
Continuous Delivery
with containers

Mike Long @meekrosoft

Part 1: A brief tour of Docker

By the end of this session you will understand:

● What is a container and why you may want one
● How to create your own containers
● How to share your containers
● How to create multi-container applications

Who is Mike Long?

● Doer: Embedded software, CoDe & DevOps

● Trainer: git, jenkins, docker, TDD

● Speaker: coming to a conference near you!

● Manager: Co-owner, CEO, Praqma Norway

Check in

● Who are you?

● What do you hope to learn?

● Have you used docker before?

● Have you used jenkins before?

● OS?

What the why now?

If docker is the answer, what is the question?

Docker is a platform

Docker is a platform for developing, shipping and running
applications using container technology

The Docker Platform consists of multiple products/tools:

● Docker Engine

● Docker Hub

● Docker Trusted Registry

● Docker Machine

● Docker Swarm

● Docker Compose

● Kitematic

From https://www.docker.com/what-docker

Dependency management

Docker provides a means to package and application with all
its dependencies into standardized unit for software
development

It provides isolation, so applications on the same host and
stack can avoid dependency conflict

It is portable, so you can be sure to have exactly the same
dependencies at runtime during development, testing and in
production

https://www.docker.com/what-docker

From https://www.docker.com/what-docker

Resource Utilization

Better utilization, more portable, shared operating system

https://www.docker.com/what-docker

The Docker ecosystem

Dev Tools

Official Repositories

Operating Systems

Big Data

Service Discovery

Build / Continuous Integration

Configuration Management
Consulting &Training

Management

Storage

Clustering & Scheduling

Networking

Infrastructure & Service Providers

Storage

Security

Monitoring & Logging

9

Install docker now!

http://docs.docker.com/

Sidetrack for those of us not on
linux...
Docker toolbox is the simplest way to get started running
containers on mac and windows systems

It uses virtualbox to create linux virtual machines for running
containers

It can also be used to create docker environments on cloud
providers such as amazon, google, and digitalocean

You will also need a working git

$ docker info

Are we there yet?

$ docker version

Are we there yet?

Let’s create some
containers!

$ docker run hello-world

Hello, ACCU!

What just happened there then?

Commands are executed on the
client

Images are pulled from
repositories

Containers are run from images

An container is...

● an isolated and secure application platform
● run, started, stopped, moved, and deleted
● created from a Docker image

Docker hub

docker images

Find out what images you have

Docker will attempt to use local image first
Will look to hub if not found

Images are specified by repository:tag

Default tag is latest

Image Tags

$ docker run ubuntu:14.04 echo “hello
world”
$ docker run ubuntu:14.04 ps aux

Let’s saturate the network!

The second run should be faster because there is no download

$ docker run -i -t ubuntu:14.04 /bin/bash

Let’s run a container with a terminal

-i flag tells docker to connect to STDIN on the container
-t flag specifies to get a pseudo-terminal

$ apt-get install vim
$ vim test.txt
$ exit

Let’s add something to our container

$ docker run ubuntu:14.04 echo “hello”
$ docker run -ti ubuntu:14.04 /bin/bash
root@1234dfs:/# ps -ef
CTRL + P + Q
$ ps -ef

Container processes

A container only runs as long as it’s process
Your command’s process is always PID 1 in the container

$ docker ps -a

Look at our running containers

List running containers
Use the -a flag to include stopped containers
Containers have ID’s and Names

$ docker run -d ubuntu:14.04 ping 127.0.0.1 -c 50

Use detached mode to run a container in the
background

Use docker logs [containerID] to get the output
-f is a useful flag

$ docker run -d -P nginx

Time for a web server!

Use docker-machine default to get the VM IP
Use docker ps to get the nginx port mapping

Images

An image is...

