
The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

The Art of Writing Reasonable Concurrent
Code

Pre-Conference Workshop ACCU 2017

c©2017

Felix Petriconi

2017-04-25

1 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

The [C++] language is too large for anyone to master
So everyone lives within a subset

Sean Parent, C++Now, 2012

2 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Why am I here?

Why are you here?

Motivation

Felix Petriconi

I School (UCSD Pascal, Turbo Pascal)
I Studied electrical engineering (Modula 2, Ada, C++)
I Student research assistant (1992-1996) (Turbo Pascal,

C++, C)
I Freelance programmer 1996-2003 (Ericsson,

Siemens-VDO, etc.)
I Development of test software for embedded devices

(Perl, C)
I Programmer and development manager 2003-today at

MeVis Medical Solutions AG, Bremen, Germany
I Development of medical devices in the area of

mammography and radio therapy (C++, Ruby, Python)
I Programming activities:

I Blog editor of ISO C++ website
I Active member of C++ User Group Bremen
I Contributor to Sean Parent’s concurrency library
I Member of ACCU conference committee

I Married with Nicole, having three children, living near
Bremen, Germany

I Other interests: Classic film scores, composition

3 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Why am I here?

Why are you here?

Motivation

Why am I here?

I saw how we developed multi threaded code in the past.
I saw how easy it is to make mistakes.
I saw and still see how difficult it is to maintain this code.

I watched recordings from Sean Parent’s talks about ”Better
Code”.
I was impressed.
I wanted to learn more.

I’m collaborating in his open source project for a new library.
I’m continuously learning there a lot.
I care about sharing my knowledge, here at the ACCU
conference.

5 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Why am I here?

Why are you here?

Motivation

Why are you here?

What is your motivation to be here?

6 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Why am I here?

Why are you here?

Motivation

Problems from my
domain

Problems from my domain

I Loading of huge images blocks UI

I Storing of files blocks UI

I Re-coding of huge images takes very long

I DB accesses takes too long

I ...

7 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Why am I here?

Why are you here?

Motivation

Problems from my
domain

Why do we have to talk about concurrency?

8 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Why am I here?

Why are you here?

Motivation

Problems from my
domain

The free lunch is over!

Herb Sutter, 20051

1The Free Lunch Is Over: A Fundamental Turn Toward Concurrency
in Software
http://www.gotw.ca/publications/concurrency-ddj.htm

9 / 92

http://www.gotw.ca/publications/concurrency-ddj.htm

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Why am I here?

Why are you here?

Motivation

Problems from my
domain

The free lunch is over

10 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Why am I here?

Why are you here?

Motivation

Problems from my
domain

Desktop Compute Power

8-core 3.5GHz (Sandy Bridge + AMD Radeon 6950)

That’s what we are targeting for!

16 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Why am I here?

Why are you here?

Motivation

Problems from my
domain

Amdahl’s Law

0% Synchronization

S(N) =
1

(1−P)+ P
N

P = 0

18 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Why am I here?

Why are you here?

Motivation

Problems from my
domain

Amdahl’s Law

90% Synchronization

S(N) =
1

(1−P)+ P
N

P = 0.9

21 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Outline Futures

Futures
Why Futures?
Introduction
C++ Standard - Futures

Exceptions
Deficiencies

Boost - Futures
Deficiencies
Future Continuation
Future Join

stlab - Futures
Executors
Error Recovery
Join
Splits

Exercise 1

22 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Exercise 1

Why Futures?

Why using futures?
Aren’t threads, mutex, atomics great?
They are great tools ”to shot yourself into the foot!”
It is so easy

I having race conditions

I having dead locks

I wasting CPU cycles through contention

Do you program your application in assembly?
Only if it absolute time critical.
Then don’t use tools from the level of assembly!

23 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Exercise 1

Future Introduction

I Futures provide a mechanism to separate a function
from its result

I After the function is called the result appears
”magically” in the future

I A future is a token to the result of a function

I Added with C++11

I Futures, resp. promises where invented 1977/1978 by
Daniel P. Friedman, David Wise, Henry Baker and Carl
Hewitt

24 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Exceptions

Deficiencies

Boost - Futures

stlab - Futures

Exercise 1

C++ Standard - Futures

1 #include <future >

2 #include <iostream >

3
4 using namespace std;

5
6 int main() {

7
8 auto getTheAnswer = [] {

9 this_thread :: sleep_for(chrono :: milliseconds (815));

