
Leaving The Dark Side
A story with code about 5 years learning

- Developing a C++ Based Medical Device, Successful Again -- Developing a C++ Based Medical Device, Successful Again -

Prepared for the ACCU 2016

by

Felix Petriconi

About me

Study of electrical engineering

Since 1993 working as a programmer

• At the university (Turbo Pascal, Ada, C++)

• Education of high gifted children (PovRay, Pascal, C++)• Education of high gifted children (PovRay, Pascal, C++)

• 7 years as freelancer (C/C++, Perl)

• Since 2003 employed as programmer by MeVis Medical

Solutions AG, Bremen, Germany (C++, x86 Assembler, Ruby)

2© Felix Petriconi 2016

About the team today

Department size: 34

3 Product Owner

4 SCRUM Teams
4-5 Developers4-5 Developers

1 Test Engineer

1 Requirement/Usability Engineer

½ SCRUM Master

1 Test-Lab Team

5 Test Engineers

© Felix Petriconi 2016 3

About our product

Reviewing workstation for mammography

images

Manufactured for a single OEM customer

Medical device => regulated environmentMedical device => regulated environment

In the market since 2002

About 7000 installations world wide

Market share in that segment > 50%

4© Felix Petriconi 2016

Our product

5© Felix Petriconi 2016

About the application

Deployed as standalone / client-server

OS: Windows 7 / Server 2008 R2

C++ / Qt application

2 million lines of code2 million lines of code

6© Felix Petriconi 2016

About the technical challenges

Huge variety of hospital setups

Radiologists must be able to read about 120 patients / h

Up to 4 GB uncompressed pixel data for a single patient

Up to 400 patients per day

8-16 bit grayscale images (16 - 800MB) on 2 * 5MP 10 bit 8-16 bit grayscale images (16 - 800MB) on 2 * 5MP 10 bit
grayscale displays

Of the shelve workstations (no special HW possible)

Server with up to 24 clients

Each case change, image change < 1s on every client

7© Felix Petriconi 2016

About our problem

3rd level support customer

problem reports per version

(c) Felix Petriconi 2016 8

Regular Release

About our problem

Many patches

=> Less new features for end customer

=> High costs for OEM customer

3rd level support customer

Problem reports per version

9© Felix Petriconi 2016

Regular Release

Patch Release

Some reasons

At 2011 about 10,000 requirements in a

requirement management tool

Each requirement had to be traced to a test case

Only paper scripts existed to test the applicationOnly paper scripts existed to test the application

Each release test phase took up to 8-12 weeks

High number of bugs

Lack of training of the team

10© Felix Petriconi 2016

Our way out

Use people for intelligent work

Let machines perform dumb work

Change the development process from Waterfall

to SCRUM (Problem: All regulatory documents to SCRUM (Problem: All regulatory documents

are written with Waterfall process in mind)

Invest in engineering education

Invest in test automation

11© Felix Petriconi 2016

Engineering education

Developer training with educational videos

Creating a library of books

Regular conference visits for software engineering

Introduction of Community of Practice every weekIntroduction of Community of Practice every week

– Regular Dev-Talks

ISTQB Training

– Base for all team members

– Advanced for all test engineers

12© Felix Petriconi 2016

Process investments

Buy in of our customer and upper management

Introduction of SCRUM (started self educated)

External SCRUM coaching over several weeks

Introducing MeVis 10% (“Crazy Fridays”)Introducing MeVis 10% (“Crazy Fridays”)

Introducing of “Continuous Integration”

External SCRUM coaching follow-up after one

year

13© Felix Petriconi 2016

New test strategy evolved

Less manual functional tests

- Primary focus now on exploratory tests

UnitTests

Automated UI testsAutomated UI tests

Behaviour tests

14© Felix Petriconi 2016

NEW

Behaviour tests

End to End Tests

Don’t test through the UI

15© Felix Petriconi 2016

Where to inject behaviour tests?

Application Layer

Presentation Layer Test Interface

Data Access Layer

Business Layer

Application Layer

16© Felix Petriconi 2016

Behaviour tests

Started with Specification by Example with
Cucumber

Given the login dialog is visibleGiven the login dialog is visible

When a registered user provides
username and password

Then the user is logged in

And the administration module is
available

17© Felix Petriconi 2016

Which Cucumber binding?

Native C++ binding (cukebins) could not be used,
because our application runs with multiple because our application runs with multiple
processes on multiple machines

⇒ Nothing out of the box was available

⇒ Customization necessary

⇒ Cucumber with Ruby binding was the natural
choice

18© Felix Petriconi 2016

Behaviour tests with Cucumber?

