
Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Efficient and accessible?
Addressing new architectures in C++

Robin Williams

April 20, 2016

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Outline

1 The Challenge
Why more?
Hardware trends
...vs Object-orientation
Measurement and analysis

2 Tools

3 Transcendence

4 Conclusions

All trademarks used are the property of their respective owners

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Part I

The Challenge

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

The Challenge

Why do we need more compute?

Hardware trends

Object oriented code

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Why do we need more compute?

Virtual Realities
Complex system modelling
Games
Prettier GUIs!

Big data
Google searches – 3 billion/day
Twitter tweets – 70Gb/day
LHC – 25PB/yr
SKA – 300PB/yr
Human genome – ∼ 1.6GB, 200GB sequencer data
10243 fluid dynamics data ∼ 40GB

“In view of its rapidity of action, and of the ease with
which it can be switched over from one type of problem to
another it is very possible that the one machine would
suffice to solve all the problems that are demanded of it
from the whole country.”

Sir Charles Darwin, NPL, 1946

NASA, ESA, M. Robberto (Space Telescope Science Institute/ESA), and the Hubble Space Telescope Orion
Treasury Project Team

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

A Complex System: The Orion Nebula

NASA, ESA, M. Robberto (Space Telescope Science Institute/ESA), and the Hubble Space Telescope Orion
Treasury Project Team

Range of temperatures (100K molecules, 10, 000K
atomic lines, 10millionK X-ray plasma)

Range of densities (plasma → dust grains → stellar cores)

Range of signal speeds (cold gas sound speed ∼ 100ms−1

→ radiation at 300, 000 km s−1)

Different physics dominates in different places
→ polymorphism

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

A Complex System: The Orion Nebula

NASA, ESA, M. Robberto (Space Telescope Science Institute/ESA), and the Hubble Space Telescope Orion
Treasury Project Team

Range of temperatures (100K molecules, 10, 000K
atomic lines, 10millionK X-ray plasma)

Range of densities (plasma → dust grains → stellar cores)

Range of signal speeds (cold gas sound speed ∼ 100ms−1

→ radiation at 300, 000 km s−1)

Different physics dominates in different places
→ polymorphism

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

A Complex System: The Orion Nebula

NASA, ESA, M. Robberto (Space Telescope Science Institute/ESA), and the Hubble Space Telescope Orion
Treasury Project Team

Range of temperatures (100K molecules, 10, 000K
atomic lines, 10millionK X-ray plasma)

Range of densities (plasma → dust grains → stellar cores)

Range of signal speeds (cold gas sound speed ∼ 100ms−1

→ radiation at 300, 000 km s−1)

Different physics dominates in different places
→ polymorphism

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

A Complex System: The Orion Nebula

NASA, ESA, M. Robberto (Space Telescope Science Institute/ESA), and the Hubble Space Telescope Orion
Treasury Project Team

Range of temperatures (100K molecules, 10, 000K
atomic lines, 10millionK X-ray plasma)

Range of densities (plasma → dust grains → stellar cores)

Range of signal speeds (cold gas sound speed ∼ 100ms−1

→ radiation at 300, 000 km s−1)

Different physics dominates in different places
→ polymorphism

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Personal background

I’m interested in modelling emission nebulae

Finding equilibrium models to predict their spectra
Modelling their development in time

Data access patterns are different from web/account
serving

Tend to loop through all the working set once per timestep

But not so different from data mining?

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Hardware trends

Moore’s Law – finer lithography, more transistors

Super-scalar dispatch
More cores
More vectorization

Heterogeneous architectures: APUs, (GP)GPUs, MIC

Clock rate saturation – capacitative bucket equation

P ' αCV 2f

where capacitance is C ' εA/d

Deep cache hierarchies

Small, fast, low-latency on-die memory

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Dual core revolution, 150 million BC

Francisco Rollandin, openclipart

Sadly, it’s a myth...

