layers

Our	Viewports	all	display	the	same	scene...

But	they	can	display	different	subsets	of	the
scene	using	layers

Attach	each	entity	to	a	Layer

Have	each	Viewport	display	a	subset	of	the
entities	using	LayerFilter

Demo	qt3d/ex-viewports-and-layers

qmlElement://Viewport
qmlElement://Layer
qmlElement://Viewport
qmlElement://LayerFilter


p.99

Composing	Frames	with	Layers

Viewports	and	Layers

Layers	and	LayerFilters	can	also	be	used
on	their	own

They	allow	controlling	how	the	final	frame	is
composed

Useful	for:
Some	post-processing	effect
Tuning	performances	(e.g.	in	case	of
expensive	fragment	shader)
Showing	optional	debug	displays
Controlling	ordering	(e.g.	opaque	entities
before	transparent	entities	for	alpha
blending)

Demo	qt3d/ex-composing-layers

qmlElement://Layer
qmlElement://LayerFilter


p.100

The	Qt	3D	Frame	Graph

Image-Based	Techniques

Viewports	and	Layers

Image-Based	Techniques
Rendering	to	a	Texture
Post-Processing	Effects



p.101

Image-Based	Techniques

Rendering	to	a	Texture

Rendering	to	a	Texture

Post-Processing	Effects



p.102

Multiple	passes

Rendering	to	a	Texture

So	far,	we	have	followed	a	standard	single-pass	pattern
Provide	a	RenderSurfaceSelector
Clear	the	buffers	with	ClearBuffers
Trigger	the	rendering	with	CameraSelector

Possibly	combined	with	some	other	nodes	seen	previously

There	are	many	techniques	we	can	achieve	by	expanding	on	the	basic	pattern
above	-	stereo	rendering,	more	realistic	lighting	and	shadowing,	post-
processing	and	more.

qmlElement://RenderSurfaceSelector
qmlElement://ClearBuffers
qmlElement://CameraSelector


p.103

Rendering	twice

Rendering	to	a	Texture

Simplest	multi-pass	renders	(some	of)	the	scene	more	than	once
Add	more	than	one	RenderPass	to	some	of	your	Materials
Provide	a	RenderSurfaceSelector
Clear	the	buffers	with	ClearBuffers
Trigger	the	rendering	with	CameraSelector
Provide	a	RenderPassFilter	to	activate	a	different	set	of	shaders
Trigger	the	rendering	with	CameraSelector	again

An	example	would	be	to	highlight	certain	objects	in	a	scene	-	in	a	second
pass,	draw	with	a	translucent	texture,	possibly	with	an	adjusted	scale.

Will	be	covered	in	details	later!

qmlElement://RenderPass
qmlElement://Material
qmlElement://RenderSurfaceSelector
qmlElement://ClearBuffers
qmlElement://CameraSelector
qmlElement://RenderPassFilter
qmlElement://CameraSelector


p.104

Rendering	targets

Rendering	to	a	Texture

Hardware	renders	to	blocks	of	memory	with	a	pixel	(surface)	format
QSurfaceFormat	specifies	color	depth,	stereo	rendering,	depth,	stencil,
samples
When	window	is	initialised,	buffers	matching	the	format	are	created
(allocated)

Render	to	custom	buffer,	instead	of	the	back	buffer

RenderTargetSelector	allows	to	render	to	framebuffer	objects	or	FBOs

qmlElement://RenderTargetSelector


p.105

Framebuffers

Rendering	to	a	Texture

Framebuffers	are	rendering	targets

Create	them	using	RenderTarget

It	has	one	or	more	attachments	of	type	RenderTargetOutput

The	memory	of	each	output	allocated	in	a	texture

qmlElement://RenderTarget
qmlElement://RenderTargetOutput


p.106

Attaching	textures

Rendering	to	a	Texture

A	texture	is	not	a	block	of	memory	(an	image),	but	a	collection	of	them
layer	of	a	2D	texture	is	mip-map	level,	or	cube-map	face

Attach	a	texture	image,	to	a	framebuffer	attachment	point
RenderTargetOutput	has	an	attachmentPoint	property
Storage	format	must	be	compatible	-	no	compressed	images

qmlElement://RenderTargetOutput


p.107

Render	Targets

Rendering	to	a	Texture



p.108

Code

Rendering	to	a	Texture

1 import	Qt3D.Render	2.0
2 ...
3 RenderTarget	{
4     attachments	:	[
5         RenderTargetOutput	{
6             attachmentPoint:	RenderTargetOutput.Color0
7             texture:	Texture2D	{
8                 width:	1024
9                 height:	1024