Started very promising

But the tool Cucumber was not capable of handling
nested contexts inside a test

Required intensive collaboration with Product OwnerRequired intensive collaboration with Product Owner

Examples were too complicated and could not serve as a
specification because of the complexity of the domain

⇒New approach with RSpec (Predecessor of Cucumber)

⇒The remaining test infrastructure could be the same

19© Felix Petriconi 2016

Test setup

RSpecCenter

(C++)

DBInterface

Administration

DB

IPC

RSpec

(Ruby)

XMLRPC

IPC(C++)
Viewer

Preparer

SCP

(Ruby) IPC

20© Felix Petriconi 2016

Let’s write a simple test

describe ‘Login mechanism’ do

context ‘When the login dialog is available’ do

before (:all) do

administration.waitUntilLoginIsVisible()

end

context ‘And the user logs into the application’ do

before (:all) dobefore (:all) do

administration.login(“user1”, “password4user1”)

end

it ‘Then the administration module is available for the user’ do

administration.waitUntilAdministrationIsVisible()

end

end

end

end Representative of

Administration

process

Test method in

Administration

process

Parameters of

login method

21

Feaze the Ruby part …

For each process a representative Ruby object

exists

Ruby’s method_missing feature is used to

“generate” methods on the fly. So there is no “generate” methods on the fly. So there is no

need to specify all possible test methods

manually (more code in the bonus slides)

22© Felix Petriconi 2016

XMLRPC protocol

<methodCall>

<methodName>rspeccommand</methodName>

<params>

<param><value><string>ADMISTRATION</string></value></param>

<param><value><string>login</string></value></param>

<param><value><i4>60</i4></value></param>

<param><value>

Process name

RPC name

<param><value>

<array><data>

<value><string>user1</string></value>

<value><string>password4user1</string></value>

</data></array>

</value></param>

</params>

</methodCall>

Test method name

in the process

Array with all method

parameters

Command

timeout /s

23© Felix Petriconi 2016

RSpecCenter

RSpecCenter

(C++)

RSpec

(Ruby)

XMLRPC

<methodCall>

<methodName>scrcukecommand</methodName>

<params>

<param><value><string>ADMISTRATION</string></value></param>

Target process lookup

Converts XMLRPC
<param><value><string>ADMISTRATION</string></value></param>

<param><value><string>login</string></value></param>

<param><value><i4>60</i4></value></param>

<param><value>

<array><data>

<value><string>user1</string></value>

<value><string>password4user1</string></value>

</data></array>

</value></param>

</params>

</methodCall>

Converts XMLRPC

command payload to

application specific

binary IPC protocol

Limited list of supported

types: string, int, double,

bool, array, hash

Any nested combination

of these types is possible

24© Felix Petriconi 2016

RSpecInterface

RSpecCenter

(C++)

C++ Administration Module

RSpecInterface

IPC Function 1

Function 2

Function 3

Each process has a RSpecInterface instance

It registers for a dedicated IPC callback

Starts to parse the binary stream and extracts method
name

Lookup of registered test method

Calls method with remaining in-stream (Source) and
returns new values in out-stream (Sink)

25© Felix Petriconi 2016

Application test interface

class AdminstrationInterface

{

public:

void userLogin(const std::string& userName,

const std::string& password);

void logout();void logout();

CommandResult waitUntilLoginIsVisible();

CommandResult waitUntilAdministrationIsVisible();

static AdministrationInterface s_interface;

};

26© Felix Petriconi 2016

Execution chain inside application

RSpecInterface
Application

Interface
Glue Code

Application

Code

Process under test

27(c) Felix Petriconi 2016

Glue code

// defining the test function

void login(const Source& source, Sink& sink);

// registering the function and its name with a registrar

CommandRegistrar(login, "login");

At the beginning

written by hand,

later created within

the build process by

a code generator

// implementation of the test function

void login(const Source& source, Sink& sink)

{

auto userName = createFromSource<std::string>(source);

auto password = createFromSource<std::string>(source);

s_interface.userLogin(userName, password);

}

28(c) Felix Petriconi 2016

When to proceed?

