
A look at C++
through the glasses
of a language tool
—

Anastasia Kazakova

Background
—

• C/C++, embedded Linux on VoIP gateways and routers, VIM-addicted
• C++, congestion & users policies in 3G/4G/LTE networks, NetBeans user
• Product Marketing Manager for CLion

All connected
—

• All three have a common goal
• All three need each other
• All three rely on each other

IDE.
What do you expect?
—

• Correctness: 100% correct in terms of the language
• Performance: provides completion before I’m tired of waiting for it
• Smartness: more on-the-fly intellisense
• Universal: knows about the whole project
• Helpful: can work with the incorrect code
• Swiss army knife: other tools on board

IDE.
Balance
—

• Correctness
• Performance

IDE.
Our reality
—

• IDE has to deal with any code
• Legacy code, decades of language baggage
• Modern standards, drafts, TS, etc.
• Legacy code and modern code co-exist
• Incorrect code

• If to compare with another “language tools” – compilers:
• different goals
• knowledge about the whole project, not just one translation unit
• error-recovery

Why this talk?
—

• Share the view – knowledge is power
• Share excitement & pain
• Share lessons learned
• Tips to avoid foot-shooting

Let’s play
—

How about some quick C++ game?

Let’s play
—

Guess about k and l?

template<int>
struct x {
 x(int i) { }
};

void test(int y) {

 const int a = 100;

 auto k = x<a>(0);
 auto l = y<a>(0);
}

Let’s play
—

template<int>
struct x {
 x(int i) { }
};

void test(int y) {

 const int a = 100;

 auto k = x<a>(0);
 auto l = y<a>(0);
}

Let’s play
—

Guess about y and z?

void test() {
 struct x {
 };

 struct y {
 y(x) {};
 x(z);
 };
}

Let’s play
—

void test() {
 struct x {
 };

 struct y {
 y(x) {};
 x(z);
 };
}

Let’s play
—

What the difference?

void test() {
 float a;

 decltype(0)(b);
 decltype(a)(0);
}

Let’s play
—

void test() {
 float a;

 decltype(0)(b);
 decltype(a)(0);
}

Let’s play
—

Guess about a and b?

void test() {
 struct x {
 x(int) { };
 };

 int y = 100;

 auto a = (x)-5;
 auto b = (y)-5;
}

Let’s play
—

void test() {
 struct x {
 x(int) { };
 };

 int y = 100;

 auto a = (x)-5;
 auto b = (y)-5;
}

Why C++ is different?
Parser & Resolve
—

Summarizing all the samples:

To parse C++ we need to
distinguish types from non-types

//List of declarations
int(x), y, *const z;
//int x; int y; int *const z;

//List of expressions
int(x), y, new int;
//((int(x)), (y), (new int));

Why C++ is different?
Parser & Resolve
—

1. With C++ we need to resolve while parsing to
understand if something is a type or not.

Why C++ is different?
Parser & Resolve
—

1. With C++ we need to resolve while parsing to
understand if something is a type or not.

We need it for:
• highlighting
• formatting

As well as:
• completion
• showing instant navigation
• code analysis
• etc.

What affects the
resolve?
—

Resolve depends on: ?

What affects the
resolve?
—

Resolve depends on:
• order of the definitions

void test1() {
 fun();
}

int fun();

void test2() {
 fun();
}

Resolve depends on:
• order of the definitions
• default arguments

int fun(int);

void test1() {
 fun(); //Too few arguments
}

int fun(int = 0);

void test2() {
 fun();
}

What affects the
resolve?
—

Resolve depends on:
• order of the definitions
• default arguments
• overload resolution

int fun(int (&arr)[3]);

struct c {
 static int arr[];
};

void test1() {
 fun(c::arr);
//no matching function for call to 'fun'
}

int c::arr[] = {0, 1, 2};

void test2() {
 fun(c::arr);
}

What affects the
resolve?
—

Could we highlight with the lexer?

C++ Code
Highlighting
—

Could we highlight with the lexer?

//-std=c++03, clang 4.0
template<typename T> struct S{};

void foo() {
 S<S<int>> t; //error: a space is
required between consecutive right angle
brackets (use '> >')
}

C++ Code
Highlighting
—

Could we highlight with the lexer?

For highlighting matching < >, the tool
needs parser/resolve

//-std=c++03, clang 4.0
template<typename T> struct S{};

void foo() {
 S<S<int>> t; //error: a space is
required between consecutive right angle
brackets (use '> >')
}

C++ Code
Highlighting
—

Could we highlight with the lexer?

C++ Code
Highlighting
—

#define X(T) T ## T

void foo() {
 int X(public);
}

Could we highlight with the lexer?

