Fenwick Trees a.k.a. Binary Indexed Trees, or BITs

Ahto Truu, Guardtime

The Problem

- Given an array, need to
- ... compute sums of arbitrary segments
- ... and update arbitrary elements
- ... and do both efficiently

Obvious Solutions

- Keep the original array
- Updates $\mathrm{O}(1)$, sums $\mathrm{O}(\mathrm{N})$

Obvious Solutions

- Keep the original array
- Updates O(1), sums O(N)
- Use prefix sums
- Sums O(1), updates O(N)

Build an Index

- A binary tree on top of the array
- Leaves contain original array elements
- Each parent node is sum of the children

Build an Index

- A binary tree on top of the array
- Leaves contain original array elements
- Each parent node is sum of the children
- Updates $\mathrm{O}(\log (\mathrm{N}))$

Build an Index

- A binary tree on top of the array
- Leaves contain original array elements
- Each parent node is sum of the children
- Updates $\mathrm{O}(\log (\mathrm{N}))$
- Sums O(log(N))

Skimping on Memory

- Each parent is sum of the children

guardtime 큰

Skimping on Memory

- Each parent is sum of the children
- ... so we only need to keep one child

guardtime 큰

Skimping on Memory

- Each parent is sum of the children
- ... so we only need to keep one child

guardtime 큰

Skimping on Memory

- Each parent is sum of the children
- ... so we only need to keep one child
- ... so we can keep the tree in the same array

$\mathrm{N}+\mathrm{N} / 2+\mathrm{N} / 4+\ldots \approx 2 \mathrm{~N}$ operations to turn the array into tree

Usage: Reads

- Each parent is sum of the children
- ... so we can recover the other child
- Amortized constant time

$\mathrm{M}+\mathrm{M} / 2+\mathrm{M} / 4+\ldots \approx 2 \mathrm{M}$ operations for M queries on average

Usage: Updates

- Each parent is sum of the children
- ... so we need to update nodes on the path to root
- This is $\mathrm{O}(\log (\mathrm{N}))$

```
void fenwick_inc(int a[], int n, int i, int d) {
    a[i] += d;
    for (int m = 1; i + m < n; m <<= 1)
        if ((i & m) == 0) {
            i += m;
            a[i] += d;
        }
}

\section*{Usage: Updates}
- Each parent is sum of the children
- ... so we need to update nodes on the path to root
- This is \(\mathrm{O}(\log (\mathrm{N}))\)


\section*{Usage: Sums}
- Each array element is root of a subtree
- ... so we need to just collect the correct ones
- This is \(\mathrm{O}(\log (\mathrm{N}))\)
```

int fenwick_sum(int a[], int n, int k) {
int s = 0;
for (int m = 1; m <= k; m <<= 1)
if ((k\&m) == 0)
k += m;
else
s += a[k - m];
return s;

Fenwick Trees

- Invented by Peter M. Fenwick in 1993
- Software—Practice and Experience, March 1994
- My code uses slightly different indexing
- More convenient when array length not a power of 2
- http://github.com/ahtotruu/fenwick/

Questions?

Ahto Truu, Guardtime ahto.truu@guardtime.com

