

Concepts Lite in Practice

Roger Orr

OR/2 Limited

The Concepts TS is published and implemented in gcc

What does using concepts look like in practice: do we
get what we hoped for?

– ACCU 2016 –

How, and why, did we get here?

● C++ is a rich language and supports
polymorphic behaviour at both run time and
compile time

 Run-time: class hierarchy and O-O practices

 Compile time: templates

● One major difference between these two is
that the first one is tightly constrained by the
inheritance hierarchy of the objects involved
but the second one can be applied to
unrelated types.

Run-time polymorphism

● Run-time polymorphism is a key component in
object oriented design. The function signature to
use is decided at compile time based on the static
type of the target object; the implementation used
is based on the run-time type of the object

● This has been a fundamental part of C++ for a
very long time (about as long as it has been called
C++) and has been essentially unchanged for over
30 years

● Inheritance means “if it compiles it runs”

● Nothing to see here … move along please

Compile time polymorphism

● This is also known as “generic
programming” and it too has been in the
language for a very long time

● A template is written which is used to
generate code at compile time

● Simple uses include type-safe containers;
when coupled with non-type template
arguments, overloading, and tag-
dispatching the result is very expressive

Compile time polymorphism

● This is also known as “*%$!!**
programming” and it too has been in the
language for a very long time

● A template is written which is used to
generate code at compile time

● Simple uses include type-safe containers;
when coupled with non-type template
arguments, overloading, and tag-
dispatching the result is very expressive

● … but can also be very hard to debug

Template troubles

● Templated code is fragile – whether the
code is valid depends on the template
arguments provided by the user when the
template is instantiated

● The writer of a template has (usually) tested
at least one instantiation of their code*, but
they may have, possibly unconscious,
assumptions about the template arguments

● *If there is no valid instantiation the program is ill-formed,
but a diagnostic is not required - it is a “hard problem”

Template troubles

● Library writers rely on documenting their
assumptions about template parameters

 It is hard to get this right

 Compilers don't read documentation

 Diagnosis of failure is painful (for the user)

● Enter concepts!
● “Concepts introduce a type system for

templates that makes templates easier to
use and easier to write.” - N2081, Sep 2006

How, and why, did we get here?

● One of the earliest papers on Concepts was
Bjarne's paper “Concept Checking - A more
abstract complement to type checking” from
Oct 2003

● The fundamental problem that makes it hard
in C++ is that templates are not constrained,
so by default any possible type may be
used to instantiate a template

● Type checking occurs when some part of
the instantiation fails, not the signature

How, and why, did we get here?

template <typename T>
T sum(T a, T b);

The template declaration tells you nothing about what the
characteristics are for appropriate types to use with this
template

There are two different levels of characteristics of course:
syntax and semantics

Syntax answers the question “will it compile?”

Semantics answers the question “what does it do?”

How, and why, did we get here?

template <typename T>
T sum(T a, T b);

class X { /*...*/ };

void test(X x1, X x2)
{
 auto val = sum(x1, x2); // Valid?
 // ...
}

We can't answer the question about validity without knowing
the implementation of the sum template – this breaks
encapsulation and also makes it hard to discover the
constraints on the template as the implementation contains
more detail than we need

For a standard library, with different implementations,
answering the question is even harder

How, and why, did we get here?

● Currently one way forward is to document
the restrictions, for example the C++
standard library documents a lot of syntactic,
and semantic, requirements, eg:

Table 18 — LessThanComparable requirements [lessthancomparable]

Expression

a < b

Return Type

convertible to bool

Requirement

< is a strict weak ordering relation*

* that is:
 !(x < x)
 (a < b) && (b < c) => (a < c)

How, and why, did we get here?