● A read-only template
for creating containers

● The build component
of docker

● Stored in registries
● Can be created by

yourself distributed by
others

Images are layered read-only filesystems

Images have base layers

Multiple root file systems per host are
normal

When an image is run, a writable layer is
added

$ docker pull busybox

Downloading an image with pull

Let’s make an image

$ docker commit 234d3ea32 meekrosoft/myapp:1.0

Docker commit saves changes in a container as a new
image

$ docker run -ti meekrosoft/myapp:1.0 bash
root@2343245:/# curl 127.0.0.1

Let’s run our new image

The Dockerfile

The Dockerfile

A Dockerfile is a configuration file that allows us to specify
instructions on how to build an image

It enables configuration as code

More effective than using commit

- Share the configuration rather than image
- Supports continuous integration
- Easier to review
- Easier to update

Dockerfile for myapp
FROM ubuntu:14.04
RUN apt-get install curl
RUN apt-get install vim

Dockerfile instructions

Run instructions are executed in the top
writable layer

Dockerfile for myapp
FROM ubuntu:14.04
RUN apt-get update && apt-get install -y \
 curl \
 vim

Aggregating RUN instructions to reduce layers

$ docker build -t meekrosoft/myapp:1.1 .

Building an image from a Dockerfile

The build command takes a build context on the filesystem
-f flag can be used to specify a different location for the Dockerfile

Go ahead and make your image

Dockerfile for myapp
FROM ubuntu:14.04
RUN apt-get install curl
RUN apt-get install vim
CMD [“PING”, “127.0.0.1”, “-c”, “10”]

The CMD instruction

Can only be defined once
Can be overridden at run time

Run your new image with and without a command

Dockerfile for myapp
FROM ubuntu:14.04
...
ENTRYPOINT [“PING”]

The ENTRYPOINT instruction

Cannot be overridden at run time
Can have a CMD in addition

Dockerfile for myapp
EXPOSE 80
ENV JAVA_HOME /usr/bin/java
COPY index.html /var/www
ADD robots.txt /var/www

Other notable Dockerfile commands

Dockerfile best practices

Containers should be ephemeral

Use a .dockerignore file to exclude unnecessary files from the
build context

Avoid including unnecessary packages and dependencies

Run only one process per container

Minimize the number of layers

Use the build cache to your advantage

Managing Containers

$ docker run -d nginx
$ docker stop [CONTAINER_ID]
$ docker start [CONTAINER_ID]

Other notable commands

$ docker exec -it [CONTAINER_ID] bash

Getting terminal access to a container

$ docker rm [CONTAINER_ID]

Removing containers

Can only remove stopped containers

$ docker rmi meekrosoft/curl:1.0

Deleting images

$ docker rm -f $(docker ps -a -q)

Wipe em all out

Sharing containers

Let’s add our repository on hub

$ docker tag meekrosoft/myapp:1.0 meekrosoft/mycurl:1.0

Make a tag that matches our repository on hub

$ docker push meekrosoft/mycurl:1.0

Push to hub

Docker volumes

- Survive beyond the lifetime of a
container

- Can be mapped to a host folder
- Can be shared amongst containers

A volume is a directory in a container used for
persistence

$ docker run -d -P -v /tmp/myapp/html/:/www/website
nginx
$ docker exec -ti [ID] bash
$ ls /var/www/html

A volume is a directory in a container used for
persistence

create a volume
VOLUME /myvol

multiple volumes
VOLUME /myvol1 /logs

json syntax
VOLUME [“myvol1”,”myvol2”]

You can also add volumes in the Dockerfile

Volume best practices

Containers should be ephemeral

Avoid mounting directories from the host in production

Data containers are recommended

Docker compose

Using docker-compose to create multi-container apps

web:
 build: .
 ports:
 - "5000:5000"
 volumes:
 - .:/code
 links:
 - redis
redis:
 image: redis

Web db

$ docker-compose up
$ docker-compose -d up
$ docker ps
$ docker-compose ps
$ docker-compose start <service name>
$ docker-compose stop <service name>
$ docker-compose rm <-v> <service name>

Using docker-compose

$ docker-compose logs
$ docker-compose scale
$ docker-compose -f compose-net.yml --x-
networking up -d

Using docker-compose continued...

