
© Undo Ltd, 2016 http://undo.io© Undo Ltd, 2016 http://undo.io

GDB: A Lot More Than You Knew

Greg Law

co-founder and CEO, Undo

 1

http://undo.io/

The history

I well remember [...] on one of my

journeys between the EDSAC room

and the punching equipment that

"hesitating at the angles of stairs"

the realization came over me with

full force that a good part of the

remainder of my life was going to

be spent in finding errors in my own

programs.

Sir Maurice Wilkes, 1913-2010

© Undo Ltd, 2016 http://undo.io 3

© Undo Ltd, 2016 http://undo.io

Disclaimer: random bunch of stuff

Learnt along the way, talking to customers

Lots I don’t know, lots inevitably missing

please help me improve these slides!

Most of this is about knowing what you don’t know

info gdb is quite a useful manual

4

© Undo Ltd, 2016 http://undo.io

GDB - more than you knew

GDB may not be intuitive but it is very powerful
▪ Easy to use, just not so easy to learn

5

© Undo Ltd, 2016 http://undo.io

GDB - more than you knew

GDB may not be intuitive but it is very powerful
▪ Easy to use, just not so easy to learn

TUI: Text User Interface
▪ As useful as it is poorly named!

6

© Undo Ltd, 2016 http://undo.io

TUI top tips

ctrl-x-a: toggle to/from TUI mode

ctrl-l: refresh the screen

ctrl-p / ctrl-n: prev, next, commands

ctrl-x-2: second window; cycle through

7

© Undo Ltd, 2016 http://undo.io

GDB has Python!

8

© Undo Ltd, 2016 http://undo.io

GDB has Python!

Full Python interpreter with access to standard modules

(Unless your gdb installation is messed up!)

The gdb python module gives most access to gdb

(gdb) python gdb.execute() to do gdb commands

(gdb) python gdb.parse_and_eval() to get data from inferior

(gdb) python help(‘gdb’) to see online help

9

© Undo Ltd, 2016 http://undo.io

Python Pretty Printers

class MyPrinter(object):

 def __init__(self,val):

 self.val = val

 def to_string(self):

 return (self.val[‘member’])

import gdb.printing

pp = gdb.printing.RegexpCollectionPrettyPrinter('mystruct')

pp.add_printer('mystruct', '^mystruct$', MyPrinter)

gdb.printing.register_pretty_printer(gdb.current_objfile(), pp)

10

© Undo Ltd, 2016 http://undo.io

Reversible Debugging - how did that happen?

GDB inbuilt reversible debugging: Works well, but is very slow

11

© Undo Ltd, 2016 http://undo.io

Reversible Debugging - how did that happen?

GDB inbuilt reversible debugging: Works well, but is very slow

GDB in-build ‘record btrace’: Uses Intel branch trace.

Not really reversible, no data

Quite slow

rr: Very good at what it does, though somewhat limited features/platform support

UndoDB: perfect!

12

© Undo Ltd, 2016 http://undo.io

Reversible Debugging - how did that happen?

GDB inbuilt reversible debugging: Works well, but is very slow

GDB in-build ‘record btrace’: Uses Intel branch trace.

Not really reversible, no data

Quite slow

rr: Very good at what it does, though somewhat limited features/platform support

UndoDB: perfect!

But expensive :-)

13

© Undo Ltd, 2016 http://undo.io

.gdbinit

My ~/.gdbinit is nice and simple:

set history save on

set print pretty on

set pagination off

set confirm off

If you’re funky, it’s easy for weird stuff to happen.

Hint: have a project gdbinit with lots of stuff in it, and source that.

14

© Undo Ltd, 2016 http://undo.io

Remote debugging

Debug over serial/sockets to a remote server

Start gdbserver localhost:2000 ./a.out

Then connect from a gdb with e.g. ‘target remote localhost:2000’

15

© Undo Ltd, 2016 http://undo.io

Multiprocess Debugging

Debug multiple ‘inferiors’ simultaneously

Add new inferiors

Follow fork/exec

16

© Undo Ltd, 2016 http://undo.io

Multiprocess Debugging

set follow-fork-mode child|parent

set detach-on-fork off

info inferiors

inferior N

set follow-exec-mode new|same

add-inferior <count> <name>

remove-inferior N

clone-inferior

print $_inferior

17

© Undo Ltd, 2016 http://undo.io

Non-stop mode

Other threads continue while you’re at the prompt

18

© Undo Ltd, 2016 http://undo.io

Non-stop mode

Other threads continue while you’re at the prompt

set non-stop on

continue -a

Make sure you set pagination off otherwise bad stuff happens!

19

© Undo Ltd, 2016 http://undo.io

Breakpoints and watchpoints

watch foo stop when foo is modified

watch -l foo watch location

rwatch foo stop when foo is read

watch foo thread 3 stop when thread 3 modifies foo

watch foo if foo > 10 stop when foo is > 10

20

© Undo Ltd, 2016 http://undo.io

thread apply

thread apply 1-4 print $sp

thread apply all backtrace

Thread apply all backtrace full

21

© Undo Ltd, 2016 http://undo.io

calling inferior functions

call foo() will call foo in your inferior

But beware, print may well do too, e.g.

print foo()

print foo+bar (if C++)

print errno

And beware, below will call strcpy() and malloc()!

call strcpy(buffer, “Hello, world!\n”)

22

© Undo Ltd, 2016 http://undo.io

Dynamic Printf

Use dprintf to put printf’s in your code without recompiling, e.g.

dprintf mutex_lock,"m is %p m->magic is %u\n",m,m->magic

control how the printfs happen:

set dprintf-style gdb|call|agent

set dprintf-function fprintf

set dprintf-channel mylog

23

© Undo Ltd, 2016 http://undo.io

Catchpoints

Catchpoints are like breakpoints but catch certain events, such as C++ exceptions

e.g. catch catch to stop when C++ exceptions are caught

e.g. catch syscall nanosleep to stop at nanosleep system call

e.g. catch syscall 100 to stop at system call number 100

24

© Undo Ltd, 2016 http://undo.io

More Python

Create your own commands

 class my_command(gdb.Command):

 '''doc string'''

 def __init__(self):

 gdb.Command.__init__(self, 'my-command', gdb.COMMAND_NONE)

 def invoke(self, args, from_tty):

 do_bunch_of_python()

 my_command()

25

© Undo Ltd, 2016 http://undo.io

Yet More Python

Hook certain kinds of events

def stop_handler(ev):
 print('stop event!')
 if isinstance(ev, gdb.SignalEvent):
 print('its a signal: ' + ev.stop_signal)

gdb.events.stop.connect(stop_handler)

26

© Undo Ltd, 2016 http://undo.io

Other cool things...

▪ tbreak temporary breakpoint
▪ rbreak reg-ex breakpoint
▪ command list of commands to be executed when breakpoint hit
▪ silent special command to suppress output on breakpoint hit
▪ save breakpoints save a list of breakpoints to a script
▪ save history save history of executed gdb commands
▪ info line foo.c:42 show PC for line
▪ info line * $pc show line begin/end for current program counter

And finally...

▪ gcc’s -g and -O are orthogonal; gcc -Og is optimised but doesn’t mess up debug
▪ see also gdb dashboard on github

27

© Undo Ltd, 2016 http://undo.io

Thank you

Undo

9 Signet Court, Swann’s Road,

Cambridge, CB5 8LA, UK

For a free 30 day trial of UndoDB,

visit our website, or contact

sales@undo.io for more information

about our products.

28

mailto:sales@undo.io