● As documentation cannot be read by the
compiler … and may not be read by the
programmer, the result is typically
horrendous compiler errors – e.g.
class X{};
std::set<X> x;
x.insert(X{});

● I get 50 – 100 lines of error text from this!
● I'm missing the '<' operator for X* so it does

not satisfy LessThanComparable
(* with current versions of C++: this may change)

Let's build up from a trivial example

A type-specific function declaration:

bool check(int lhs, int rhs);

The function takes two int values and the validity
of the calling code is decided without any need to
see the implementation of the function.

int main()
{
 int i = 1;
 int j = 2;
 return check(i, j); // Valid!
}

A possible function definition could be:

bool check(int lhs, int rhs) { return lhs == rhs; }

What about type conversion?

int main()
{
 double e = 2.71828;
 double pi = 3.14159;
 return check(e, pi);
}

The call converts the values to int and operates
on those. (You may get a compiler warning.)

Easily fixed ...

Generalising the function

Write two function declarations:

 bool check(int lhs, int rhs);
 bool check(double lhs, double rhs);

Two function definitions:

 bool check(int lhs, int rhs) { return lhs == rhs; }
 bool check(double lhs, double rhs) { return lhs == rhs; }

We have generalised our function to a predefined
set of types but duplicated the implementation.

{
 bool b1 = check(1, 2); // works with int
 bool b2 = check(e, pi); // works with double
}

General Templatising the function

One function declaration:

 template <typename T>
 bool check(T lhs, T rhs);

One function definition:

 template <typename T>
 bool check(T lhs, T rhs) { return lhs == rhs; }

We have produced a template for a set of
functions for an unbounded number of types.

{
 bool b1 = check(1, 2); // works with int
 bool b2 = check(e, pi); // works with double
}

Aside: value, const ref, or ref ref?

This:

 template <typename T>
 bool check(T lhs, T rhs);

Or this:

 template <typename T>
 bool check(T const & lhs, T const & rhs);

Or this:

 template <typename T>
 bool check(T && lhs, T && rhs);

The best answer may depend on the type, e.g. is
T a built-in type or a user-defined one?
We'll mention this briefly again, later on.

Further extending the template

We can further generalise to take two different types:

 template <typename T, typename U>
 bool check(T lhs, U rhs);

Now, without any further changes to the implementation,
the function can deal with any two types for which equality
is defined

As we mentioned earlier though, compilation errors are
reported during the instantiation of the function template

Basic_Template_Failure.cpp: In instantiation of
 'bool check(T&&, U&&) [with T = int&; U = int*]':
... comparison between pointer and integer [-fpermissive]
 bool check(T && lhs, U && rhs) { return lhs == rhs; }
                                         ~~~~^~~~~~



  

Further extending the template

We can further generalise to take two different types:

    template <typename T, typename U>
    bool check(T lhs, U rhs);

Now, without any further changes to the implementation, 
the function can deal with any two types for which equality 
is defined

As we mentioned earlier though, compilation errors are 
reported during the instantiation of the function template

We could do better ...



  

Constraining the template

● When a function template is called the 
compiler goes through two main stages

1. Overload resolution – find the best possible  
declaration match for the arguments

2. Then instantiate the best candidate

● In stage 1, if substituting in a template 
argument would result in ill-formed code, 
the compilation of the program does not fail. 
Instead that specialization is removed 
from the overload set



  

“SFINAE”

This is the basis for enable_if and other similar techniques

The technique of using substitution failure to remove unwanted
Overloads from the overload set is known as SFINAE.

This stands for “Substitution Failure Is Not An Error”

C++ programmers know how to pick a snappy acronym...



  

Near-trivial SFINAE example

template <typename T>
void f(T t, typename T::value_type u);

template <typename T>
void f(T t, T u);

int main()
{
   f(1, 2); // first f() non-viable when substituting int

   std::vector<int> v;
   f(v, 2); // second f() not a match as types differ
}



  

Constraining the template
#include "magic.h" // (we'll come to this next)

template <typename T, typename U,
  typename = std::enable_if_t<
    is_equality_comparable<T, U>::value>>
bool check(T && lhs, U && rhs);

This has the desired effect of removing the function from the 
overload set if the two types are not equality comparable:

Basic_Enable_Failure.cpp:40:21: error: no matching function for call to 
'check(int&, int*)'
   return check(i, &j);
                     ^
Basic_Enable_Failure.cpp:34:6: note: candidate: template<class T, class U, 
class> bool check(T&&, U&&)
 bool check(T && lhs, U && rhs) { return lhs == rhs; }
      ^~~~~
Basic_Enable_Failure.cpp:34:6: note:   template argument 
deduction/substitution failed:



  

"magic.h"
#include <type_traits>

template<typename T, typename U, typename = void>
struct is_equality_comparable : std::false_type
{ };

template<typename T, typename U>
struct is_equality_comparable<T,U,
    typename std::enable_if<
        true,
        decltype(std::declval<T&>() == std::declval<U&>(), (void)0)
        >::type
    > : std::true_type
{
};

Not for the fainthearted: hard to write, hard to read, and slow 
to compile



  

"magic.h"

decltype(std::declval<T&>() == std::declval<U&>())

The expression we want to detect is “lhs == rhs” but we 
have to write a more complicated expression, subject to the 
various rules for SFINAE, which acts as a proxy for the check 
we actually wanted.

For some expressions it can be rather challenging to find an 
equivalent SFINAE check, and sometimes there can be subtle 
differences.

Apart from the complexity, there is a problem with the disjoint 
between the check and the expression being checked



  

Concepts to the rescue

● We have seen some of what can be done to 
constrain the parameters used to instantiate 
templates within the existing grammar rules.

● How do solutions using concepts compare?
● There are two main use cases:

 Writing function templates
 Using them

● While both are important, templates are 
typically used more often than they are 
written.



  

Using 'requires'

● The declaration shows the constraint
● Calling check() with int and char* gives

● The syntax of the requirement matches the 
code used in the definition

● Could we do better?

template <typename T, typename U>
requires requires(T t, U u) { t == u; }
bool check(T && lhs, U && rhs);

Basic_Requires.cpp:19:6: note:   constraints not satisfied
 bool check(T && lhs, U && rhs) { return lhs == rhs; }



  

Using a named concept

● The concept is named and can be shared 
by multiple template declarations

● Naming also allows us to express some of 
the semantic constraints on the type.

template<typename T, typename U>
concept bool Equality_comparable() {
  return requires(T t, U u) {
    { t == u } -> bool;
  };
}



  

Using a named concept

● Use the concept, with appropriate template 
parameters, in the requires clause

● Calling check() with int and char * gives

template <typename T, typename U>
requires Equality_comparable<T, U>()
bool check(T && lhs, U && rhs);

Basic_Concept.cpp:33:29: error: cannot call function 
'bool check(T&&, U&&) [with T = int&; U = char*&]'
   return check(argc, argv[0]);

Basic_Concept.cpp:29:6: note:   concept
  'Equality_comparable<int&, char*&>()' was not satisfied



  

Using a named variable concept

● Similar syntax to function template form
● One restriction is that you cannot overload

template<typename T, typename U>
concept bool Equality_comparable = 
  requires(T t, U u) {
    { t == u } -> bool;
  };

template <typename T, typename U>
requires Equality_comparable<T, U>
bool check(T && lhs, U && rhs);

Basic_Variable_Concept.cpp:29:6: note:   concept
  'Equality_comparable<int&, char*&>' was not satisfied



  

Named concepts
● The Equality_comparable concept is 

asymmetric as it only checks t == u.
● This matches our only use case but is not 

suitable for use as a general concept.
● The ranges TS defines something like this:

template<typename T, typename U>
concept bool EqualityComparable() {
  return requires(T t, U u) {
    { t == u } -> bool;
    { u == t } -> bool;
    { t != u } -> bool;
    { u != t } -> bool;
  };
}



  

Named concepts
● If we use this we have the reverse problem: 

you can argue our template is now over-
constrained
struct Test{
  bool operator==(Test);
};

bool foo(Test v, Test v2)
{
  return check(v, v2);
}

Basic_Concept_Failure.cpp: In function 'int main()'
Basic_Concept_Failure.cpp:39:20: error: 
cannot call function 'bool check(T&&, U&&)'
   return check(v, v2);
... concept 'Equality_comparable<Test&, Test&>()'