Many things in the application happen
asynchronously

Add sleep call into the test script

Callback from the application into the test Callback from the application into the test
could be an option, but would make the
application depend on the test

RSpecInterface polls with short interval (50ms)
until a certain condition is reached or the
command timed out

29(c) Felix Petriconi 2016

Synchronous command

(c) Felix Petriconi 2016 30

Asynchronous command

(c) Felix Petriconi 2016 31

Test functions

void AdminstrationInterface::userLogin(const std::string& userName,

const std::string& password);

Synchronous Call

Asynchronous Call

Type is identified by

return value of the

test function

CommandResult

AdminstrationInterface::waitUntilAdministrationIsVisible();

enum class CommandResult

{

Success, // when the condition is fulfilled

Failed, // when the condition cannot be fulfilled (anymore)

Pending // when the condition is not yet fulfilled

};

Asynchronous Call

32© Felix Petriconi 2016

Asynchronous test function

CommandResult

AdminstrationInterface::waitUntilAdministrationIsVisible()

{

if (administrationModule().isVisible())

{{

return CommandResult::Success;

}

return CommandResult::Pending;

}

33© Felix Petriconi 2016

Scoped test contexts in RSpec
describe ‘foo’ do

before(:all) do

login_scoped(“name”, “password”)

end

describe ‘1st test scenario’ do

before(:all) do

send_patient_scoped(“TestPatient_A”)

end

Log in

Send Patient

end

it ‘bar 1’ do

perform check

end

end

describe ‘2nd test scenario’ do

before(:all) do

send_patient_scoped(“TestPatient_B”)

end

it ‘bar 2’ do

perform check

end

end

end

Remove Patient

Send Patient

Remove Patient

Log out34

“RAII” within RSpec

require 'cleaner'

require 'rspec'

module RSpec

module Core

class ExampleGroup

class << self

alias old_set_it_up set_it_up

Register ‘cleaner’ in

RSpec hooks

The ‘cleaner’

implements a stack

that can get

execution blocks
alias old_set_it_up set_it_up

def set_it_up(*args)

old_set_it_up(*args)

hooks.register(:append, :before, :all)

{ cleaner.set_mark }

hooks.register(:append, :after, :all)

{ cleaner.clean_up_till_last_mark }

end

end

end

end

end

35© Felix Petriconi 2016

execution blocks

pushed at and

those are separated

per context with a

special marker

Scope function example

def login_scoped(user, password) do

administration.login(“user1”, “password4user1”)

cleaner.push_action({administration.logout()})

end

36© Felix Petriconi 2016

Execution block that shall be

used for unwinding the

previous command while

leaving the current context

Helpful additions

Log the complete I/O stream of the RSpecCenter

Log inside RSpecCenter execution time per

command and generate statistics at the end of

each test to find potential bottle-neckseach test to find potential bottle-necks

(c) Felix Petriconi 2016 37

Nice side effect

The application was stressed in a way that it was

never done before

=> Many race conditions were identified and

could be fixedcould be fixed

(c) Felix Petriconi 2016 38

7.0.0

4000

5000

6000

120

140

160

180

200

Unit Tests

Customer Problem Reports / Version

Results of quality improvements
Number of patches

went down

1st SCRUM training

2nd SCRUM training

7.0.1

7.1.0

7.1.1

7.1.2

7.2.0

7.1.3

7.1.4

7.2.2

7.3.0

7.3.1

7.2.1

7.3.2

8.0.0

7.3.3

8.1.0

8.1.1

7.3.4

8.2.0

8.3.0

8.2.1

8.4.0

9.0.0

8.4.1

33

1

0

1000

2000

3000

0

20

40

60

80

100

120

01.06.2009 01.06.2010 01.06.2011 01.06.2012 01.06.2013 01.06.2014 01.06.2015

RSpec Tests

39

Process improvements

0% 20% 40% 60% 80% 100%

7.1.0

7.2.0

7.3.0

Proportion: Development Time /

Release Time

In the development

phase all PBIs are

done and all bugs are

fixed.

In the release phase

are tests executed

that we a required

to do after code

40

7.3.0

8.0.0

8.1.0

8.2.0

8.3.0

8.4.0

9.0.0

9.1.0

10.0.0

Development Phase Release Phase

to do after code

freeze and those

that we choose

Decreasing trend of

the proportion of

dev. time / rel. time

Current test status

UnitTests are integrated into the build process (A
failing UnitTest results in a failing library build)

We just write UnitTests any more for generic
code. No Business rules are checked with code. No Business rules are checked with
UnitTests but with behaviour tests.