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Dual core revolution, 150 million BC

Francisco Rollandin, openclipart

Sadly, it’s a myth...

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Dual core revolution, 150 million BC

Francisco Rollandin, openclipart

Sadly, it’s a myth...

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Moore’s law

1960 1970 1980 1990 2000 2010 2020
Date of introduction

103

104

105

106

107

108

109

1010

Tr
an

si
to

r c
ou

nt

Intel 4004

Zilog Z80

Intel 8088
Motorola 68000

Intel 80386

ARM 1

PentiumAMD K5

Atom
ARM Cortex-A9

POWER68-Core AMD Bulldozer

62-Core Xeon Phi

Data source: Wikipedia

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Some hardware

6502 Cray 2 i7 3770 Human Brain
Year 1975 1985 2012

System mass ∼ 4 kg 2500 kg ∼ 10 kg ∼ 70 kg
Processor mass ∼ 10 g ∼ 200 g ∼ 1.5 kg

Transistor count 3510 1.4× 109 1.2× 1011

Half-pitch 8µm ∼ 1µm 22 nm 4–100µm

Feed-in few few few 103–104

TDP 0.7 W 200 kW 77 W 20 W
Compute cores 1 1 + 4 4 + 16
Data registers 1 8 + 8× 64v 16 + 16× 8v 5± 2

Speed 0.43 MIPS 1.9 GFlops (64b)
112 + 73.6

GFlops (64b)
1013−16 op s−1

Clock speed 1 MHz 250 MHz 3.4–3.9 GHz ∼ 10 Hz
Memory clock 1 MHz 250 MHz 200 MHz
Main memory 64 kiB 2 GB → 32 GB 2.5 PB

Bandwidth ∼ 1 MB/s ∼ 4 GB/s 25.6GB/s
All-to-all rate 15 Hz 2 Hz 0.8 Hz 3 Hz

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Instruction pipeline

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Ivy Bridge code pipeline within core

CISC instructions decoded to RISC µops

Can read & decode 4 instructions per cycle

Decoded µops passed to reorder buffer

taken from queue out-of-order, based on dependencies

6 execution ports operate simultaneously, e.g. for floating

0: mul (256b, ` = 5), div & sqrt (128b, ` = 10–22)
1: add (256b, ` = 3)
2&3: Memory read, 128b
4: Memory write, 128b (using address from 2,3)
5: mov, shuffle, boolean (256b, ` = 1)

High performance requires

operation balance (mul/add in parallel)
streaming through execution pipelines

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Logical memory architecture

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Memory hierarchy, e.g. Ivy Bridge

Cache Size Latency Bandwidth1

L1D 32kB 4–5 cycles 320 GB/s
L1I 32kB 4–5 cycles
L2 256kB 12 cycles 173 GB/s

L3 (shared) 8Mb 29.5/30.5 cycles 103 GB/s
RAM (shared) ∼8Gb 30 cycles + 53 ns 20.5 GB/s

1Source: http://www.sisoftware.net/?d=qa&f=cpu ivb

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Back To The Future

Process

Streaming
data read

Streaming
data write

Process

Streaming
data read

Streaming
data write

RAM RAM

1970s

2010s

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Physical CPU architecture

Intel Broadwell processor die, to scale (roughly)
Dual core, HD6000/Iris 6100 graphics: 133mm2

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

An object-oriented code fragment

for (auto tr=trans.begin(); tr != trans.end(); ++tr)

{

state *lo = tr->lo;

state *hi = tr->hi;

tr->popopc = lo->pop - hi->pop*lo->g/hi->g;

}

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Data structure

class transition {

public:

float popopc;

state *lo, *hi;

// ...and space for other object properties (LOTS)

float padding[NPAD];

};

