s A look at C++
— through the glasses
of a language tool

Anastasia Kazakova

Background

» C/C++, embedded Linux on VolP gateways and routers, VIM-addicted
» C++, congestion & users policies in 3G/4G/LTE networks, NetBeans user
* Product Marketing Manager for CLion

All connected

Developer

* All three have a common goal
* All three need each other
 All three rely on each other

Language

IDE.
What do you expect?

» Correctness: 100% correct in terms of the language

* Performance: provides completion before I'm tired of waiting for it
 Smartness: more on-the-fly intellisense

» Universal: knows about the whole project

* Helpful: can work with the incorrect code

* Swiss army knife: other tools on board

IDE.

Balance

 Correctness
« Performance

IDE.
Our reality

 IDE has to deal with any code
» Legacy code, decades of language baggage
 Modern standards, drafts, TS, etc.
* Legacy code and modern code co-exist

e Incorrect code

* If to compare with another “language tools” — compilers:

* different goals
* knowledge about the whole project, not just one translation unit

e error-recovery

Why this talk?

» Share the view — knowledge is power
» Share excitement & pain

» Share lessons learned

* Tips to avoid foot-shooting

Let’s play

How about some quick C++ game?

Let’s play

Guess about k and 17?

template<int>
struct x {

x(int i) { }
Fs

void test(int y) {

const int a = 100:

Xx<a>(0):;
y<a>(0);

auto k
auto 1

Let’s play

template<int>
Documentation for k 2 struct x {
P cpp_glasses o x(int 1) { }
x<100> k = x<a>(0) &

void test(int y) {

Documentation for | 2 const int a = 100:

P cpp_glasses o
bool L=y < a > (0) auto k = x<a>(0);
auto 1 = y<a>(0);

Let’s play

void test() {
struct x {

b
Guess about y and z?
struct y {
y(x) {};
x(z);
b

Let’s play

void test() {

Documentation for y(x) P o
cpp_glasses o struct x {
Declared In: main.cpp ¥ ’
—— struct y {
y(x) {};
Documentation for z P 2 \. x(z);
’

cpp_glasses o \

Declared In: main.cpp

X Vi:2Z

Let’s play

void test() {
float a:

decltype(0) (b);

' 2
What the difference” decltype(a) (0);

Let’s play

void test() {
float a:

Documentation for b A

P cpp_glasses it

int b decltype(0) (b);
decltype(a) (0);

Let’s play

void test() {
struct x {
x(int) { };

Guess about a and b?

auto a =
auto b =

| |
< X

S S’

| |

Ul Ul

Let’s play

Documentation for a & volid test() {
P cpp_glasses o struct x {
xa= (x) -5 x(int) { };
b
int y = 100;
Documentation for b 2 auto a = (x)-=-5;
P cpp_glasses o auto b = (y)-5;

int b = (y) -5 }

Why C++ is different?
Parser & Resolve

int(x), y, *const z;
Summarizing all the samples:

To parse C++ we need fo
distinguish types from non-types int(x), y, new int;

Why C++ Is different?
Parser & Resolve

1. With C++ we need to resolve while parsing to
understand if something is a type or not.

Why C++ Is different?
Parser & Resolve

1. With C++ we need to resolve while parsing to
understand if something is a type or not.

We need it for:
* highlighting
» formatting

As well as:
» completion
* showing instant navigation
* code analysis
* efc.

What affects the
resolve?

Resolve depends on: ?

What affects the
resolve?

Resolve depends on:
e order of the definitions

void testl1() {
fun():
+

int fun():

void test2() {
fun():

}

What affects the
resolve?

int fun(int);

volid testl() {

Resolve depends on: fun(); //Too few arguments

 order of the definitions
» default arguments

}
int fun(int = 0);

vold test2() {
fun();

}

What affects the
resolve?

int fun(int (&arr) [3]);

struct c {

Resolve depends on: static int arr(];

e order of the definitions
 default arguments
e overload resolution

b

void testl() {
fun(c::arr);
//no matching function for call to 'fun'

+
int c::arr[] = {0, 1, 2};

void test2() {
fun(c:z:arr):

}

C++ Code
Highlighting

Could we highlight with the lexer?

C++ Code

Highlighting
//—-std=c++03, clang 4.0
template<typename T> struct S{};
Could we highlight with the lexer? void foo() {

S<S<int>> t; //error: a space is
required between consecutive right angle
brackets (use '> >')

}

C++ Code

Highlighting
//—-std=c++03, clang 4.0
template<typename T> struct S{};
Could we highlight with the lexer? void foo() {

S<S<int>> t; //error: a space is
required between consecutive right angle
brackets (use '> >')

}

For highlighting matching < >, the tool
needs parser/resolve

C++ Code
Highlighting

#define X(T) #Hit

Could we highlight with the lexer? void foo() {
int X(public);

}

C++ Code

Highlighting
#tdefine X(T) T ##
Could we highlight with the lexer? void foo() {
int X(public);
Public keyword can’t be highlighted ¥

properly

Overload resolution and

templates
— struct S14{};

struct S2{}:

int foo(S1):

_ | L double foo(S2);
Code inspections & highlighting

template<typename T> struct IT {
typedef 1int X;

b

template<> struct IT<int> <
static 1int X;

b

int main() {
IT<decltype(foo(S2()))>::X a;

}

Overload resolution and
templates

template <class T>
concept bool Magic =
requires (T a, T b) {
{a + b} — Boolean:
{a x*x b} —> Boolean:

Templates with proper interface —
Concepts!

b

Concepts

template <class T>
concept bool Magic =

» T.10: Specify concepts for all template requ1resb (Ta, T lb) {.
arguments {a + b} —> Boolean;

» T.12: Prefer concept names over auto 1a *x b} —> Boolean;
for local variables ¥
* and more

C++ Core Guidelines:

Concepts

template <class T>

IDE e>.<perier.10e: | concept bool has_foo =

. éddltlonf]l mI:ormatlon requires (T t) {

» Can cac .et_e co.ncept o 1t.foo()} noexcept —> int;
« Can provide intellisense inside the 1

template

Why C++ Is different?

