
@sixty_north

Mutation Testing in Python
Theory and Practice

1

Austin Bingham
@austin_bingham

2

Agenda

1. Introduction to the theory of  
mutation testing

2. Overview of practical difficulties

3. Cosmic Ray: mutation testing  
for Python

4. Demo

5. Questions

3

4

Mutation Testing

5

“Mutation testing is conceptually quite simple.

Faults (or mutations) are automatically seeded into your
code, then your tests are run. If your tests fail then the mutation
is killed, if your tests pass then the mutation lived.

The quality of your tests can be gauged from the percentage
of mutations killed.”

- pitest.org

http://pitest.org

What is mutation testing?

6

Code under test + test suite

Introduce single change to code under test

Run test suite

Ideally, all changes will result in test failures

A nested loop of mutation and testing
 Basic algorithm

for operator in mutation-operators:

 for site in operator.sites(code):

 operator.mutate(site)

 run_tests()

7

What does mutation testing tell us?

8

Killed

Tests properly detected the
mutation.

Incompetent

Mutation produced code which is
inherently flawed.

Survived

Tests failed to detect the mutant!

Tests are inadequate for detecting
defects in necessary code

 either

Mutated code is extraneous

 or

9

10

Goals of Mutation Testing

Do my tests meaningfully cover my code's functionality
Goal #1: Coverage analysis

Is a line executed?
versus

Is functionality verified?

11

Survivors can indicate code which is no longer necessary
Goal #2: Detect unnecessary code

12

13

Types of Mutations

Examples of mutations

14

• AOD - arithmetic operator deletion
• AOR - arithmetic operator replacement
• ASR - assignment operator replacement
• BCR - break continue replacement
• COD - conditional operator deletion
• COI - conditional operator insertion
• CRP - constant replacement
• DDL - decorator deletion
• EHD - exception handler deletion
• EXS - exception swallowing
• IHD - hiding variable deletion
• IOD - overriding method deletion
• IOP - overridden method calling position change
• LCR - logical connector replacement
• LOD - logical operator deletion
• LOR - logical operator replacement
• ROR - relational operator replacement
• SCD - super calling deletion
• SCI - super calling insert
• SIR - slice index remove

Replace relational operator
x > 1

x < 1

break/continue replacement
break

continue

Some mutations are very widely applicable
Language-agnostic mutations

15Lionel Brand - http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-Mutest.pdf

‣ Constant replacement 
0 ! 4  

‣ Constant for scalar variable
replacement  
some_func(x) ! some_func(42)  

‣ Arithmetic operator replacement  
x + y ! x * y 

‣ Relational operator replacement  
x < y ! x <= y 

‣ Unary operator insertion 
int x = 1 ! int x = -1

http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-Mutest.pdf

Mutations which only make sense for (some) OO languages
Object-oriented mutations

16Lionel Brand - http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-Mutest.pdf

‣ Changing an access modifier 
public int x ! private int x  

‣ Remove overloading method 
int foo() {} ! int foo() {}  

‣ Change base class order 
class X(A, B) ! class X(B, A)  

‣ Change parameter order (?) 
foo(a, b) ! foo(b, a) 

http://www.uio.no/studier/emner/matnat/ifi/INF4290/v10/undervisningsmateriale/INF4290-Mutest.pdf

Mutations which only make sense for (some) functional languages
Functional mutations

17Duc Le, Mohammad Amin Alipour, Rahul Gopinath, Alex Groce - http://web.engr.oregonstate.edu/~alipourm/pub/fp_mutation.pdf

‣ Change order of pattern matching  
take 0 _ = [] 
take _ [] = [] 
take n (x:xs) = x : take (n-1) xs 
 ↓ 
take _ [] = [] 
take 0 _ = [] 
take n (x:xs) = x : take’(n-1) xs

http://web.engr.oregonstate.edu/~alipourm/pub/fp_mutation.pdf

18

Complexities
of

Mutation Testing

Long test suites, large code bases, and many operators can add up
Complexity #1: It takes a loooooooong time

19Image credit: John Mainstone (CC BY-SA 3.0)

What to do?
‣ Parallelize as much as possible!
‣ After baselining:

• only run tests on modified code
• only mutate modified code
‣ Speed up test suite

Some incompetent mutants are harder to detect that others
Complexity #2: Incompetence detection

20

"Good luck with that."
 Alan Turing (apocryphal)

Some mutants have no detectable differences in functionality
Complexity #3: Equivalent mutants

21

def consume(iterator, n):
 """Advance the iterator n-steps ahead.
 If n is none, consume entirely."""