10 return 42;

11 };

12
13 future <int > f2 = async(launch ::async , getTheAnswer);

14
15 // Do other stuff , getting the answer may take longer

16 cout << f2.get() << ’\n’; // access the value

17 }

Output

42

25 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Exceptions

Deficiencies

Boost - Futures

stlab - Futures

Exercise 1

C++ Standard - Futures - Exceptions

1 #include <future >

2 #include <iostream >

3 #include <exception >

4
5 using namespace std;

6
7 int main() {

8 auto getTheAnswer = [] {

9 throw runtime_error("Bad things happened: Vogons appeared!");

10 return 42;

11 };

12
13 future <int > f2 = async(launch ::async , getTheAnswer);

14
15 // Do other stuff , getting the answer may take longer

16 try {

17 cout << f2.get() << ’\n’; // try accessing the value

18 // rethrows the stored exception

19 }

20 catch (const runtime_error& ex) {

21 cout << ex.what() << ’\n’;

22 }

23 }

Output

Bad things happened: Vogons appeared!

26 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Exceptions

Deficiencies

Boost - Futures

stlab - Futures

Exercise 1

C++11/14 Future Deficiencies

I No continuation – .then() 7∗

I No join – .when all() and .when any() 7∗

I No split – continuation in different directions 7

I No cancellation (but can be modelled) 7

I No progress monitoring (except ready) 7

I No custom executor 7

I Blocks on destruction (may even blocks until
termination of used thread) 7

I .get() has two problems:
1. One thread resource is consumed which increases

contention and possibly causing a deadlock 7
2. Any subsequent non-dependent calculations on the task

are also blocked 7

I Don’t behave as a regular type 7

∗ Comes with C++17(TS)
27 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

Deficiencies

Future Continuation

Future Join

stlab - Futures

Exercise 1

Boost - Futures

I Continuation – .then() 3

I Join – .when all() and .when any() 3

I No split – continuation in different directions 7

I No cancellation (but can be modelled) 7

I No progress monitoring (except ready) 7

I Custom executor 3

I Blocks on destruction (may even blocks until
termination of used thread) 7

I .get() has two problems:

1. One thread resource is consumed which increases
contention and possibly causing a deadlock 7

2. Any subsequent non-dependent calculations on the task
are also blocked 7

I Don’t behave as a regular type 7

28 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

Deficiencies

Future Continuation

Future Join

stlab - Futures

Exercise 1

Future Continuation

29 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

Deficiencies

Future Continuation

Future Join

stlab - Futures

Exercise 1

C++17(TS) / Boost - Continuation

1 #include <iostream >

2 #include <boost/thread/future.hpp >

3
4 using namespace std;

5
6 int main() {

7 boost::future <int > answer = boost::async ([]{ return 42; });

8
9 boost::future <void > done = answer.then(

10 [](boost ::future <int > a) { std::cout << a.get() << ’\n’;});

11
12 // do something else

13 done.wait(); // waits until future done is fulfilled

14 }

Output

42

30 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

Deficiencies

Future Continuation

Future Join

stlab - Futures

Exercise 1

Future Join

31 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

Deficiencies

Future Continuation

Future Join

stlab - Futures

Exercise 1

C++17(TS) / Boost - Join

1 #include <iostream >

2 #include <boost/thread/future.hpp >

3
4 using namespace std;

5
6 int main() {

7 auto a = boost ::async ([]{ return 40; });

8 auto b = boost ::async ([]{ return 2; });

9
10 auto answer = boost :: when_all(std::move(a), std::move(b)).then(

11 [](auto f) {

12 auto t = f.get();

13 return get <0>(t).get() + get <1>(t).get();

14 });

15
16 // wait for the something else

17 cout << answer.get() << ’\n’;

18 }

Output

42

32 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

Deficiencies

Future Continuation

Future Join

stlab - Futures

Exercise 1

C++17(TS) / Boost - Join

1 #include <iostream >

2 #include <boost/thread/future.hpp >

3
4 using namespace std;

5
6 int main() {

7 auto a = boost ::async ([]{ return 40; });

8 auto b = boost ::async ([]{ return 2; });

9
10 auto answer = boost :: when_all(std::move(a), std::move(b)).then(

11 [](auto f) {

12 auto t = f.get();

13 return get <0>(t).get() + get <1>(t).get();

14 });

15
16 // wait for the something else

17 cout << answer.get() << ’\n’;

