
Dealing with 
Strings  

in C++

Arjan van Leeuwen 
@avl7771

1

The Story of RSS and
the StringHash

2

3

“When I check for new
feed items, Opera
almost crashes”

4

An RSS feed
<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
 <channel>
 <title>Example RSS Feed</title>
 <item>
 <title>Example Item</title>
 <description>A summary.</description>
 <link>http://www.example.com/foo</link>
 <pubDate>Mon, 23 Sep 2013 03:00:05 GMT  
 </pubDate>
 </item>
 </channel>
</rss>

5

How long can it get?

Strings can sometimes get much longer than you
expect, especially if it’s some kind of user input

being processed (which strings often are). We tend
to forget strings have a variable length, and that the
length of the string has an important effect on any

operation done on it. Longer strings lead to all kinds
of problems: slowness, unexpected results when

trying to save them elsewhere, and they can mess

6

Many operations O(N)

7

Do you actually need
to use a string?

Mutable vs. immutable strings

8

9

Mutable / Immutable
Language String type Mutable Notes
C None /

char[]
Mutable Change in length hard

C++ std::string Mutable
Objective-C NSString Immutable NSMutableString

available
Python String Immutable
JavaScript String Immutable

10

Mutable vs. immutable strings
• Changes that change length are expensive
• Many strings never need to be changed
• Immutable views of strings and substrings can

replace mutable strings in many common cases
• e.g. tokenization, splitting, trimming, …

11

Problems with char arrays
• Is that a string or an array of 8-bit integers?
• strlen() is O(N)

• NULL-terminated

• Unsafe (as any C array)

12

The case for std::string
• No memory ownership issues
• Clear use case
• String length known
• Safe string utility functions
• Operators increase readability

You wouldn’t copy

13

An array

Assigning strings

14

IS COPYING

Copying

15

IS against the law

16

Problems with std::string
• Always allocates memory
• Makes copying invisible with assignment and copy-

constructor
• String literals are always copied
• Any substring creates another copy
• Mutable type

17

Does std::string
make people lazy?

Or: Don’t tell anybody, but I
actually liked char arrays

18

Enter std::string_view
• ‘view on a string’: a non-owning string type
• String length known, safe helper functions
• Can be used with std::string and char arrays

• Copying to std::string is possible but explicit

• Real string literals!
• View can be a substring

19

String types
Type Alloc Copy View

No STL char[] Heap,
stack

strdup,
str{n/l}cpy

const char*

C++03 std::string Heap std::string const
std::string&

C++17 std::string_
view

Non-
owning

std::string std::string_
view

20

std::string_view everywhere!
• use a std::string_view wherever you can!

• When you’re working with std::strings, take care
of ownership to prevent copy
• e.g. use std::move when content not needed

Strings at compile-time

21

22

Growing strings
• Be careful with modifying operations such as

append()
• Avoid creating a string out of many parts, better to

create at once (remember immutability)

23

Growing strings
std::string CopyString(
 const char* to_copy, size_t length) {
 std::string copied;

 for (size_t i = 0; i < length; i += BLOCKSIZE)
 copied.append(to_copy + i,
 std::min(BLOCKSIZE, length - i));

 return copied;
}

24

Growing strings
std::string CopyString(
 const char* to_copy, size_t length) {
 std::stringstream copied;

 for (size_t i = 0; i < length; i += BLOCKSIZE)
 copied.write(to_copy + i,
 std::min(BLOCKSIZE, length - i));

 return copied.str();
}

25

Growing strings

std::string::append()

std::stringstream

std::string::reserve()

0 1500 3000 4500 6000

Converting numbers

26

When you need to switch
between two worlds

27

Converting to string
std::string Convert(int i) {
 std::stringstream stream;
 stream << i;
 return stream.str();
}

28

std::string Convert(int i) {
 return std::to_string(i);
}

Converting to string

29

std::string Convert(int i) {
 namespace karma = boost::spirit::karma;
 std::string converted;
 std::back_insert_iterator<std::string>

sink(converted);

 karma::generate(sink, karma::int_, i);
 return converted;
}

Converting to string

30

std::stringstream

std::to_string

boost::spirit::karma

0 750 1500 2250 3000

Converting to string

31

Converting to integer
int Convert(const std::string& str) {
 return std::stoi(str);
}

32

Converting to integer
int Convert(const std::string& str) {
 namespace qi = boost::spirit::qi;
 int converted;

 qi::parse(str.begin(), str.end(),
 qi::int_, converted);
 return converted;
}

33

std::stoi

boost::spirit::qi

0 1000 2000 3000 4000

Converting to integer

34

Other options
std::from_chars and std::to_chars

are coming!

low-level, locale-independent functions for
conversions between integers and strings and
between floating-point numbers and strings.

Regular Expressions

35

why the hotel 
really didn’t have a pool

Avoid Regular
Expressions

36

if you can

Character encoding

37

38

Basics of character encoding
• Language uses words or sentences made of

characters

• Latin ‘á’, Chinese ‘請’ are examples of characters

• Code points are numbers assigned to characters
• Encoding specifies how to represent code points in

bytes

39

The Unicode standard
• Unicode specifies standard code points for many

characters

• Regularly updated to add emoji 💩

• Unicode specifies several encodings that map all
code points to byte sequences, called the Unicode
Transformation Format (UTF)

40

The Unicode standard
• Unicode specifies standard code points for many

characters

• Regularly updated to add emoji 💩

• Unicode specifies several encodings that map all
code points to byte sequences, called the Unicode
Transformation Format (UTF)

41

UTF encodings
Size Width per

code point
Remarks

UTF-8 8 bit Variable Backwards compatible with ASCII

UTF-16 16 bit Variable Used in Windows system libraries,
endianness matters

UTF-32 32 bit Fixed Used on Linux/BSD system libraries,
endianness matters

42

Why you should use UTF-8
• Backwards compatibility with ASCII is useful (no need

to write separate functions)
• Uses less memory for ASCII-based data formats
• Uses more memory per code point for characters that

actually represent more content
• No endianness concerns means compatibility

43

When you don’t use UTF-8
• Interacting continuously with APIs that require other

encodings (e.g. UTF-16 in the Windows API)
• Can still use UTF-8 transcoding when saving files or

doing network traffic
• Avoid transcoding as much as possible

44

UTF encodings in C++
Primitive

type
String type String view

UTF-8 char std::string std::string_view

UTF-16 char16_t std::u16string std::u16string_view

UTF-32 char32_t std::u32string std::u32string_view

45

• Transcoding between different UTF variants is
possible with the standard library but messy (look up
<codecvt> for details)

• String literals can specify encoding and use non-ascii
characters using code point specifiers: 
u8"A 4 digit code point in UTF-8: \u2018." 
u”An 8 digit code point in UTF-16: \U00002018." 
U”An 8 digit code point in UTF-32: \U00002018."

UTF encodings in C++

Dictionaries and
indexes

46

Dealing with 
Strings  

in C++

Arjan van Leeuwen 
@avl7771

47