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Timings

Vector size NPAD=0 NPAD=12

100 3.373 4.110
200 3.550 5.673
500 3.579 5.719

1000 3.571 5.767
2000 3.573 5.834
5000 3.584 10.682

10000 3.846 12.274
20000 4.443 12.651
50000 4.670 12.844

100000 4.774 12.853

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Container memory usage

Cache line 64b (i.e. 16 float, 8 double)

More class members ⇒ inefficient cache usage, overlaps

Structure-of-arrays allows streaming reads, alignment;
keeps (currently) irrelevant data out of view

Contention possible, but 8-way associative caches now
typical

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Try moving data into multiple vectors

int ntrans = popopc.size();

for (int nt=0; nt<ntrans; ++nt)

{

int lo = los[nt];

int hi = his[nt];

popopc[nt] = statepop[lo] - statepop[hi]*stateg[lo]

/stateg[hi];

}

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Timings

Vector size NPAD=0 NPAD=12 Vector
100 3.373 4.110 3.526
200 3.550 5.673 3.540
500 3.579 5.719 3.572

1000 3.571 5.767 3.571
2000 3.573 5.834 3.570
5000 3.584 10.682 3.579

10000 3.846 12.274 3.580
20000 4.443 12.651 3.594
50000 4.670 12.844 3.633

100000 4.774 12.853 3.630

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Vector and pre-division

float *staterat = new float[nstate];

for (int i=0; i<nstate; ++i)

{

staterat[i] = statepop[i]/stateg[i];

}

for (int nt=0; nt<ntrans; ++nt)

{

int lo = los[nt];

int hi = his[nt];

popopc[nt] = statepop[lo]-staterat[hi]*stateg[lo];

}

delete [] staterat;

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Timings

Vector size NPAD=0 NPAD=12 Vector Vec&Pre-div
100 3.373 4.110 3.526 1.647
200 3.550 5.673 3.540 1.655
500 3.579 5.719 3.572 1.672

1000 3.571 5.767 3.571 1.695
2000 3.573 5.834 3.570 1.685
5000 3.584 10.682 3.579 1.703

10000 3.846 12.274 3.580 1.704
20000 4.443 12.651 3.594 1.748
50000 4.670 12.844 3.633 1.835

100000 4.774 12.853 3.630 1.837

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Conclusions

Other options possible, breaking up operations

Results vary in detail between systems

Putting data into vectors is better, even without padding

Resulting code is very ‘low-level’

Difficult to measure cache-sensitive operations

CLFLUSH operations?

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Timings – SSE/AVX

Vector size NPAD=0 V&P V&P Optimized
std -march=native arch=native

100 3.373 1.647 2.103 1.528
200 3.550 1.655 2.042 1.509
500 3.579 1.672 2.059 1.584

1000 3.571 1.695 2.057 1.601
2000 3.573 1.685 2.057 1.594
5000 3.584 1.703 2.071 1.626

10000 3.846 1.704 2.081 1.690
20000 4.443 1.748 2.109 1.922
50000 4.670 1.835 2.162 2.080

100000 4.774 1.837 2.176 2.115

Exploiting SSE/AVX needs fewer levels of indirection

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

OpenMP

#pragma omp parallel for

for (auto tr=trans.begin(); tr != trans.end(); ++tr)

{

state *lo = tr->lo;

state *hi = tr->hi;

tr->popopc = lo->pop - hi->pop*lo->g/hi->g;

}

$ make

speedtest.cpp: error: invalid controlling predicate

for (auto tr=trans.begin(); tr != trans.end(); ++tr)

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

OpenMP

#pragma omp parallel for

for (auto tr=trans.begin(); tr != trans.end(); ++tr)

{

state *lo = tr->lo;

state *hi = tr->hi;

tr->popopc = lo->pop - hi->pop*lo->g/hi->g;

}

$ make

speedtest.cpp: error: invalid controlling predicate

for (auto tr=trans.begin(); tr != trans.end(); ++tr)

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Timings – OpenMP

Vector size NPAD=0 V&P OMP×4
100 3.373 1.647 1.300
200 3.550 1.655 0.897
500 3.579 1.672 0.615

1000 3.571 1.695 0.514
2000 3.573 1.685 0.474
5000 3.584 1.703 0.445

10000 3.846 1.704 0.439
20000 4.443 1.748 0.808
50000 4.670 1.835 1.503

100000 4.774 1.837 1.521

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Vector-friendly code

for (int nt=0; nt<ntrans; ++nt)

{

int lo = los[nt];

int hi = his[nt];

popopc[nt] = statepop[lo]-staterat[hi]*stateg[lo];

}

This looks very F77 – is a halfway house possible?