Complete continual test suite run takes 3h

Release test cycle takes 2 weeks (main focus is
now on regulatory required and exploratory
tests)

41© Felix Petriconi 2016

Overall lessons learned

Agile development is possible in a regulated

environment

Train the whole team

Empower the teamEmpower the team

Responsibility lies on everyone

It is possible to turn around a huge legacy code

base

42© Felix Petriconi 2016

Practical lessons learned

Fix failing tests fast

Refactor not only production code, refactor tests

code with the same passion

Test code IS production codeTest code IS production code

© Felix Petriconi 2016 43

Acknowledgements

The presented work is the result of our whole

team

Special thanks for support with the statistics

goes to Christian Beck and Thomas Koschelgoes to Christian Beck and Thomas Koschel

(c) Felix Petriconi 2016 44

Reference

• Why Most UnitTesting is Waste and Segue by James O.
Coplien, 2014

• Effective Programming with Components - Screen casts by
Alexander Stepanov

• Clean Coders – Screen casts by Robert C. Martin

• Continuous Delivery; Jez Humble & David Farley; Addison • Continuous Delivery; Jez Humble & David Farley; Addison
Wesley, 2010

• Continuous Integration; Stephen M. Matyas, Nicholas
Schneider, Mark Voit & Paul Duvall; Addison Wesley, 2007

• Cucumber

• RSpec

• GoogleTest

45© Felix Petriconi 2016

Feedback is always welcome!

46© Felix Petriconi 2016

Felix Petriconi

MeVis Medical Solutions AG

Caroline-Herschel-Str. 1

28359 Bremen

Germany

eMail: felix.petriconi@mevis.de

Thank‘s for your attention!

© Felix Petriconi 2016 47

eMail: felix.petriconi@mevis.de

Twitter: @FelixPetriconi

GitHub:

https://github.com/FelixPetriconi

module SCR

This exception is thrown whenever a timeout occurred in the

RSpecCenter

class TimeoutException < StandardError

end

This exception is thrown whenever an error happens inside the

SCR application code

class CommandFailedException < StandardError

end

This exception is thrown whenever a command was tried to

execute that does not exist on SCR side

class CommandNotFoundException < StandardError

end

This class writes anything which is written to IO (like

stderr) to a given logger

class IOToLog < IO

def initialize(logger)

@logger = logger

end

def write(text)

def command(process, command, *args)

ipc_timeout = split_timeout_from_args *args

xml_result = @server.call("scrcukecommand", process,

command, ipc_timeout, *args)

command_result = xml_result[0]

xml_result.delete_at(0)

These are the possible result values from the RSpecCenter

#enum CommandResultEnum

#{

CR_SUCCESS,

CR_FAILED,

CR_PENDING,

CR_TIMED_OUT,

CR_NO_COMMAND

#};
def write(text)

#assume anything written to stderr is an error

@logger.debug(text)

end

end

class Interface

def initialize(url)

@server = XMLRPC::Client.new2(url)

client_log = Logger.new("XmlRpcClient.log")

@server.set_debug(IOToLog.new(client_log))

@server.timeout=60*60*24

end

def split_timeout_from_args(args)

ipc_timeout = 60

args.each do |element|

if element.is_a?(Hash) && element.has_key?(:ipc_timeout)

ipc_timeout = element[:ipc_timeout]

args.delete element

end

end

ipc_timeout

end

© Felix Petriconi 2016 48

if command_result == 3

raise TimeoutException, "The remote IPC command

(#{command}) timer of #{ipc_timeout}s elapsed.", caller[0]

end

if command_result == 4

raise CommandNotFoundException, "The remote IPC command

(#{command}) was not found.", caller[0]

end

if command_result != 0

raise CommandFailedException, "The remote IPC command

#{command} failed: #{xml_result.first}", caller[0]

end

xml_result

end

@@rpc_locator = nil

def rpcLocator

if @@rpc_locator.nil?

@@rpc_locator = RPCLocator.new

@@rpc_locator.interface =
Interface.new("http://127.0.0.1:65501")

@@rpc_locator.interface.reset_rpec_center

end

@@rpc_locator

end

module_function :rpcLocator

def administration

@@administration ||= SCR::Application.new(‘ADMINISTRATION',
rpcLocator)

end

module_function :administration

This class implements the dependency injection pattern for

the XMLRPC interface

class RPCLocator

attr_accessor :interface

end

Each process that shall be used inside a # Each process that shall be used inside a

RSpec test must have an instance of this class

All methods to be called into the process are

realized through method_missing.

class Application

attr_reader :name

def initialize(ipc_module_name, locator)

@name = ipc_module_name

@rpc_locator = locator

end

def method_missing(sym, *args, &block)

@rpc_locator.interface.command(@name, "#{sym}", args)

end

end

end

© Felix Petriconi 2016 49