10                 format:	Texture.RGBA8_UNorm
11             }
12         },
13         RenderTargetOutput	{
14             attachmentPoint:	RenderTargetOutput.Color1
15             texture:	Texture2D	{
16                 width:	1024
17                 height:	1024
18                 format:	Texture.RGB16F
19             }
20         },
21         RenderTargetOutput	{
22             attachmentPoint	:	RenderTargetOutput.Depth
23             texture	:	Texture2D	{
24                 width:	1024
25                 height:	1024
26                 format:	Texture.DepthFormat
27             }
28         }
29     ]
30 }



p.109

Two-pass	Rendering

Rendering	to	a	Texture



p.110

Image-Based	Techniques

Post-Processing	Effects

Rendering	to	a	Texture

Post-Processing	Effects



p.111

Post	Processing	Effects

Post-Processing	Effects

Uses	2	or	more	rendering	passes

Render	to	texture

Render	using	texture

Modifies	original
Simulate	poor	zoom
Adjust	levels/contrast
Color	tint
Interference	lines
Vignette
Flickering

Demo	qt3d/ex-multiple-effects

Demo	qt3d/sol-selection-overlay



p.112

Multi-pass	Rendering

Post-Processing	Effects



p.113

The	Future	of	Qt	3D

The	Future	of	Qt	3D

The	Story	of	Qt

Overview	of	Qt	3D

Drawing	with	Qt	3D

The	Qt	3D	Frame	Graph

The	Future	of	Qt	3D
Beyond	the	Tip	of	the	Iceberg
The	Future	of	Qt	3D



p.114

The	Future	of	Qt	3D

Beyond	the	Tip	of	the	Iceberg

Beyond	the	Tip	of	the	Iceberg

The	Future	of	Qt	3D



p.115

And	more...

Beyond	the	Tip	of	the	Iceberg

Texture	mipmaps

Cube	Maps

Portability	of	your	code	accross	several	OpenGL	versions

Complete	control	over	the	rendering	algorithm

Loading	complete	objects	or	scenes	from	files	(3ds,	collada,	qml...)

Post-processing	effects	(single	or	multi-pass)

Instanced	rendering

etc.



p.116

The	Future	of	Qt	3D

The	Future	of	Qt	3D

Beyond	the	Tip	of	the	Iceberg

The	Future	of	Qt	3D



p.117

What	does	the	future	hold	for	Qt	3D?

The	Future	of	Qt	3D

Qt	3D	Core
Efficiency	improvemments
Backend	threadpool	and	job	handling	improvements	-	jobs	spawning
jobs

Qt	3D	Render
Use	Qt	Quick	or	QPainter	to	render	into	a	texture	(5.9)
Embed	Qt	Quick	into	Qt	3D	including	input	handling	(5.9)
Level	of	Detail	(LOD)	support	for	meshes	(5.9)
Text	support	-	2D	and	3D	(5.9)
Additional	materials	such	as	PBR	materials	(5.9)
Generating	and	filling	buffers	out	of	QAbstractItemModels
Billboards	-	camera	facing	entities
Particle	systems
VR	support



p.118

What	does	the	future	hold	for	Qt	3D?

The	Future	of	Qt	3D

Qt	3D	Input
Axis	inputs	that	apply	cumulative	axis	values	as	position,	velocity	or
acceleration
Additional	input	device	support

3D	mouse	controllers,	game	controllers
Enumerated	inputs	such	as	8-way	buttons,	hat	switches	or	dials



p.119

What	does	the	future	hold	for	Qt	3D?

The	Future	of	Qt	3D

New	aspects:
Collision	Detection	Aspect

Allows	to	detect	when	entities	collide	or	enter/exit	volumes	in	space
Animation	Aspect

Keyframe	animation	(5.9	TP)
Skeletal	animation
Morph	target	animation
Removes	animation	workload	from	main	thread

Physics	Aspect
Rigid	body	and	soft	body	physics	simulation

AI	Aspect,	3D	Positional	Audio	Aspect	...

Tooling:
Design	time	tooling	-	scene	editor
Qt	3D	Studio
Build	time	tooling	-	asset	conditioners	for	meshes,	textures	etc.



p.120

What	does	the	future	hold	for	Qt	3D?

The	Future	of	Qt	3D

Qt	3D	and	the	rest	of	Qt:
DataVis,	Mapping,	etc.	are	likely	to	be	based	on	Qt	3D
Work	on	unifying	rendering	toolset

Single	renderer	for	Qt
Vulkan,	Direct3D	12,	Metal	backends



p.121

Questions?



p.122

Thank	you
Giuseppe	D'Angelo

giuseppe.dangelo@kdab.com