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Structure-of-Array ‘containers’

struct ObjectList

{

std::vector<float> m_a, m_b;

};

struct ObjectIterator

{

ObjectList *m_list;

int m_index;

};

Iterator contains pointer to list, and index

operator++ etc. are fairly obvious

But how do we provide access to a, b, etc.?

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Proxy Objects

const ObjectProxy& ObjectIterator::operator*();

const ObjectProxy* ObjectIterator::operator->();

Use a proxy object to provide access

Reference-like semantics

Rules for overloading operator-> pose a challenge

If used, its return type must be a pointer or object of
a class to which you can apply ->.

Stroustrup, C++ PL, 3rd ed.

The second part goes around in a self-referential loop

What (real!) pointer can we provide?

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

A proxy object with a multiple personality

The hint is the data the pointed-to object must hold

ObjectList *m_list;

int m_index;

Just like the iterator!!

Can we use the iterator itself as the pointed to object?

We know it exists
We know it continues to exist
We know it has the right content

Need to segregate the data-access from the iterator-fu

Use the same object, just with a different static type

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Multiple personality implementation

Several implementation options

Private inheritance? LSP ⇒ prefer containment

class ObjectProxy

{

friend class ObjectIterator;

ObjectList *m_list;

int m_index;

};

class ObjectIterator // Can be a template

{

ObjectProxy p;

public:

ObjectProxy* operator->() { return &p };

};

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Some problems remain...

class ObjectProxy

{

public:

float a() const { return m_list->a[m_index]; }

float& a() { return m_list->a[m_index]; }

};

Data access requires ugly ()

Attributes? (Fiddling with type conversions?)

Adding a component requires multiple touch-points

List definition, resize, proxy accessors & const-accessors,
copy

Some STL sorts obstruct reference-like semantics

Polymorphism (a problem for standard containers)

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Polymorphic containers

Traditional approach – C++

std::vector<std::unique_ptr<Base> >

Another level of indirection
Entire contents of class now (potentially) scattered
Very poor cache locality, heap fragmentation
Additional memory for pointers

Traditional approach – Fortran
Add indexes to separate lists of extra components

Requires indirect access for these
Probably in wrong order
Index elements use memory for all cells

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Improving the Fortran approach

De-fragment indirect list

Improves cache locality for mixed cell components
Can also apply to local AMR (see below)

De-fragmentation groups similar cells

‘Business’ problems object ordering often arbitrary
Dominant physics often spatially clustered, e.g. molecular
clouds

Run-length encode index array

Reduces size
Enables vectorization within each RLE’d section

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Measurement and analysis

Measurement is a crucial component of performance
improvement since reasoning and intuition are fallible
guides...

Kernighan & Pike 1999, The Practice of Programming

Measurement, e.g.
Perf

Fast, accesses CPU performance registers, can multiplex
multiple events

Likwid

Can trace evolution of load through time

Cachegrind

Slow but deterministic

Analysis

Roofline model

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Roofline model

Plot not to scale

Williams, Waterman & Patterson (1999), Comm ACM.

Efficient and
accessible?

Robin
Williams

The Challenge

Why more?