18 }

What is the type of f?
f is a future tuple of futures:
future<tuple<future<int>, future<int>>>

33 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

stlab - Futures

stlab::future
Source: https://github.com/stlab/libraries

Documentation: http://www.stlab.cc/libraries

34 / 92

https://github.com/stlab/libraries
http://www.stlab.cc/libraries

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

stlab - Futures

I Continuation – .then() 3

I Join – .when all() and .when any() 3

I Split – continuation in different directions 3

I Cancellation 3

I No progress monitoring (except ready), more planned 7

I Custom executor 3

I Do not block on destruction 3

I Behave as a regular type 3

I Additional dependencies:
I C++14: boost (optional, variant)
I C++17: none

35 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

stlab::future

1 #include <stlab/future.hpp >

2 #include <stlab/default_executor.hpp >

3 #include <iostream >

4 using namespace std;

5 int main() {

6 auto getTheAnswer = [] {

7 this_thread :: sleep_for(chrono :: milliseconds (815));

8 return 42;

9 };

10 stlab::future <int > f =

11 stlab::async(

12 stlab:: default_executor ,// default_executor

13 // uses platfrom thread pool on Win/OSX

14 // uses stlab thread pool on other OS

15 getTheAnswer

16);

17
18 while (!f.get_try ()) { // does not block

19 // Do other stuff , getting the answer may take longer :-)

20 }

21
22 cout << f.get_try ().value () << ’\n’; // access the value

23 // throws exception .value() if not ready

24 }

Output

42

36 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

stlab::future - Exceptions

1 #include <stlab/future.hpp >

2 #include <stlab/default_executor.hpp >

3 #include <iostream >

4 #include <exception >

5
6 int main() {

7 auto getTheAnswer = [] {

8 throw std:: runtime_error("Bad thing happened: Vogons appeared!");

9 return 42;

10 };

11 auto f = stlab ::async(stlab:: default_executor , getTheAnswer);

12
13 try {

14 while (!f.get_try ()) { // try accessing the value

15 // may rethrow a stored exception

16 // Do other stuff , getting the answer may take longer

17 }

18
19 std::cout << f.get_try ().value() << ’\n’;

20 }

21 catch (const std:: runtime_error& ex) {

22 std::cout << ex.what() << ’\n’;

23 }

24 }

Output

Bad things happened: Vogons appeared!

37 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

stlab::future - Continuation

1 #include <stlab/future.hpp >

2 #include <stlab/default_executor.hpp >

3 #include <iostream >

4
5 int main() {

6 auto answer =

7 stlab::async(stlab:: default_executor , []{ return 42; });

8
9 stlab::future <void > done = answer.then(

10 [](int a) // pass by value and not by future

11 {

12 std::cout << a << ’\n’;

13 });

14
15 while (!done.get_try ()) {

16 // do something in the meantime

17 }

18 }

Output

42

38 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

Executors

I Executors are needed to customize where the task shall
be executed

I Executors can be general thread pools, serial queues,
main queues, dedicated task groups, etc.

39 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

stlab::future - Continuation with Custom
Executor

1 #include <stlab/future.hpp >

2 #include <stlab/default_executor.hpp >

3 #include <iostream >

4 #include <QLineEdit >

5 #include "QtScheduler.h"

6
7 int main() {

8 QLineEdit theAnswerEdit;

9
10 auto answer =

11 stlab::async(stlab:: default_executor , []{ return 42; });

12
13 stlab::future <void > done = answer.then(

14 QtScheduler (), // different scheduler

15 [&](int a) { theAnswerEdit.setValue(a); }// here update in main

thread

16);

17
18 while (!done.get_try ()) {

19 // do something in the meantime

20 }

21 }

40 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

stlab::future - Custom Executor

I In boost, executors derive from a common base class

I In stlab the executors must provide
template <typename F> void operator()(F f)

I Let’s build exemplary a custom executor for the Qt GUI,
that allows to perform updates in the Qt main event
loop

41 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

stlab::future - Custom Executor - Qt

1 #include <QApplication >

2 #include <Event >

3
4 class QtExecutor

5 {

6 using result_type = void;

7
8 class ExecutorEvent : public QEvent

9 {

10 };

11
12 public:

13 template <typename F>

14 void operator ()(F f) {

15 auto event = new ExecutorEvent(std::move(f));

16 QApplication :: postEvent(event ->receiver (), event);

17 }

18 };