  

Named concepts
● In order to call our check function we have 

to declare, but not necessarily define, an 
extra function.
struct Test{
  bool operator==(Test);
  bool operator!=(Test);
};

– or --

bool operator!=(Test, Test);

bool foo(Test v, Test v2)
{
  return check(v, v2); // Ok
}



  

Named concepts
● If the arguments to operator== differ in type 

we have a little more work to do.

struct Test{
  bool operator==(int);
};

bool foo(Test v)
{
  return check(v, 0);
}

Basic_Concept_Failure2.cpp: In function 'int main()'
●Basic_Concept_Failure2.cpp:39:20: error: 
●cannot call function 'bool check(T&&, U&&)'
●   return check(v, 0);
●... concept 'Equality_comparable<Test&, int>()'



  

Named concepts
● In order to call our check function we now 

have to declare three extra functions.

struct Test{
  bool operator==(int);
  bool operator!=(int);
};

// These two cannot be defined in-class
bool operator==(int, Test);
bool operator!=(int, Test);

bool foo(Test v)
{
  return check(v, 0); // Ok
}



  

Named concepts
● In order to call our check function we now 

have to declare three extra functions.
● This is arguably a good idea as it 

encourages/enforces more consistent 
operator declarations for types.

● It can increase the work needed to adapt a 
class to comply with a concept.

● The 'requires' use is less affected by this 
issue as each function template has its own 
clause – but it raises the complexity of each 
function declaration, and breaks DRY.



  

Concepts – first reflection
● Simpler to write than the alternatives
● Error messages seem to be clearer
● Danger of under or over constraining
● The syntax is slightly awkward

template <typename T> requires requires(T t) {…}

● “requires requires” - can we be serious? 

concept bool x = requires(...) {}

● The type must be specified and must be bool

● Function and variable form seem overkill



  

Constraints and Interfaces
● One main difference between C++ 

templates and C#/Java generics is that the 
latter operate in terms of interfaces.

● This more closely ties the instantiating 
classes together and also prevents compile 
time optimisations as the net result is a 
type-safe call to a single shared 
implementation*

● Constraints define an interface expressed in 
terms of syntax, rather than inheritance.
(* ignoring special cases for primitive types)



  

Constraints and Interfaces
● The C#/Java generics model is “opt-in”: you 

need to mark the class to indicate that it 
supports the interface; simply having 
methods with matching signatures is not 
enough.

● If I add a new method to an interface the 
compiler forces me to implement the new 
method.

● If I add a new requirement to a constraint 
then classes not satisfying this silently fail to 
satisfy the constraint – the program fails 
only if this removes all viable overloads.



  

Simplifying complex overloads
● While enable_if and similar techniques do 

provide ways to constrain function 
templates it can get quite complicated.

● One recurring problem is the ambiguity of 
template argument types solely constrained 
by enable_if 

● Perhaps an example will help explain this 
problem (or then again, we might be past 
that stage)



  

Simplifying complex overloads

struct V {
    enum { int_t, float_t } m_type;

    // Constructor from 'Int' values
    template <typename Int,
              typename = std::enable_if_t<
                  std::is_integral<Int>::value>>
    V(Int) : m_type(int_t) { /* … */ }
 
    // Constructor from 'Float' values
    template <typename Float,
              typename = std::enable_if_t<
                  std::is_floating_point<Float>::value>>
    V(Float) : m_type(float_t) { /* ... */ }
};

● Consider this attempt to use enable_if



  

Simplifying complex overloads
● Unfortunately this example does not 

compile - we have two overloads of the 
same constructor with the same type (that 
of the first template argument)
ambiguity_with_enable_if.cpp:25:5: error: 
'template<class Float, class> V::V(Float)' cannot 
be overloaded

     V(Float) : m_type(float_t) {}

     ^

ambiguity_with_enable_if.cpp:20:5: error: with 
'template<class Int, class> V::V(Int)'

     V(Int) : m_type(int_t) {}

     ^



  

Simplifying complex overloads
● The compiler never gets to try overload 

resolution as declaring the two overloads is 
a syntax error.

