
Fenwick Trees

a.k.a. Binary Indexed Trees, or BITs

Ahto Truu, Guardtime



The Problem

• Given an array, need to

– … compute sums of arbitrary segments

– … and update arbitrary elements

– … and do both efficiently



Obvious Solutions

• Keep the original array

– Updates O(1), sums O(N)

0 1 2 3 4 5 6 7 8 9 10 11



Obvious Solutions

• Keep the original array

– Updates O(1), sums O(N)

• Use prefix sums

– Sums O(1), updates O(N)

0 1 2 3 4 5 6 7 8 9 10 11



Build an Index

• A binary tree on top of the array

– Leaves contain original array elements

– Each parent node is sum of the children

0 1 2 3 4 5 6 7 8 9 10 11



Build an Index

• A binary tree on top of the array

– Leaves contain original array elements

– Each parent node is sum of the children

• Updates O(log(N))

0 1 2 3 4 5 6 7 8 9 10 11



Build an Index

• A binary tree on top of the array

– Leaves contain original array elements

– Each parent node is sum of the children

• Updates O(log(N))

• Sums O(log(N))

0 1 2 3 4 5 6 7 8 9 10 11



Skimping on Memory

• Each parent is sum of the children

0 1 2 3 4 5 6 7 8 9 10 11



Skimping on Memory

• Each parent is sum of the children

– … so we only need to keep one child

0 1 2 3 4 5 6 7 8 9 10 11



Skimping on Memory

• Each parent is sum of the children

– … so we only need to keep one child

0 1 2 3 4 5 6 7 8 9 10 11



Skimping on Memory

• Each parent is sum of the children

– … so we only need to keep one child

– … so we can keep the tree in the same array

void fenwick_init(int a[], int n) {
for (int i = 0; i < n; ++i)
for (int m = 1; (i & m) == m; m <<= 1)
a[i] += a[i - m];

}

N+N/2+N/4+… ≈ 2N operations to turn the array into tree

0 1 2 3 4 5 6 7 8 9 10 11



Usage: Reads

• Each parent is sum of the children

– … so we can recover the other child

• Amortized constant time

int fenwick_get(int a[], int n, int i) {
int v = a[i];
for (int m = 1; (i & m) == m; m <<= 1)
v -= a[i - m];

return v;
}

M+M/2+M/4+… ≈ 2M operations for M queries on average

0 1 2 3 4 5 6 7 8 9 10 11



Usage: Updates

• Each parent is sum of the children

– … so we need to update nodes on the path to root

• This is O(log(N))

void fenwick_inc(int a[], int n, int i, int d) {
a[i] += d;
for (int m = 1; i + m < n; m <<= 1)
if ((i & m) == 0) {
i += m;
a[i] += d;

}
}

0 1 2 3 4 5 6 7 8 9 10 11



Usage: Updates

• Each parent is sum of the children

– … so we need to update nodes on the path to root

• This is O(log(N))

void fenwick_set(int a[], int n, int i, int v) {
int d = v - fenwick_get(a, n, i);
fenwick_inc(a, n, i, d);

}

0 1 2 3 4 5 6 7 8 9 10 11



Usage: Sums

• Each array element is root of a subtree

– … so we need to just collect the correct ones

• This is O(log(N))

int fenwick_sum(int a[], int n, int k) {
int s = 0;
for (int m = 1; m <= k; m <<= 1)
if ((k & m) == 0)
k += m;

else
s += a[k - m];

return s;
}

0 1 2 3 4 5 6 7 8 9 10 11



Fenwick Trees

• Invented by Peter M. Fenwick in 1993

– Software—Practice and Experience, March 1994

• My code uses slightly different indexing

– More convenient when array length not a power of 2

• http://github.com/ahtotruu/fenwick/

http://github.com/ahtotruu/fenwick/


Questions?

Ahto Truu, Guardtime

ahto.truu@guardtime.com