Public keyword can’t be highlighted
properly

C++ Code
Highlighting
—

#define X(T) T ## T

void foo() {
 int X(public);
}

Code inspections & highlighting

struct S1{};
struct S2{};

int foo(S1);
double foo(S2);

template<typename T> struct IT {
 typedef int X;
};

template<> struct IT<int> {
 static int X;
};

int main() {
 IT<decltype(foo(S2()))>::X a;
}

Overload resolution and
templates
—

Overload resolution and
templates
—

Templates with proper interface –
Concepts!

template <class T>
concept bool Magic =
 requires (T a, T b) {

{a + b} -> Boolean;
{a * b} -> Boolean;

};

Concepts
—

C++ Core Guidelines:
• T.10: Specify concepts for all template

arguments
• T.12: Prefer concept names over auto

for local variables
• and more

template <class T>
concept bool Magic =
 requires (T a, T b) {

{a + b} -> Boolean;
{a * b} -> Boolean;

};

Concepts
—

IDE experience:
• Additional information
• Can cache the concept
• Can provide intellisense inside the

template

template <class T>
concept bool has_foo =
 requires (T t) {
 {t.foo()} noexcept -> int;
 };

Why C++ is different?
—

1. With C++ we need to resolve while parsing to
understand if something is a type or not.

2. Functions

• Forms most of the user code
• Nothing escapes to the outer code
• Independant

Function bodies
—

• Forms most of the user code
• Nothing escapes to the outer code ?
• Independant ?

auto foo() {
 struct X {};
 return X();
}

Function bodies
—

Function bodies
—

template<class T, class U>
auto multiply(T const& lhs, U const& rhs) -> decltype(lhs * rhs) {
 return lhs * rhs;
}

Function bodies
—

Simplify your template code with … if constexpr!

Function bodies
—

// SFINAE
template <typename T, std::enable_if_t<std::is_pointer<T>{}>* = nullptr>
auto get_value(T t) {
 return *t;
}

template <typename T, std::enable_if_t<!std::is_pointer<T>{}>* = nullptr>
auto get_value(T t) {
 return t;
}

Function bodies
—

template <typename T>
auto get_value(T t) {
 if constexpr (std::is_pointer_v<T>) return *t;
 else return t;
}

Why C++ is different?
—

1. With C++ we need to resolve while parsing to
understand if something is a type or not.

2. Functions
3. Includes

Why C++ is different?
Includes
—

Includes
• header files provide information to parser

//foo.h
template<int>
struct x {
 x(int i) { }
};

//foo.cpp
#include "foo.h"
void test(int y) {

 const int a = 100;

 auto k = x<a>(0);
 auto l = y<a>(0);
}

Why C++ is different?
Includes
—

Includes
• header files provide information to parser
• they are affected by the context

//foo.h
#ifdef MAGIC
template<int>
struct x {
 x(int i) { }
};
#else
int x = 100;
#endif

//foo.cpp
#include "foo.h"
void test(int y) {

 const int a = 100;

 auto k = x<a>(0);
 auto l = y<a>(0);
}

Why C++ is different?
Includes
—

Includes
• header files provide information to parser
• they are affected by the context
• no information about what is included

Why C++ is different?
Includes
—

Includes
• header files provide information to parser
• they are affected by the context
• no information about what is included
• takes most of the time
• same headers are included in multiple translation

units

#include <boost/…>

Why C++ is different?
Includes
—

Good ways to deal with includes:

Why C++ is different?
Includes
—

Good ways to deal with includes:
• Precompiled headers

Why C++ is different?
Includes
—

Good ways to deal with includes:
• Precompiled headers
• Global includes, less affected by the context

Why C++ is different?
Includes
—

Good ways to deal with includes:
• Precompiled headers
• Global includes, less affected by the context
• Ill-formed includes are evil

//foo.h
return x + 42;

//foo.cpp
auto fun(int x) {
#include "foo.h"
}

//foo.h
std::vector<int>({1, 2, 3});

//foo.cpp
auto fun() {
 auto x =

 #include "foo.h"
}

Why C++ is different?
Includes
—

Good ways to deal with includes:
• Precompiled headers
• Global includes, less affected by the context
• Ill-formed includes are evil
• Modules are great!

//my_module.ixx
module My;

export
int my_shiny_fun(int x) {
…
}

//usage.cpp
int main() {
 my_shiny_fun(10);
}

How can the language
help?
—

• Modules
• if constexpr
• Concepts
• C++ Core Guidelines

C++ Core Guidelines
—

• Improve the readability
• Force precisely typed code
• Reduce the side effects
• Pushing concepts

C++ Core Guidelines
—

• Improve the readability
• Force precisely typed code
• Reduce the side effects
• Pushing concepts

C++ ecosystem
—

• Build systems
• Compilers
• Unit test frameworks
• Code styles
• Dependency managers

Build systems
—

• CMake
• Makefiles & autotools
• VS
• qmake
• ninja
• Gradle, Scons, Bazel, etc.
• Custom

Compilers
—

• GCC
• Clang
• Microsoft Visual C++
• Intel
• others

Unit test frameworks
—

• Google test
• Boost
• Catch
• CppUnit
• CppUTest
• And many-many others

Code styles
—

• Google
• Qt
• LLVM/LLDB
• K&R
• Allman
• Whitesmiths
• etc.

Dependency manager
—

• Conan
• Binary compatibility

Thank you
for your attention
—

Questions?