Hardware trends

...vs Object-
orientation

Measurement
and analysis

Tools

Transcendence

Conclusions

Throughput-limited loop

/* increment the fine opacity array */

for(long i=0; i<rfield.nfine; ++i)

{

realnum tauzone = rfield.fine_opac_zone[i]*

radius.drad_x_fillfac;

rfield.fine_opt_depth[i] += tauzone;

}

rfield.nfine is big...

Can we do something else with the data while its in-core?

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Part II

Tools

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Some available technologies

Compiler optimization

Cache optimization of native code

Vector intrinsics

OpenMP/OpenACC

OpenCL

C++AMP

MPI

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Compiler optimization

Easy

So long as your code meets requirements...
May get better just by waiting (e.g. gcc vs clang
vectorization shoot-out)

Obtuse

Outcome isn’t transparent and may not be portable
...if the compiler doesn’t know the opcode, it can’t use it

Features may be default for -O3, or require flags or
pragmas

Compile-time only

But can use profile-guided optimizations

Hand-tuning may not be robust, e.g.

__restrict__ makes little difference now
Explicit pre-fetching can be worse than default

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Cache optimization of native code

for (int j=0; j<N; ++j) {

for (int i=0; i<N; ++i) {

a[i][j] = b[i][j] + c[i][j];

}

}

Simplest example of cache sub-optimization

Substantial performance advantage by swapping loops

How about Fortran?

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Fortran 90 cache optimization

a = b + c

Minimal code, and just does the right thing!

Might also work in C++, depending on array class...

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

N-body code force loop

for (int np1=0; np1<NP; ++np1) {

for (int np2=0; np2<np1; ++np2) {

f = force(x[np1],x[np2]);

fp[np1] += f; fp[np2] -= f;

}

}

Inner loop cycles through memory ∼ NP times

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Cache blocking

for (int np2a=0; np2a<NP; ++np2a += NB) {

for (int np1=0; np1<NP; ++np1) {

for (int np2=np2a;np2<np1&&np2<np2a+NB;++np2) {

f = force(x[np1],x[np2]);

fp[np1] += f; fp[np2] -= f;

}

}

}

If NB matches cache block, memory traffic ⇓ by NB

Innermost loop can be unrolled (with care)

NB requires tuning, code more opaque

Intel’s OpenMP matrix-multiply example: 7→ 34 loc, with
double-parking

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

OpenMP

Well-established & supported technology, since 1997

Applied to shared-memory systems – low barrier to entry

#pragma directives apply to succeeding loop

Rather opaque relation to the underlying hardware

OpenACC extends the pragma approach to accelerators

Recent (∼ 2011) development, limited support to date

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Vector intrinsics

Supported by gcc, Intel, Microsoft compilers

Availability varies with hardware

Low level – which may impede other optimizations

Bound to non-standard data types

short int bb[]={1,2,3,4,5,6,7,8},

cc[]={8,7,6,5,4,3,2,1},aa[8];

__m128i b=LoadVector(bb), c=LoadVector(bb);

// Multiply b and c

__m128i bc = _mm_mullo_epi16 (b, c);

StoreVector(aa,bc);

Ends up looking like assembler...

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

OpenCL

Recent (since 2008), intended to converge vendor-specific
GPGPU frameworks

Internal C-like language to execute on multiple devices

Restrictions

No pointers to functions
No pointers-to-pointers in kernel arguments
No bit-fields, variable length arrays or structures
No recursion
Double types are an optional extra

Kernels sent to device, and executed asynchronously

The BIG idea behind OpenCL – replace loops with
functions executing at each point in a problem
domain

McIntosh-Smith & Deakin

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

OpenCL v1.2 Memory Model

Host Memory

Device Memory

Global Memory – RW for all work-items in all work-groups
Constant Memory – Read only, constant for kernel
Local Memory – Private to work-group
Private Memory – Private to work-item

Global & Constant Memory can be cached

Global, Local & Private Pointers may be cast to – but not
from – a single generic address space

API commands provided to copy data to/from Global &
Constant Memory

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

OpenCL evolution

OpenCL 1.2 ⇒ 2.0

Shared virtual memory – fine-grained access to host
memory space
Device queues
Pipes

Moving towards a actor/dataflow model

Full SVM model requires hardware support for efficient
implementation

Platform-dependent coding may be required

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

C++AMP

Extension to the C++ language, initially proposed by
Microsoft

Targeted at heterogeneous architectures

Defines restriction operators for data and functions, to
document code portability level

Philosophy seems similar to C/C++ headers

Advertise a contract
Test against it
But C++ may move to modules...