 # Use functions that consume iterators at C speed.
 if n is None:
 # feed the entire iterator into a zero-length deque
 collections.deque(iterator, maxlen=0)
 else:
 # advance to the empty slice starting at position n
 next(islice(iterator, n, n), None)

Some mutants have no detectable differences in functionality
Complexity #3: Equivalent mutants

22

if __name__ == '__main__':
 run()

23

Cosmic Ray:
Mutation Testing for

Python
github.com/sixty-north/cosmic-ray

What do we need to do to make this work?
Implementation challenge

1. Determine which mutations to make.

2. Make those mutations one at a time.

3. Run a test suite against each mutant.

24

While also
dealing
with the

complexities!

25

Operators

1 + 2

Operators sit at the center of Cosmic Ray’s…well…operations
Core concept: Operators

26

Job #1:
Identify potential

mutation sites

1 - 2

Job #2:
Perform mutations

on request- Not a job -
Decide when
to perform
mutations

Operator cores take action when a potential mutation site is detected
Operator cores

27

operator coresite detected

Current cores
1. Counting: counts

number 
of mutations

2. Mutating: requests
mutation 
at correct time

Abstract syntax trees: the basis for Cosmic Ray’s mutation operators
Python’s standard ast module

28

1 + 2 * 3
add

num(1) mul

num(2) num(3)

ast elements we use…
‣ Generating ASTs from  

Python source code

‣ Walking/transforming ASTs

‣ Manipulating AST nodes  

cleanly
Plus we use compile() to
transform ASTs into code

objects at runtime

The operator base class, subclasses, and cores all do a little dance
Operators: putting it all together

29

ast.NodeTransformer

Operator MutatingCore

1. visit()

2. visit_Num()

3. visit_mutation_site() 4. visit_mutation_site()

5. mutate()ReplaceConstant

Converts unary-sub to unary-add
Example operator: Reverse unary subtraction

30

class ReverseUnarySub(Operator):
 def visit_UnaryOp(self, node):
 if isinstance(node.op, ast.USub):
 return self.visit_mutation_site(node)
 else:
 return node

 def mutate(self, node):
 node.op = ast.UAdd()
 return node

Operators summary

‣Use ast to transform source code
into abstract syntax trees.

‣ Implement operators which are
able to detect mutation sites and
perform mutations.

‣Use different cores to control
exactly what the operators are
doing.

31

32

Installing modules

Python provides a sophisticated system for performing module imports
Module management: overview

finders

Responsible for
producing loaders
when they recognize
a module name

33

loaders

Responsible for
populating module
namespaces on
import

sys.meta_path

A list of finders which
are queried in order
with module names
when import is
executed

Cosmic Ray implements a custom finder
Module management: Finder

‣ The finder associates module names
with ASTs

‣ It produces loaders for those
modules which are under mutation

34

Cosmic Ray implements a custom finder
Module management: Finder

35

class ASTFinder(MetaPathFinder):
 def __init__(self, fullname, ast):
 self._fullname = fullname
 self._ast = ast

 def find_spec(self, fullname, path, target=None):
 if fullname == self._fullname:
 return ModuleSpec(fullname,
 ASTLoader(self._ast, fullname))
 else:
 return None