Multi-host applications

Using docker-swarm to create multi-host apps

Cluster technology for containers

Integrated networking and volumes

High availability options

Pluggable schedulers and node
discovery

Set up a docker-swarm using docker-machine

$ eval $(docker-machine env --swarm swarm-
master)
$ docker ps -a

https://docs.docker.com/swarm/install-w-machine/

https://docs.docker.com/swarm/install-w-machine/
https://docs.docker.com/swarm/install-w-machine/

A tour of swarm

https://docs.docker.com/swarm/install-w-machine/
https://gist.github.com/meekrosoft/f4f345331aaee2c917c44e78699c29ef

https://docs.docker.com/swarm/install-w-machine/
https://docs.docker.com/swarm/install-w-machine/
https://gist.github.com/meekrosoft/f4f345331aaee2c917c44e78699c29ef
https://gist.github.com/meekrosoft/f4f345331aaee2c917c44e78699c29ef

Where are we now?

Isolation

Performance

HardwareVMContainerProcessThread

A brief tour of Docker

By the end of this workshop you will understand:

● What is a container and why you may want one
● How to create your own containers
● How to share your containers
● How to create multi-container applications
● How to create multi-host applications

Continuous Delivery
with containers

Mike Long

@meekrosoft

INTEGRATE

@meekrosoft

The trip
main ports of call

● Running your CI/CD
infrastructure in Docker

● Build pipeline “as code”
● ‘Gonas’ and the whale

Our app

$ git clone https://github.com/praqma-
training/gowebserver

Code!

$ git clone https://github.com/praqma-
training/gowebserver

Let’s Code!

$ docker-machine create --driver virtualbox code

Create a virtual machine for running the CI system
(optional)

$ docker build -t myapp .
$ docker run -d -p 8000:8000 --name myapp myapp:latest
$ curl $(docker-machine ip code):8000

Let’s go for a spin!

CoDe Infrastructure

Servers as Pets

Servers as Pets -> Cattle

Servers as Pets -> Cattle -> Phoenix

Servers as Pets -> Cattle -> Phoenix -> Genie

Components
All as Docker containers

Jenkins master

Jenkins slaves

Artifactory

Docker Registry

The flow

Jenkins Slaves

Registry

The flow … with Docker

On-demand Jenkins Slaves

Docker Host

apache:
 build: apache/
 ports:
 - "80:80"
 links:
 - jenkins
 - artifactory
 - registry
jenkins:
 build: jenkins/
 ports:
 - "50000:50000"
 volumes:
 - /opt/containers/jenkins_home:/var/jenkins_home
 command: --prefix=/jenkins
artifactory:
 image: mattgruter/artifactory
 volumes:
 - /opt/containers/artifactory/data:/artifactory/data
 - /opt/containers/artifactory/logs:/artifactory/logs
 - /opt/containers/artifactory/backup:/artifactory/backup
 environment:
 - JAVA_OPTS='-Djsse.enableSNIExtension=false'
registry:
 image: registry:2
 volumes:
 - /opt/containers/registry:/var/lib/registry

On-demand Jenkins Slaves

Docker-Compose

Getting your host ready
● Fork our github repository to your local github account.

(https://github.com/praqma-training/code-infra)
● Clone your repo to your docker host:

○ $ git clone https://github.com/<YOUR USER>/code-infra.git

https://github.com/praqma-training/code-infra
https://github.com/Praqma/dayofdocker15.git

Fork Github repo

C
li
c
k

Getting your host ready

● $ docker-machine create code --driver virtualbox

● $ eval $(docker-machine env code)

Follow the instructions to add the directory structure

Getting your host ready

● And then get it up and running:
○ $ cd code-infra/containers

○ $ docker-compose build

○ $ docker-compose up

5 min demo!