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

MPI

Distributed memory parallelization framework

Well supported & widely available

Long history in HPC – was big parallel before parallel was
big

Actually pretty flexible

Often used in a lock-step manner

efficient on old, ‘clean’ architectures
can exacerbate resource contention

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Framework sizes

OpenMP v4.0 (July 2013) API specification: 312pp

OpenACC v2.0a (August 2013) API specification: 74pp

OpenCL v2.0 (July 2015) API specification and language:
288+202pp

C++AMP v1.2 (December 2013) Language and
Programming Model: 184pp

Intel(R) C++ Intrinsic Reference: 193pp (to SSE4, SIMD
from p24 on)

MPI v3.1 (June 2015) API specification: 868pp

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Part III

Transcendence

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Back To The Future – Part II

Before C, there was far more hardware diversity
than we see in the industry today. Computers proudly
sported not just deliciously different and offbeat
instruction sets, but varied wildly in almost
everything, right down to even things as fundamental
as character bit widths (8 bits per byte doesn’t suit
you? how about 9? or 7? or how about sometimes 6
and sometimes 12?) and memory addressing (don’t
like 16-bit pointers? how about 18-bit pointers, and
oh by the way those aren’t pointers to bytes, they’re
pointers to words?).

http://herbsutter.com/2011/10/12/dennis-ritchie/

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Portability

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions Take a step backwards

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

With caches, contention &
speculation, every detail is

fragile

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Strategies

My first threaded program (circa 1998)

PDL

Aqualung

AMD Bolt/Khronos SyCL

pycuda.gpuarray.GPUArray

Parallel made really easy

Fundamental algorithm

Expression templates

Software/hardware ecosystem

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

My first threaded program (circa 1998)

use PDL; use PDL::Graphics::TriD;

$b=zeroes(50,50,50);

$b=sin(0.3*$b->rvals)*cos(0.3*$b->xvals);

$c=0; $a=byte($b>$c);

foreach(1,2,4) {

$t = ($a->slice("0:-2")<<$_);

$t += $a->slice("1:-1");

$a = $t->mv(0,2);

}

keeptwiddling3d();

points3d [whichND(($a != 0)&($a != 255))];

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

What does this show?

use PDL;use PDL::Graphics::TriD;keeptwiddling3d();$b=zeroes(50,50,

50);$b=sin(0.3*$b->rvals)*cos(0.3*$b->xvals);$c=0;$a=byte($b>$c);

foreach(1,2,4){$t=($a->slice("0:-2")<<$_);$t+=$a->slice("1:-1");

$a=$t->mv(0,2);} points3d [whichND(($a != 0) & ($a != 255))];

Do what...?

It’s a perlsig ;-)
It’s (nearly) surface rendering!

OK, but where is the threading?

It’s there because there’s nothing to say it isn’t!
Using minimal loops expresses algorithm directly
Built into the core of PDL by Tuomas J. Lukka

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Aqualung

Adaptive mesh refinement fluid dynamics code
http://adsabs.harvard.edu/abs/2000MNRAS.316..803W

Collela-Woodward test problem: a shock hits a wedge

Up to 1,200,000 AMR cells, cf 67,108,864 at full resolution

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Aqualung Mesh

Quad- (more generally oct-) tree local refinement

A Unix system programmer’s approach to AMR...