● If we add a second argument we can 
resolve the ambiguity and allow overload 
resolution to take place; SFINAE will then 
remove the case(s) we do not want.

● We can give the extra argument a default 
value to avoid the caller needing to be 
concerned with it.



  

Simplifying complex overloads
    enum { int_t, float_t } m_type;

    template <int> struct dummy { dummy(int) {} };

    // Constructor from 'Int' values
    template <typename Int,
              typename = std::enable_if_t<
                  std::is_integral<Int>::value>
    >
    V(Int, dummy<0> = 0) : m_type(int_t) { /* ...  */}

    // Constructor from 'Float' values
    template <typename Float,
              typename = std::enable_if_t<
                  std::is_floating_point<Float>::value>
    >
    V(Float, dummy<1> = 0) : m_type(float_t) { /* ... */ }



  

Simplifying complex overloads
● The two types dummy<0> and dummy<1> are 

different types. Now the two constructors 
have different argument lists and so both 
functions participate in overload resolution.

● This addition of dummy arguments that take 
no other part in the function call adds 
needless complexity.

● Surely there must be a better way?



  

Concepts simplifying overloads
● With concepts the constrained template 

arguments are of different types and both 
functions participate in overload resolution 
without any need for an extra argument.

● This seems to me a clear demonstration of 
the benefit of concepts as part of the 
language.



  

Concepts simplifying overloads

struct T {
    enum { int_t, float_t } m_type;

    // Constructor from 'Int' values
    template <typename Int>
        requires std::is_integral<Int>::value
    V(Int) : m_type(int_t) { /* ... */ }
 
    // Constructor from 'Float' values
    template <typename Float>
        requires std::is_floating_point<Float>::value
    V(Float) : m_type(float_t) { /* ... */ }
};

● The concept solution is straightforward



  

Concepts simplifying overloads

struct T {
    enum { int_t, float_t } m_type;

    // Constructor from 'Int' values
    template <typename Int>
        requires std::is_integral_v<Int>
    V(Int) : m_type(int_t) { /* ... */ }
 
    // Constructor from 'Float' values
    template <typename Float>
        requires std::is_floating_point_v<Float>
    V(Float) : m_type(float_t) { /* ... */ }
};

● Or, using proposed C++17 syntax



  

Concepts simplifying overloads
● This also makes it much easier to overload 

between pass-by-value and pass-by-
reference using concepts than when using 
enable_if style of programming

● For example, there might be one overload 
using pass-by-value that constrains the 
argument with std::is_primitive and 
another one using pass-by-reference that  
constrains the argument with 
std::is_object



  

Concept introducer syntax
● The concepts TS supports a 'concept 

introducer' syntax and an abbreviated 
syntax which I have not yet demonstrated, 
so we can modify the example to do so.

● A lot of the complexity in the wording of the 
Concepts TS is to ensure that the 
specification of a constrained function using 
this additional syntax is equivalent to the 
requires form



  

Concept introducer syntax

template <typename T>
concept bool Int = std::is_integral_v<T>;

template <typename T>
concept bool Float = std::is_floating_point_v<T>;

struct V {
    enum { int_t, float_t } m_type;

    // Constructor from 'Int' values
    template <Int T>
    V(T) : m_type(int_t) { /* ... */ }
 
    // Constructor from 'Float' values
    template <Float F>
    V(F) : m_type(float_t) { /* ... */ }
};



  

Pure syntactic sugar

template <Int T>
bool check(T value);

is equivalent to:

template <typename T>
requires Int<T>
bool check(T value);

The translation between the introducer syntax and that using 
requires is fairly simple and unlikely to cause confusion.
Note though that, as they are equivalent, both forms can occur
in the same translation unit – and that the 'T' could be different.

It does save characters: in this case 37 vs 58.