42 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

stlab::future - Custom Executor - Qt cont. I

1 #include <QApplication >

2 #include <Event >

3
4 class QtExecutor

5 {

6 using result_type = void;

7
8 class EventReceiver;

9
10 class ExecutorEvent : public QEvent

11 {

12 std::function <void()> _f;

13 std::unique_ptr <EventReceiver > _receiver;

14
15 public:

16 ExecutorEvent(std::function <void()> f)

17 : QEvent(QEvent ::User)

18 , _f(std::move(f))

19 , _receiver(new EventReceiver ()) {

20 _receiver ()->moveToThread(QApplication :: instance ()->thread ());

21 }

22
23 void execute () { _f(); }

24
25 QObject *receiver () const { return _receiver.get(); }

26 };

27
28 public:

29 };

43 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

stlab::future - Custom Executor - Qt cont. II

1 #include <QApplication >

2 #include <Event >

3
4 class QtExecutor

5 {

6 class ExecutorEvent : public QEvent

7 {

8 QObject *receiver () const { return _receiver.get(); }

9 };

10
11 class EventReceiver : public QObject

12 {

13 public:

14 bool event(QEvent *event) override {

15 auto myEvent = dynamic_cast <ExecutorEvent *>(event);

16 if (myEvent) {

17 myEvent ->execute ();

18 return true;

19 }

20 return false;

21 }

22 };

23
24 public:

25 template <typename F>

26 void operator ()(F f) {

27 auto event = new ExecutorEvent(std::move(f));

28 QApplication :: postEvent(event ->receiver (), event);

29 }

30 };

44 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

stlab::future - Error Recovery

1 int main() {

2 auto getTheAnswer = [] {

3 throw std:: runtime_error("Bad thing happened: Vogons appeared");

4 std::cout << "I have got the answer\n"; return 42;

5 };

6 auto handleTheAnswer = [](int v) {

7 if (v == 0) std::cout << "We have a problem !\n";

8 else std::cout << "The answer is " << v << ’\n’;

9 };

10
11 auto f = stlab ::async(stlab:: default_executor , getTheAnswer)

12 .recover ([](stlab::future <int > result) {

13 if (result.error ()) {

14 std::cout << "Listen to Vogon poetry !\n";

15 return 0;

16 }

17 return result.get_try ().value();

18 }).then(handleTheAnswer);

19
20 while (!f.get_try ());

21 }

Output

Listen to Vogon poetry!
We have a problem!

45 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

stlab::future - Join

1 #include <stlab/future.hpp >

2 #include <stlab/default_executor.hpp >

3 #include <iostream >

4
5 using namespace stlab;

6
7 int main() {

8 auto a = async(default_executor ,[]{ return 40; });

9 auto b = async(default_executor ,[]{ return 2; });

10
11 auto answer = when_all(

12 default_executor ,

13 [](int x, int y) { return x + y; },

14 a, b);

15
16 while (! answer.get_try ()) {

17 // wait for something else

18 }

19 std::cout << answer.get_try ().value() << ’\n’;

20 }

Output

42

46 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

future - Split

47 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Executors

Error Recovery

Join

Splits

Exercise 1

stlab::future - Split

1 #include <stlab/future.hpp >

2 #include <stlab/default_executor.hpp >

3 #include <iostream >

4
5 using namespace stlab;

6
7 int main() {

8 auto answer = async(default_executor ,[]{ return 42; });

9
10 auto dent = answer.then ([](int a) {

11 std::cout << "Tell the answer " << a << " Arthur Dent\n";

12 });

13
14 auto marvin = answer.then ([](int a) {

15 std::cout << "May the answer " << a << " shear up Marvin\n";

16 });

17
18 while (!dent.get_try () && !marvin.get_try ()) {

19 // wait for something else

20 }

21 }

Output

Tell the answer May the answer 42 Arthur Dent

42 shear up Marvin V Race condition by using std::cout

48 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Exercise 1

Exercise 1

Change the application in a way that

I using Start does not block the UI,

I it is possible to cancel the running operation,

I it is possible to restart it.

50 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Futures

Why Futures?

Introduction

C++ Standard -
Futures

Boost - Futures

stlab - Futures

Exercise 1

Conclusion

Futures are a great concept to structure the code so that it
runs with minimal contention.

After a single execution the graph cannot be used any more.