Cosmic Ray implements a custom loader
Module management: Loader

‣ The loader compiles its AST in the
namespace of a new module object

36

Cosmic Ray implements a custom loader
Module management: Loader

37

class ASTLoader:
 def __init__(self, ast, name):
 self._ast = ast
 self._name = name

 def exec_module(self, mod):
 exec(compile(self._ast,
 self._name,
 'exec'),
 mod.__dict__)

Module installation summary

‣Use MutatingCore to generate
mutated ASTs

‣Use compile() to produce code
objects from mutated ASTs

‣Use finders, loaders, and
sys.meta_path to advertise and
install these mutated modules

38

39

Figuring out what 
to mutate

This seems like the natural boundary for mutation testing in the Python universe
Cosmic Ray operates on a package

‣The user specifies a single
package for mutation

‣Cosmic Ray scans the package
for all of its modules

‣There are limitations to the kinds
of modules it can mutate

‣ It is possible to exclude modules
which should not be mutated

40

Sub-packages and modules are discovered automatically
Finding modules

41

find_modules.py

def find_modules(name):
 module_names = [name]
 while module_names:
 module_name = module_names.pop()
 try:
 module = importlib.import_module(module_name)
 yield module
 if hasattr(module, '__path__'):
 for _, name, _ in pkgutil.iter_modules(module.__path__):
 module_names.append('{}.{}'.format(module_name, name))
 except Exception: # pylint:disable=broad-except
 LOG.exception('Unable to import %s', module_name)

An interesting problem!
Counting potential mutants

42

1 + 2 * 3

1 - 2 * 3

1 + 2 / 3

2 * 3

1 + 16 * 3 ?

43

Running tests

Encapsulate the differences between various testing systems
Test runners

44

TestRunner

UnittestRunner

def _run()
test directory

Testing overview

‣Figure out what to mutate

‣Create a mutant

‣ Install the mutant

‣Tell TestRunner to run the tests

45

In a separate process

There is no perfect strategy for detecting them
Dealing with incompetent mutants

46Image by o5com - https://www.flickr.com/photos/o5com/5488964999

Absolute timeout
or

Based on a baseline

https://www.flickr.com/photos/o5com/5488964999

47

The rest of the tech

Test runners and operators are provided by dynamically discovered modules
Test system and operator plugins

‣ Using OpenStack's
stevedore plugin system

‣ Plugins can come from
external packages

48

cosmic_ray

py.test

my_package

unittest

my_test_system

Number
Replacerplugins

MyOperator

Used to distribute tasks to more than one machine
 elery: distributed task queue

49

celery worker. . .2. Task sent to worker

cosmic-ray worker

3. Worker started in new process

1. Task added to queue

cosmic-ray exec

celery task queue

celery worker

celeryproject.org

http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org
http://celeryproject.org

Use an embedded database to keep track of work and results
Staging of work

‣ Use CountingCore to determine
work-to-be-done

‣ Only schedule work items that
don’t have results

‣ Allows interruption and
resumption of runs

‣ Natural place for results

50

github.com/msiemens/tinydb

https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb
https://github.com/msiemens/tinydb

Describe command-line syntax in comment strings…like magic!
docopt: command-line interface description language

51

"""usage: cosmic-ray counts [options] [--exclude-modules=P ...] <top-module>

Count the number of tests that would be run for a given testing configuration.
This is mostly useful for estimating run times and keeping track of testing
statistics.

options:
 --no-local-import Allow importing module from the current directory
 --test-runner=R Test-runner plugin to use [default: unittest]
 --exclude-modules=P Pattern of module names to exclude from mutation
"""

$ cosmic-ray —no-local-import —exclude-modules=“.*.test” foo

docopt.org

http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org
http://docopt.org

52

Remaining work

There’s plenty left to do if you’re interested!
Remaining work

53

‣Properly implementing timeouts 

‣Exceptions and processing instructions  

‣Support for more kinds of modules 

‣Integration with coverage testing

github.com/sixty-north/cosmic-ray/issues

http://github.com/sixty-north/cosmic-ray/issues

54

Demo

55

Thank you!

@sixty_north

Austin Bingham
@austin_bingham