  

Abbreviated syntax

template <typename T>
concept bool Int = std::is_integral_v<T>;

template <typename T>
concept bool Float = std::is_floating_point_v<T>;

struct V {
    enum { int_t, float_t } m_type;

    // Constructor from 'Int' values
    V(Int) : m_type(int_t) { /* ... */ }
 
    // Constructor from 'Float' values
    V(Float) : m_type(float_t) { /* ... */ }
};



  

Abbreviated syntax
● This syntax allows the declaration of 

templates without using <>
● Is this a good thing? There seem to be three 

main answers:

 Yes
 No
 Maybe



  

Is it a template or not?

bool check(Int value);

void test(Float f)
{
    if (check(f))
    {
        // do something
    }
}

● Will check get called?

 If Int is a type we look for conversions
● Where can we define check?

 If Int is not a type we need the definition



  

What does it all mean, anyway?

bool check(Int value);

This is equivalent to:

template <Int A>
bool check(A value);

Which is itself equivalent to:

template <typename C> requires Int<C>
bool check(C value);

And all of these are functionally equivalent to:

template <typename D>
requires std::is_integral_v<D>
bool check(D value);



  

The abbreviated form is less xprsiv

bool check(Int value, Int other);

This is equivalent to:

template <Int T>
bool check(T value, T other);

Note that the two variables will always have the same type – 
we cannot* use the short form syntax to replace:

template <Int T, Int U>
bool check(T value, U other);

(* there were some tentative proposals ...)



  

Using auto to declare a template

bool check(auto value);

void test(Float f)
{
    if (check(f))
    {
        // do something
    }
}

● I see this as less problematic than the 
constrained case – it mirrors the existing use of 
auto for declaring a polymorphic lambda

● The concepts TS also allows using auto to 
introduce an unconstrained template parameter 



  

Concept introducer syntaxes
● What do you think?
● I am not persuaded that we need both 

forms of the concept introducer.
● I am fairly happy, myself, with using the 
requires form and it does ensure a clear 
separation between the template arguments 
and their constraints.

● Mixing concept introducers with requires 
clauses is valid, but may be hard to read.



  

The Ranges TS experience
● Thanks to Eric Niebler and Casey Carter we 

have a working paper for the “Ranges” TS.
● This re-specifies iterators and algorithms 

using concepts rather than documentation.
● The end goal is “STL2.0”
● This is probably at present the biggest 

single use of concepts anywhere.
● It does not use the abbreviated syntax; 

earlier versions of the proposal did but the 
author was requested to remove these uses 
during review by the library working group.



  

The Ranges TS: count()
● An example algorithm: count
● The existing C++ specification is:

template<class InputIterator, class T>
  typename iterator_traits<InputIterator>::difference_type
    count(InputIterator first, InputIterator last,
      const T& value);

● “If an algorithm’s template parameter is named InputIterator ... the 
template argument shall satisfy the requirements of an input 
iterator.”



  

The Ranges TS: count()
● An example algorithm: count
● The Ranges TS specification is:

template<InputIterator I, Sentinel<I> S, class T>
  requires IndirectCallableRelation<equal_to<>,
    I, const T*>()
  difference_type_t<I>
    count(I first, S last, const T& value);

● The highlighted terms are all concepts 
readable by both the compiler and the user



  

The Ranges TS: count()
● I lied, for simplicity.
● The full Ranges TS specification is:
template<InputIterator I, Sentinel<I> S, class T, 
class Proj = identity>
  requires IndirectCallableRelation<equal_to<>,
    projected<I, Proj>, const T*>()
  difference_type_t<I>
    count(I first, S last, const T& value,
      Proj proj = Proj{});

● This includes the new 'projection' feature the TS 
adds to permit on-the-fly data transformations.



  

The Ranges TS: function form
● Early drafts of the Ranges TS used the 

variable form for concepts when possible 
and the function form when not – typically 
when overloading was required.

● It was changed after review to use the 
function form only.