51 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel Stateful
Process

Outline Channels

Channel Motivation

Channel - Stateless Process
Channel - Split
Channel - Join
Exercise 2

Channel Stateful Process
Exercise 3

52 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel Stateful
Process

Channel Introduction

I Each change triggers a notification to the sink values

I Channels allow the creation of persistent execution
graphs

I This is also known as reactive programming model

I First published by Tony Hoare 1978

53 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Exercise 2

Channel Stateful
Process

Channel - Stateless Process

1 #include <stlab/channel.hpp >

2 #include <stlab/default_executor.hpp >

3 #include <iostream >

4 int main() {

5 stlab::sender <int > send; // sending part of the channel

6 stlab::receiver <int > receiver; // receiving part of the channel

7 std::tie(send , receiver) = // combining both to a channel

8 stlab::channel <int >(stlab :: default_executor);

9
10 auto printer =

11 [](int x){ std::cout << x << ’\n’; }; // stateless process

12
13 auto printer_process =

14 receiver | printer; // attaching process to the receiving

15 // part

16 receiver.set_ready (); // no more processes will be attached

17 // process starts to work

18 send (1); send (2); send (3); // start sending into the channel

19
20 int end; std::cin >> end; // simply wait to end application

21 }

Output

1
2
3

54 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Exercise 2

Channel Stateful
Process

Channel - Split

55 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Exercise 2

Channel Stateful
Process

Channel - Split Process

1 using namespace stlab;

2 int main() {

3 sender <int > send;

4 receiver <int > receiver;

5 std::tie(send , receiver) = channel <int >(default_executor);

6
7 auto printerA = [](int x){ printf("Process A %d\n", x); };

8 auto printerB = [](int x){ printf("Process B %d\n", x); };

9
10 auto printer_processA = receiver | printerA;

11 auto printer_processB = receiver | printerB;

12
13 receiver.set_ready (); // no more processes will be attached

14 // process may start to work

15 send (1); send (2); send (3);

16 int end; std::cin >> end;

17 }

Output

Process A 1
Process B 1
Process A 2
Process B 2
Process B 3
Process A 3

56 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Exercise 2

Channel Stateful
Process

Channel - Join

57 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Exercise 2

Channel Stateful
Process

Channel - Joined Processes

1 using namespace stlab;

2
3 int main() {

4 sender <int > sendA , sendB;

5 receiver <int > receiverA , receiverB;

6 std::tie(sendA , receiverA) = channel <int >(default_executor);

7 std::tie(sendB , receiverB) = channel <int >(default_executor);

8
9 auto printer = [](int x, int y){ printf("Process %d %d\n", x, y); };

10
11 auto printProcess = join(default_executor , printer ,

12 receiverA , receiverB);

13
14 receiverA.set_ready ();

15 receiverB.set_ready ();

16
17 sendA (1); sendA (2); sendB (3); sendA (4); sendB (5); sendB (6);

18
19 int end; std::cin >> end;

20 }

Output

Process 1 3
Process 2 5
Process 4 6

58 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Exercise 2

Channel Stateful
Process

Channel operators

Beside join() there are:

I zip()The process takes the passed values in a
round-robin manner, starting with the result from the
first receiver.

I merge()The process takes the values in an arbitrary
order.

59 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Exercise 2

Channel Stateful
Process

Exercise 2

Create a process chain with
I the inputs

I one int input
I one std::string input
I one double input

I all inputs are joined to a process that concatenates all
the results into a string and

I the result is split into
I one process that prints the result into console,
I one process that stores the result into a file

I show with two value triplets, that the implementation
works

I don’t use any synchronization primitive

61 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Exercise 2

Channel Stateful
Process

Conclusion

I Stateless processes (from the point of view of the
channel) have a 1:1 relationship from input to output

62 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel Stateful
Process

Exercise 3

Channel Stateful Process - Motivation

I Some problems need a processor with state

I Some problems have an n : m relationship from input
to output

I The picture becomes more complicated with states:
I When to proceed?
I How to handle situations when less than expected

values come downstream?

63 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel Stateful
Process

Exercise 3

Channel - Stateful Process Signature

1 #include <stlab/channel.hpp >

2
3 using process_state_scheduled =

4 std::pair <process_state , std:: chrono :: system_clock ::time_point >;

5
6 struct process_signature

7 {

8 void await(T... val);

9
10 U yield();

11
12 process_state_scheduled state () const;

13
14 void close(); // optional

15
16 void set_error(std:: exception_ptr); // optional

17 };

64 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel Stateful
Process

Exercise 3

Stateful Process Signature - await

1 #include <stlab/channel.hpp >

2
3 using process_state_scheduled =

4 std::pair <process_state , std:: chrono :: system_clock ::time_point >;

5
6 struct process_signature

7 {

8 void await(T... val);

9
10 U yield();

11
12 process_state_scheduled state () const;

13
14 void close(); // optional

15
16 void set_error(std:: exception_ptr); // optional

17 };

The await method is called on the process whenever a new
value was received from upstream. The type T stands here
for any semi regular or move-only type. The number of
arguments depends on the number of attached upstream
sender. Potential state changes from awaitable to yieldable
should happen while this method is invoked.