1. With C++ we need to resolve while parsing to
understand if something is a type or not.
2. Functions

Function bodies

* Forms most of the user code
* Nothing escapes to the outer code
* Independant

Function bodies

« Forms most of the user code auto foo() A

* Nothing escapes to the outer code struct X {};
» Independant ? return X();

Function bodies

template<class T, class U>
auto multiply(T const& lhs, U const& rhs) —> decltype(lhs x rhs) {
return Lhs x rhs;

}

Function bodies

Simplify your template code with ... if constexpr!

Function bodies

// SFINAE
template <typename T, std::enable_if_ t<std::is pointer<T>{}>x = nullptr>
auto get_value(T t) {

return xt;

}

template <typename T, std::enable_if_ t<!std::is_pointer<T>{}>* = nullptr>
auto get_value(T t) {
return t;

}

Function bodies

template <typename T>

auto get_value(T t) {
1f constexpr (std::is_pointer_v<T>) return xt;
else return t;

Why C++ Is different?

1. With C++ we need to resolve while parsing to

understand if something is a type or not.
2. Functions

3. Includes

Why C++ Is different?

Includes
template<int>
struct x {
x(int i) { }
Includes v,
* header files provide information to parser !
#1inc lude

void test(int y) 1

const int a = 100;

Xx<a>(0);
y<a>(0);

auto k
auto L

Why C++ Is different?
Includes

Includes

* header files provide information to parser
 they are affected by the context

#ifdef MAGIC
template<int>
struct x {

x(int i) { }
b
#else
int x = 100;
#endif

#1include
void test(int y) 1

const int a = 100;

auto k
auto L

Xx<a>(0);
y<a>(0) ;

Why C++ is different?
Includes

Includes
* header files provide information to parser
 they are affected by the context

* no information about what is included 1Mpo 't java., L. Al rayLlst ’

Why C++ Is different?
Includes

Includes
* header files provide information to parser
 they are affected by the context
* no information about what is included
 takes most of the time
* same headers are included in multiple translation
units

Why C++ Is different?
Includes

Good ways to deal with includes:

Why C++ Is different?
Includes

Good ways to deal with includes:
* Precompiled headers

Why C++ is different?
Includes

Good ways to deal with includes:
* Precompiled headers
» Global includes, less affected by the context

Why C++ is different?
Includes

return x + 42;

auto fun(int x) {
Good ways to deal with includes: #include

* Precompiled headers !
» Global includes, less affected by the context
 |ll-formed includes are evil

std::vector<int>({1, 2, 3}):

auto fun() {
auto x =
#1inc lude

Why C++ is different?
Includes

le My;
Good ways to deal with includes: module My

* Precompiled headers

» Global includes, less affected by the context ?xport | _
- lll-formed includes are evil int my_shiny_fun(int x) 1

* Modules are great!

}

int main() {
my_shiny_ fun(10);
s

How can the language
help?

* Modules

* If constexpr

» Concepts

» C++ Core Guidelines

C++ Core Guidelines

* Improve the readabillity

* Force precisely typed code
» Reduce the side effects

* Pushing concepts

C++ Core Guidelines

struct St { int i; };

void init member() {
St s;

; ® Uninitialized record type: 's' »
- void foo(const int& i)
* Improve the readabillity {
» Force precisely typed code const_cast<inté>(i) = 42;
. }
 Reduce the side effects Do not use const_cast
* Pushing concepts void fill_pointer(int* arr, const int N) {

for(int i = 0; i < N; ++i) {
arr[i] = 0;
1

Do not use pointer arithmetic

4 void print(const std::vector<int>& vec) {

for(auto iter = vec.begin(); iter != vec.end(); ++iter) {
ctode s rant - wiﬁter;

Use range-based for loop instead
: r

C++ ecosystem

 Build systems

» Compilers

» Unit test frameworks

» Code styles

* Dependency managers

Build systems

|
® cmake ® msbuild makefiles @ autotools ® gmake
Search term Search term Search term Search term Search term
¢ CI\/Iake Worldwide + Past Syears ¥ All categories ¥ Web Search *
 Makefiles & autotools
Y VS Interest over time @ -~

* gmake

* Ninja

» Gradle, Scons, Bazel, etc.
* Custom

I-l | ﬁmwwmmmmmw

Compilers

« GCC

» Clang

* Microsoft Visual C++
* Intel

e others

Unit test frameworks

» Google test

» Boost

» Catch

* CppUnit

* CppUTest

* And many-many others

Code styles

» Google

« Qt
 LLVM/LLDB
« K&R

* Allman

* Whitesmiths
e efc.

Dependency manager

» Conan
* Binary compatibility

Thank you
for your attention

Questions?