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Aqualung parallelization

Numerical method expressed as operator mappings over
mesh

Compare the STL iterator/algorithm split, or MapReduce

Retro-fitted parallelization

OpenMP parallelized by placing a single directive in
iterator template

Later switched to pthreads task pool without changing
main code

Limited scaling emphasizes importance of memory
management

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Aqualung example

// ========== iterate.h ==========

template<typename F, typename L>

void iterate(const F &f, const L &l, node_addr n,

Grid &grid, const Context &ctx) {

#if defined _OPENMP

#pragma omp parallel for

#endif

for (node_addr i=0; i<n;++i)

f(l[i],i,grid,ctx);

}

// ========== aqualung.cpp ==========

// prim => iflux -- but beware false sharing

iterate(Fluxes1(prim,iflux),

interfaces, interfaces.size(), grid, ctx);

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

AMD Bolt Library

STL-compatible template library for GPU acceleration

Can convert serial to GPU code just by changing
namespaces

std::vector<float> a(n), b(n), r0(n), r1(n);

Functor f;

std::transform(a.begin(), a.end(), b.begin(),

r0.begin(), f);

bolt::cl::transform(a.begin(), a.end(), b.begin(),

r1.begin(), f);

https://github.com/HSA-Libraries/Bolt

Similar approach in e.g. Khronos SyCL

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

pycuda.gpuarray.GPUArray

Abstracts away CUDA boiler-plate

Just document moves of data to & from arrays on the
GPU

Script variables act as handles, passing messages to GPU

Coding can be substrate-agnostic until it needs to move
devices

a_gpu = gpuarray.to_gpu(numpy.random.randn(4,4).

astype(numpy.float32))

a_doubled = (2*a_gpu).get()

http://documen.tician.de/pycuda/tutorial.html

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

make -j

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Fundamental algorithm

get data from sources

process data

store data

Data comes from multiple sources, movement needs to be
managed

Time to process may not be predictable

History probably a better guide than analysis ⇒ process
can be opaque

Can the tasks be split or combined?

Data dependencies need to be transparent

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Expression templates

Can generate vectorized coding using operator overloading

Vec operator+(const Vec& a, const Vec& b);

Vec& operator=(const Vec& a);

Vec a, b, c;

a = b + c;

But a=b*c+d generates multiple temporaries
Instead, can use lazy evaluation, e.g.

Vop operator+(const Vec& a, const Vec& b) {

return Vop2(Vop2::Add, a, b);

}

Blitz++ pioneered this approach (Veldhuizen 1994, also
Vandevoorde 1995)

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Pros and Cons of Expression Templates

Execute operations in a lazy manner, without temporaries

Operator overloading can effectively hijack the C++
parser

Resulting object hierarchy replicates the AST

Execution can be dispatched to multiple agents based on
dataflow & capability information

Starts to work more like a dynamic language interpreter
Could automatically generate OpenCL kernels

Can’t overload conditionals (if and ?:)

Convert to merge()

Vector code typically executes both branches anyway

With power comes responsibility

Have undermined compiler optimizations

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Vector second-order advection

for (int sub=0; sub<2; ++sub)

{

float dtsub = dt*float(1+sub)/2;

vortex::vector<float> ge = rho-rho.rotate(-1);

vortex::vector<float> ga = choose(ge>0.f,ge,-ge);

vortex::vector<float> g = choose(ga<ga.rotate(1),

ge,ge.rotate(1)); // MinMod limiter

vortex::vector<float> f = rho+u*g;

rho = rho0+(dtsub/dx)*(f.rotate(-1)-f);

}

Loop-free vector code unfamiliar

But numerical algorithm developers often use MatLab

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Immutable data

Data locks can be a major sink of time in parallel code

Access to immutable data doesn’t need sequencing

Simple application of immutability creates yet more
temporaries ⇒

More dynamic memory allocation
More cache turnover (but overall R+W dataflow similar)

Maintaining execution context & use counts allows
temporaries to be dynamically elided

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Turing completeness vs. the machine model

Very minimal structure needed to be computationally
complete

But languages are dragged towards the machine

To use the hardware, need to know the opcodes
Simplest to implement a direct mapping

Conversely, machines can also be dragged towards the
language

Influence of C machine model on architectures

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Requiem for C?