65 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel Stateful
Process

Exercise 3

Stateful Process Signature - yield

1 #include <stlab/channel.hpp >

2
3 using process_state_scheduled =

4 std::pair <process_state , std:: chrono :: system_clock ::time_point >;

5
6 struct process_signature

7 {

8 void await(T... val);

9
10 U yield();

11
12 process_state_scheduled state () const;

13
14 void close(); // optional

15
16 void set_error(std:: exception_ptr); // optional

17 };

The yield method is called on the process whenever the
process_state_scheduled.first is
process_state::yield or a timeout was provided with the
recent call to state() and that has elapsed.

66 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel Stateful
Process

Exercise 3

Stateful Process Signature - state

1 #include <stlab/channel.hpp >

2
3 using process_state_scheduled =

4 std::pair <process_state , std:: chrono :: system_clock ::time_point >;

5
6 struct process_signature

7 {

8 void await(T... val);

9
10 U yield();

11
12 process_state_scheduled state () const;

13
14 void close(); // optional

15
16 void set_error(std:: exception_ptr); // optional

17 };

This method must return the current state of the process.
Typical return values are await_forever and
yield_immediate. By explicit using the second part of the
return type, one can set a possible timeout. Subsequent calls
without an intermittent await(), close(), or yield()

must return the same values. Otherwise the result is
undefined.

67 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel Stateful
Process

Exercise 3

Stateful Process Signature - close

1 #include <stlab/channel.hpp >

2
3 using process_state_scheduled =

4 std::pair <process_state , std:: chrono :: system_clock ::time_point >;

5
6 struct process_signature

7 {

8 void await(T... val);

9
10 U yield();

11
12 process_state_scheduled state () const;

13
14 void close(); // optional

15
16 void set_error(std:: exception_ptr); // optional

17 };

The optional close() method is called on the process
whenever the process state is await_forever and the
incoming queue went dry. As well it is called when an
exception is thrown while calling await() or yield() and
no set_error() is available.

68 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel Stateful
Process

Exercise 3

Stateful Process Signature - set error

1 #include <stlab/channel.hpp >

2
3 using process_state_scheduled =

4 std::pair <process_state , std:: chrono :: system_clock ::time_point >;

5
6 struct process_signature

7 {

8 void await(T... val);

9
10 U yield();

11
12 process_state_scheduled state () const;

13
14 void close(); // optional

15
16 void set_error(std:: exception_ptr); // optional

17 };

The method set_error() is optional. It is called if either
on calling await() or yield() an exception was thrown.
The pointer of the caught exception is passed. In case that
the process does not provide this method, close() is called
instead of.

69 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel Stateful
Process

Exercise 3

Channel - Stateful Process Example

1 #include <stlab/channel.hpp >

2 #include <stlab/default_executor.hpp >

3 #include <iostream >

4 using namespace stlab;

5
6 struct adder

7 {

8 };

9
10 int main() {

11 sender <int > send;

12 receiver <int > receiver;

13 std::tie(send , receiver) = channel <int >(default_executor);

14
15 auto calculator = receiver | adder {} |

16 [](int x) { std::cout << x << ’\n’; };

17
18 receiver.set_ready ();

19
20 while (true) {

21 int x;

22 std::cin >> x;

23 send(x);

24 }

25 }

70 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel Stateful
Process

Exercise 3

Channel - Stateful Process Example cont.

1 struct adder

2 {

3 int _sum = 0;

4 process_state_scheduled _state = await_forever;

5
6 void await(int x) {

7 _sum += x;

8 if (x == 0) {

9 _state = yield_immediate;

10 }

11 }

12
13 int yield() {

14 int result = _sum;

15 _sum = 0;

16 _state = await_forever;

17 return result;

18 }

19
20 auto state() const { return _state; }

21 };

22
23 int main() {

24 auto calculator = receiver | adder {} |

25 [](int x) { std::cout << x << ’\n’; };

26 while (true) {

27 int x;

28 std::cin >> x;

29 send(x);

30 }

31 }

71 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Channel
Motivation

Channel - Stateless
Process

Channel Stateful
Process

Exercise 3

Exercise 3

2

A process which inputs cards of eighty characters and
outputs their text, tightly packed into lines of 125 characters
each.

