
Refactoring: 25 Years On

Chris Simons

@chrislsimons
chris.simons@uwe.ac.uk

www.cems.uwe.ac.uk/~clsimons/

19 – 23 April,
Bristol, UK

1

Interactive workshop

A sense of journey, so first, the fossil record and a little archaeology…

2

Part 1
What is contemporary refactoring?

Part 2
What tool support exists, and what is needed?

Griswold, W.G. and Opdyke, W.F., 2015. The
Birth of Refactoring: A Retrospective on the
Nature of High-Impact Software Engineering
Research. IEEE Software, 32(6), pp. 30-38.

3

4

“Refactoring is the process of changing a software
system in such a way that it does not alter the external
behaviour of the code yet improves its internal structure.
It is a disciplined way to clean up code that minimizes
the chances of introducing bugs.”

(page xvi)

“Improving the design after it has been written.”

5(1999)

6

7

Leppanen, M., Makinen, S., Lahtinen, S., Sievi-Korte, O., Tuovinen, A.P. and Mannisto, T.,
2015. Refactoring - A Shot in the Dark? IEEE Software, 32(6), pp. 62-70.

8

Leppanen, M., Makinen, S., Lahtinen, S., Sievi-Korte, O., Tuovinen, A.P. and Mannisto, T.,
2015. Refactoring - A Shot in the Dark? IEEE Software, 32(6), pp. 62-70.

9

Leppanen, M., Makinen, S., Lahtinen, S., Sievi-Korte, O., Tuovinen, A.P. and Mannisto, T.,
2015. Refactoring - A Shot in the Dark? IEEE Software, 32(6), pp. 62-70.

10

Leppanen, M., Makinen, S., Lahtinen, S., Sievi-Korte, O., Tuovinen, A.P. and Mannisto, T.,
2015. Refactoring - A Shot in the Dark? IEEE Software, 32(6), pp. 62-70.

11

Question 2

What is the philosophy of contemporary refactoring?

25 years on… part 1

Question 1

What is the intent of contemporary refactoring?

BREAK OUT DISCUSSIONS, 15-20 MINUTES

tweet @chrislsimons #ACCUConf 12

For example, if the original intent of refactoring was focussed on architectural
and design-level restructuring, is it now the case that refactoring relates to more
fine-grained (code) changes? Have ‘extract xxx’, ‘push up xxx’ and ‘pull down xxx’
patterns been superseded with a more fine-grained duplication avoidance?

For example, if the original philosophy of refactoring was that cleaning code must
preserve behaviour, is this strictly necessary at a fine-grained code level? Might
minor changes in program behaviour be tolerated for the sake of clean code,
improved elegance and comprehension in design, code and test?

13

Part 2
Tool support for refactoring

Manual

(Reactive Tool)

Automated

(Proactive tool)

?Semi-automated?

14

Netbeans for Java

15

http://blogs.msdn.com/b/vcblog/archive/2015/12/03/c-core-guidelines-checkers-available-for-vs-2015-update-1.aspx

http://blogs.msdn.com/b/vcblog/archive/2015/12/03/c-core-guidelines-checkers-available-for-vs-2015-update-1.aspx

16

Hafiz, M. and Overbey, J., 2015.
Refactoring Myths.
IEEE Software, 32(6), pp.39-43.

17

IEEE Software, 32(6), pp. 80-83.

Question 2
What tool support is needed?

For example, could automation speed up refactoring? How proactive could
refactoring tools be? Would proactive tools be trusted? Might they be
dynamic and adaptive? Should they be prominent in development IDEs,
possibly as recommendation engines, or might they work offline from a
command line?

25 years on… part 2

Question 1
What is the state of current tool support for refactoring?

For example, how useable is contemporary tool support? How robust? Are
refactoring tools error free? Might they even introduce errors in design and
code? After refactoring, is a simple syntax check sufficient?

BREAK OUT DISCUSSIONS, ANOTHER 15-20 MINUTES

tweet @chrislsimons #ACCUConf 18

19

Sharma, T., Suryanarayana, G. and Samarthyam, G., 2015.
Challenges to and Solutions for Refactoring Adoption: An Industrial Perspective.
IEEE Software, 32(6), pp.44-51.

20

21

By the way, I’m very interested in how AI can
learn and search for refactoring suggestions…

22

23

Thank you!

Chris Simons

@chrislsimons
chris.simons@uwe.ac.uk

www.cems.uwe.ac.uk/~clsimons/

24

19 – 23 April,
Bristol, UK