...the report of my death was an exaggeration.
Mark Twain

Hardware and compiler development have meant for a
long while that C-family languages aren’t really that ‘close
to the metal’

The metal hasn’t gone away – it’s ripping its way through
the fabric of abstractions underlying C-family languages...

...causing a proliferation of new C-like languages

One would hope that time will redux this to new compact
abstractions

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

So where do we need to be going?

Optimization of resource utilization must be dynamic
Need to deal with cross-talk effects

memory channel saturation
cache contention
interrupts
varying core speed with load and ambient temperature...

Static optimization can’t deal with dynamic conditions

How to address this?

Can use expression templates to capture algorithm
Execute on an dynamically-scheduled vector virtual
machine

Déjà vu?

Just like µop dispatch to execution ports, kernel dispatch
in GPGPUs

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

So where do we need to be going?

Optimization of resource utilization must be dynamic
Need to deal with cross-talk effects

memory channel saturation
cache contention
interrupts
varying core speed with load and ambient temperature...

Static optimization can’t deal with dynamic conditions

How to address this?

Can use expression templates to capture algorithm
Execute on an dynamically-scheduled vector virtual
machine

Déjà vu?

Just like µop dispatch to execution ports, kernel dispatch
in GPGPUs

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

So where do we need to be going?

Optimization of resource utilization must be dynamic
Need to deal with cross-talk effects

memory channel saturation
cache contention
interrupts
varying core speed with load and ambient temperature...

Static optimization can’t deal with dynamic conditions

How to address this?

Can use expression templates to capture algorithm
Execute on an dynamically-scheduled vector virtual
machine

Déjà vu?

Just like µop dispatch to execution ports, kernel dispatch
in GPGPUs

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Part IV

Conclusions

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Conclusions

For performance, use std::vector<>

For performance, use std::vector<native>

For portable performance, adapt std::vector<native>

The expressiveness of C++ can sugar this pill

...or JavaScript ;-)

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Conclusions

For performance, use std::vector<>

For performance, use std::vector<native>

For portable performance, adapt std::vector<native>

The expressiveness of C++ can sugar this pill

...or JavaScript ;-)

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Conclusions

For performance, use std::vector<>

For performance, use std::vector<native>

For portable performance, adapt std::vector<native>

The expressiveness of C++ can sugar this pill

...or JavaScript ;-)

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Conclusions

For performance, use std::vector<>

For performance, use std::vector<native>

For portable performance, adapt std::vector<native>

The expressiveness of C++ can sugar this pill

...or JavaScript ;-)

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Conclusions

For performance, use std::vector<>

For performance, use std::vector<native>

For portable performance, adapt std::vector<native>

The expressiveness of C++ can sugar this pill

...or JavaScript ;-)

title

Questions?

Efficient and
accessible?

Robin
Williams

The Challenge

Tools

Transcendence

Conclusions

Some resources

Herb Sutter

http://www.gotw.ca/publications/concurrency-ddj.htm
http://herbsutter.com/welcome-to-the-jungle/

Tony Albrecht

http://www.slideshare.net/EmanWebDev/pitfalls-of-
object-oriented-programminggcap09

Compiler vectorization

https://gcc.gnu.org/projects/tree-ssa/vectorization.html
http://llvm.org/docs/Vectorizers.html

OpenCL tutorial

http://handsonopencl.github.io/

Agner Fog’s x86 Optimization Guides

http://www.agner.org

	The Challenge
	The Challenge
	Why more?
	Hardware trends
	...vs Object-orientation
	Measurement and analysis

	Tools
	Tools

	Transcendence
	Transcendence

	Conclusions
	Conclusions