I Write one process - unpack - that collect 80 chars in a
bunch and yields them one after the other

I Write one process - pack - that packs 125 chars and
yields them.

I Concatenate unpack - pack as a process chain.
I In a next step write one process - filter - that drops all

newlines from the stream
I Concatenate now unpack - filter - pack as a process

chain.
2

By Ventriloquist - Own work, CC BY-SA 3.0,

https://en.wikipedia.org/w/index.php?curid=32753387

73 / 92

https://en.wikipedia.org/w/index.php?curid=32753387

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Process Analysis

Example Use Cases

Exercise 4

Process Analysis

I Are there performance or usability problems?

I Identify the overall critical part

I Disassemble this part into individual processes

I Chain the processes with futures or channels

74 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Process Analysis

Example Use Cases

Exercise 4

Use case example I

Problem within our mammography application:

I Medical device shall open every case in < 1 s

I Loading of patient data and first images takes about
0.6 s

I Reading of additional data structures (CAD3reports)
may take more than 0.4 s

I Direct access to any CAD report might be required

I If the user skips this case and advances to the next one,
outstanding load operations should be cancelled or at
least be ignored

3Computer Aided Detection
75 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Process Analysis

Example Use Cases

Exercise 4

Exercise 4

Improve the application that the UI is always responsible

I On Reset the reports are newly read

I If one presses 1 or 2 while the reset is running, the
reports shall be displayed as soon as they become
available.

77 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Next Steps?

Next Steps?

High level concurrency sessions at ACCU 2017:

I Thinking Outside the Synchronisation Quadrant by
Kevlin Henney (Wed.)

I Coroutines in Python by Robert Smallshire (Thur.)

I Coroutines in C++ by Dominic Robinson (Fr.)

I Concurrency / Coroutines by Anthony Williams (Sat.)

78 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Synchronization

Synchronization
with Mutex

Synchronization
without Mutex

Synchronization Motivation

Why do we have to synchronize?
Because we have to ensure sequential consistency.
What synchronization mechanism do you know?

I Synchronization primitives (mutex, atomic, memory
fence, ...)

I Guaranteed sequential access

79 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Synchronization

Synchronization
with Mutex

Synchronization
without Mutex

Synchronization with Mutex

1 template <typename K, typename V>

2 class registry

3 {

4 map <K, V> _data;

5 mutex _guard;

6 public:

7 void insert(const K& key , const V& value) {

8 unique_lock <mutex > lock(_guard);

9 _data.insert(

10 make_pair("What is the answer?", 42)

11);

12 }

13
14 V operator [](const K& key) {

15 unique_lock <mutex > lock(_guard);

16 return _data[key];

17 }

18 };

19
20 int main() {

21 registry <string , int > my_registry;

22 auto work = [&] { my_registry.insert("What is the answer?", 42); };

23 auto f1 = async(launch ::async , work);

24 auto f2 = async(launch ::async , work);

25 f1.get(); f2.get();

26 cout << "What is the answer? " << my_registry["What is the answer?"]

<< ’\n’;

27 }

Where are the problems in the code?
80 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Synchronization

Synchronization
with Mutex

Synchronization
without Mutex

Synchronization with Mutex

Mutex - What would be a better name for it?

Bottleneck!4

4Kevlin Henney, NDC London 2017
81 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Synchronization

Synchronization
with Mutex

Synchronization
without Mutex

Synchronization without Mutex

How can the code be transformed into something without a
mutex in the client code?
What is needed to perform that transformation? Which
tools do we have in our tool box?

82 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Synchronization

Synchronization
with Mutex

Synchronization
without Mutex

Synchronization without Mutex

1 template <typename K, typename V>

2 class registry

3 {

4 std::shared_ptr <map <K, V>> _data;

5 serial_queue _queue;

6 public:

7 void insert(K key , V val) {

8 _queue.async([_d = _data ,

9 _key = std::move(key),

10 _val = std::move(val)] {

11 d->emplace(std::move(key), std::move(val));

12 });

13 }

14
15 future <V> operator [](K key) {

16 return _queue.async([_d = _data ,

17 _key = std::move(key)] {

18 return _d->at(key);

19 });

20 }

21 };

83 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Synchronization

Synchronization
with Mutex

Synchronization
without Mutex

Synchronization Epilogue

So we try to avoid mutexes wherever it is possible.