‘Gonah’ and the whale

The ‘Gonah’
(simplified)

pipeline

Build

 + ‘Unit’ test

Release

+ Deploy to production

Functional test

 + Deploy to test

JobDSL
Jenkins pipelines as code

A groovy DSL for creating Jenkins
jobs and views

job('tag-version'){

 scm {

 git {

 remote {

 name('origin')

 url(

'https://github.com/drbosse/dayofdocker15.git'

)

 }

 branch('master')

 }

 }

 triggers {

 scm('* * * * *')

 }

 steps {

 shell('''echo "Hello Dockeristas"''')

 }

}

https://github.com/drbosse/dayofdocker15.git

Exercise - generate the pipeline

● Step 1 - Create a seed job

● Step 2 - run the provided

JobDSL

● Step 3 - there is no step 3
● Step 4 - profit

Step 1 - Create seed job

… add parameter for GITHUB_USERNAME

Then:

jobDSL/*.groovy

*.groovy

$ cd code-infra/containers/siege
$ docker build -t siege-engine .
$

Not quite so fast....

 and run

Congrats
You should now have:

● 3 jobs:
○ server-build
○ server-test
○ server-release

● A ‘View’ (tab)

● A Build pipeline view

A note on versioning

The simplified story:

● Semantic versioning
● Controlled by developer
● In version.txt file

○ Pulled from repo in build phase
○ Passed through all the way to release phase
○ Used to tag release version of docker image

Build phase

Where we are going to build “the Docker way” and test our
running web server

Build phase - simplified
docker build -t drbosse/http-app:snapshot .

- build Gonah and tag with snapshot

docker run -d --name testing-app -p 8001:8000 drbosse/http-app:snapshot

- run Gonah on test port

docker run --rm siege-engine -g http://<ip-of-http-app-container>:8000/

- Use Dockerized siege to test that the server responds

If all is OK, we trigger the test phase, and pass the image id.

NOTE: Look at the full version in your own “build-browser” job

Docker ONBUILD

The ONBUILD instruction adds to
the image a trigger instruction to
be executed at a later time,
when the image is used as the
base for another build.

Go-lang ONBUILD image

FROM golang:1.3

RUN mkdir -p /go/src/app
WORKDIR /go/src/app

this will ideally be built by the ONBUILD below ;)
CMD ["go-wrapper", "run"]

ONBUILD COPY . /go/src/app
ONBUILD RUN go-wrapper download
ONBUILD RUN go-wrapper install

FROM golang:1.3-onbuild

Building from ONBUILD

Dockerfile:

That’s essentially it

Just build it...

Although we could also ...

● Add .dockerignore

○ e.g. Dockerfile, README

● Add more to Dockerfile

○ maintainer

○ expose ports

○ CMD to run web server

The functional test

Where we spin up the Gonah server and check that it works

Testing phase

“Deploy to test”

docker run -d --name testing-app -p 8000:8000 $IMAGEID
- Run test version on port 8000

“Run functional test”
docker run --rm siege-engine http://<ip-of-http-app-container>:8000/

- Load test with siege engine
- If availability is OK, then tag image as stable

docker tag $IMAGEID drbosse/http-app:stable

- and for fun, we plot some of the output from siege
- If everything is OK, we call trigger a release

The release

Where we spin up the Gonah server and check that it works

Release phase

Tag with version nr. and ‘latest’

docker tag -f drbosse/http-app:stable drbosse/http-app:latest

docker tag -f drbosse/http-app:stable drbosse/http-app:$VERSION

Deploy to “production”

docker run -d --name deploy-app -p 81:8000 drbosse/http-app:latest

- Run prod on port 81 to avoid conflict with existing Apache

- If everything is OK, we are just happy

… else ...

It’s whales all
the way down...

Going “all in” with docker in your Continuous Delivery setup

Extra credit...

Choose one:

● Put your gowebserver behind a HAProxy and scale with
interlock

● Add a SonarQube to the code-infra setup
● Change code-infra to use data containers
● Run your code-infra on swarm