 More consistent using a single style
 If you need to add overloading to a 

variable concept, the change to the 
function form requires changes to the 
places where the concept is used



  

The Ranges TS: semantics
● Concepts cover the syntax well but there is 

still a need to describe the semantics
● For example there is a section, describing 

the meaning of “Equality Preservation”, that 
includes this sentence:

● Expressions declared in a requires-expression in 
this document are required to be equality 
preserving, except for those annotated with the 
comment “not required to be equality preserving.”

● All clear, then?



  

Constraint failure with overload
● If we add bool check(...) to our earlier 

example (where we were missing a required 
operator != to satisfy with the constraint.)

bool check(...);

template <typename T, typename U>
requires Equality_comparable<T, U>()
bool check(T && lhs, U && rhs);

{
  Test t, u;
  return check(t, u); // Ok: now finds check(...)
}



  

Constraint failure with overload
● Matching bool check(...) is a poor 

match, but the 'better' match was omitted 
from the overload set.

● We get no warning that we failed to get the 
overload we (probably) expected.

● A direct consequence of the implicit nature 
of concepts.



  

Constraint checking
● The concepts TS does not include concepts 

checking. Is this a good or a bad thing?
● The original concepts design, which was 

eventually dropped from C++0x, enforced 
that the implementation of the function 
only used methods that were explicitly 
allowed by the constraints on the template 
parameters.

● However, the concepts TS does not 
preclude a future change to add this.



  

Constraint checking
● The advantage is that this ensures that the 

template instantiation will compile for any 
types that satisfy the constraints.

● The disadvantage is that this requires that 
every single operation used in the 
constrained template is explicitly listed in 
the constraints.

● Some people see concepts TS as a step 
towards 'full concepts', others have no 
desire to see checking added

● Time will tell...



  

Constraint cost at compile time
● There are several different factors involved 

in the effect of concepts on compile times 

 The cost of concepts when replacing 
existing constraint checking

 The cost of adding concepts to existing 
functions, now using documentation

 The cost of disjunctions:

template <typename T>
    requires std::is_integral<T>::value ||
             std::is_floating_point<T>::value
T calculate(T a, T b);



  

Constraint cost at compile time
● I've not measured any of these costs 

myself.
● Andrew Sutton presented some figures 

showing double-digit percentage speed up 
when replacing enable_if with concepts.

● There is a fix going into gcc to improve the 
compilation times with disjunctions, but the 
current wording still seems to leave the 
potential for a performance problem.

 Users of concepts will need to take care with 
use of disjunctions, e.g placing them later



  

Concepts are still a TS*
● As you may know, at the recent standards 

meeting in Jacksonville the committee voted 
against adopting the Concepts TS into the 
C++17 standard

● This has caused some over-reaction...
● There is a TS and it is included in gcc 6, 

enabled with -fconcepts
● I don't think making it part of C++17 would 

have had much effect on the level of 
compiler support becoming available

● A TS (“Technical Specification”) is optional and roughly 
translates to “if you're going to do this, here's how to”



  

Concepts are still a TS
● What might change before adoption into C++?

 Minor changes to support possible future 
concept checking

 Removal of one or more of the shortened 
syntaxes

 Coalescing of the function and variable 
form of constraints in some way

 Change to disjunction (for performance)
● Making changes to the basic principles of the 

language feature is extremely unlikely at this 
stage



  

Concepts are still a TS
● If you want to read more Tom Honermann 

wrote a good summary at: 
honermann.net/blog/?p=3

● (I received the BSI Concepts TS 2016-02-23)
● Conversely, if you want to see what you can 

do without concepts, there are many 
examples, such as this recent blog post:

● https://akrzemi1.wordpress.com/2016/03/21/concepts-without-concepts/

● Generally, while admiring the cleverness of 
some of the techniques, I prefer using a 
language feature designed for this purpose

https://akrzemi1.wordpress.com/2016/03/21/concepts-without-concepts/


  

Some conclusions
● Concepts does deliver

 Better compiler errors, for users
 Easier to constrain functions, for writers
 Constraints express intent in code

● The syntax still has some rough edges and 
redundancy

● Now is the time to use concepts and to provide 
feedback to the standards body


	Title
	Intro 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