84 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Synchronization

Synchronization
with Mutex

Synchronization
without Mutex

Synchronization Epilogue

All computer wait at the same speed

85 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Synchronization

Synchronization
with Mutex

Synchronization
without Mutex

Use case example II

Image Preparation Pipeline

I A medial device shall display multi-frame image data
sets

I Each incoming data set is JPEG 2000 compressed

I The slices must be decompressed and then compressed
in FELICS5 format for fast decompression and display

I Reading and writing to disk takes a reasonable amount
of time

5Special compression algorithm for 16bit grayscale images
86 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Reference

Reference

Further viewing

Acknowledgement

Contact

Reference

I Concurrency library
https://github.com/stlab/libraries

I Documentation http://www.stlab.cc/libraries

I Communicating Sequential Processes by C. A. R. Hoare
http://usingcsp.com/cspbook.pdf

I The Theory and Practice of Concurrency by A.W.
Roscoehttp://www.cs.ox.ac.uk/people/bill.
roscoe/publications/68b.pdf

87 / 92

https://github.com/stlab/libraries
http://www.stlab.cc/libraries
http://usingcsp.com/cspbook.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Reference

Reference

Further viewing

Acknowledgement

Contact

Further reading I

Software Principles and Algorithms

I Elements of Programming by Alexander Stepanov, Paul
McJones, Addison Wesley

I From Mathematics to Generic Programming by
Alexander Stepanov, Daniel Rose, Addison Wesley

88 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Reference

Reference

Further viewing

Acknowledgement

Contact

Further reading II

Concurrency and Parallelism

I HPX http://stellar-group.org/libraries/hpx/

I C++CSP https:

//www.cs.kent.ac.uk/projects/ofa/c++csp

I CAF C++ Actor Framework
http://actor-framework.org/

I C++ Concurrency In Action by Anthony Williams,
Manning (2nd edition coming soon)

89 / 92

http://stellar-group.org/libraries/hpx/
https://www.cs.kent.ac.uk/projects/ofa/c++csp
https://www.cs.kent.ac.uk/projects/ofa/c++csp
http://actor-framework.org/

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Reference

Reference

Further viewing

Acknowledgement

Contact

Further viewing

I Goals for better code by Sean Parent:
http://sean-parent.stlab.cc/

papers-and-presentations

I Goals for better code by Sean Parent: Concurrency:
https://youtu.be/au0xX4h8SCI?t=16354

I Thinking Outside the Synchronization Quadrant by
Kevlin Henney: https://vimeo.com/205806162

90 / 92

http://sean-parent.stlab.cc/papers-and-presentations
http://sean-parent.stlab.cc/papers-and-presentations
https://youtu.be/au0xX4h8SCI?t=16354
https://vimeo.com/205806162

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Reference

Acknowledgement

Contact

Acknowledgement

I My family, who gave me the freedom to develop over
months the library, prepare this tutorial and let me
travel to the ACCU.

I Sean Parent, who taught me over time lots about
concurrency and abstraction. He gave me the
permission to use whatever I needed from his
presentations for my own.

I My company MeVis Medical Solutions AG, that
released me from work during the ACCU.

91 / 92

The Art of Writing
Reasonable

Concurrent Code

Felix Petriconi

Reference

Acknowledgement

Contact

Contact

I Mail: felix@petriconi.net

I Web: https://petriconi.net

I Twitter: @FelixPetriconi

92 / 92

https://petriconi.net

	Why are were here?
	Why am I here?
	Why are you here?
	Motivation
	Problems from my domain

	Futures
	Futures
	Why Futures?
	Introduction
	C++ Standard - Futures
	Boost - Futures
	stlab - Futures
	Exercise 1

	Channels
	Channel Motivation
	Channel - Stateless Process
	Channel - Split
	Channel - Join
	Exercise 2

	Channel Stateful Process
	Exercise 3

	Code Transformation
	Process Analysis
	Example Use Cases
	Exercise 4

	Next Steps?
	Next Steps?

	Bonus Material
	Synchronization
	Synchronization with Mutex
	Synchronization without Mutex

	Is there more?
	Reference
	Reference
	Further viewing

	Acknowledgement
	Contact

