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What's in a name?

● There are various features of C++ that allow 
you to avoid providing your own names

 lambda (unnamed functions)

 tuple (unnamed members)

 auto (unnamed types)

● This can help with genericity and brevity
● Let's see how we get on in practice ...



  

What's in a name?

● One of the motivations for this talk was, 
somewhat simplified:

● It was easy to miss that the return false didn't 
actually mean the value returned from doit

bool A::doit()
{
    return _coll->apply([&](value b) {
        if (/* ... */) {
            // ...
            return true;
        }
        log("Failed to process " + to_string(b));
        return false;
    });
}



  

What's in a name?

● To make it even more galling, the apply method was 
actually taking std::function<void(value)> so in fact 
the inner return value was being completely ignored

● My interest though was what was it about the use of 
the lambda that seemed to change the way the code 
was being read – in particular that the return 
statement exited the lambda rather than the enclosing 
function



  

What's in a name?

● We usually have a choice between a named and an 
unnamed way of writing the code

● What are some of the issues we should think about 
when making these choices?

● For obvious reasons most of the examples are short; 
however most of the programs we actually work on 
are not: there are some larger scale issues at work too 
as well as the more local ones. I hope to mention 
both.



  

Example 'straw man' program

● Let's start with a simple program and 
implement it in a number of ways...
#include <fstream>
#include <iostream>

#include "readnames.h"
#include "sortnames.h"
#include "printnames.h"

int main()
{
    std::ifstream ifs("names.txt");
    Names names;

    readnames(ifs, names);
    sortnames(names);
    printnames(std::cout, names);
}



  

Headers – old school C++

Possible data types:

  struct Name
  {
      std::string first;
      std::string last;
  };

  typedef std::vector<Name> Names; // don't worry about the precise collection type!

The corresponding function declarations:

  void readnames(std::istream & is, Names & names);

  void sortnames(Names & names);

  void printnames(std::ostream & os, Names const & names);

(Note that the declarations don't explicitly refer to Name, first or last)



  

readnames – old school C++
void readnames(std::istream & is, Names & names)
{
    Name next; // or Names::value_type next;
    while (is >> next.first >> next.last)
    {
        names.push_back(next);
    }
}

We might prefer to factor out a helper function:

std::istream & operator>>(std::istream & is, Names::value_type & name)
{
    return is >> name.first >> name.last;
}

void readnames(std::istream & is, Names & names)
{
    Names::value_type next;
    while (is >> next)
    {
        names.push_back(next);
    }
}



  

sortnames – old school C++

struct first_last
{
    bool operator()(Name const & lhs, Name const & rhs)
    {
        if (lhs.first < rhs.first)
            return true;
        else if (lhs.first == rhs.first)
            return lhs.last < rhs.last;
        return false;
    }
};

void sortnames(Names & names)
{
    std::sort(names.begin(), names.end(), first_last());
}

● Using a functor



  

sortnames – old school C++

bool operator<(Name const & lhs, Name const & rhs)
{
    if (lhs.first < rhs.first)

return true;
    else if (lhs.first == rhs.first)
        return lhs.last < rhs.last;
    return false;
}

void sortnames(Names & names)
{
    std::sort(names.begin(), names.end());
}

● Or use operator< to remove another name



  

printnames – old school C++

namespace
{
    class print
    {
        std::ostream & os;
    public:
        print(std::ostream &os) : os(os) {}
        void operator()(Names::value_type const &name)
        { os << name.first << ' ' << name.last << '\n'; }
    };
}

void printnames(std::ostream & os, Names const & names)
{
    std::for_each(names.begin(), names.end(), print(os));
}

● We could use for_each:



  

printnames – old school C++

std::ostream & operator<<(std::ostream & os, Names::value_type const & name)
{
    return os << name.first << ' ' << name.last;
}

void printnames(std::ostream & os, Names const & names)
{
    std::copy(names.begin(), names.end(), std::ostream_iterator<Names::value_type>(os, "\n"));
}

● Or use another operator: operator<<



  

What's good and bad so far?
● Pro:

 The code is simple to understand

 The meaning of the code is clear
● Con:

 It would be hard to re-use – the algorithms 
are generic but the names are very specific 

 Lots of repetition – more work to write & read
● Can we do better?



  

Reducing scope: C++11
● Local classes

void printnames(std::ostream & os, Names const & names)
{
    class print
    {
        std::ostream & os;
    public:
        print(std::ostream &os) : os(os) {}
        void operator()(Names::value_type const &name)
        { os << name.first << ' ' << name.last << '\n'; }
    };

    std::for_each(names.begin(), names.end(), print(os));
}

We can now use a local name and it is scoped inside the method using it.
But we've still got to name it – but only in this scope.



  

Reducing scope: C++11
● Local classes

void printnames(std::ostream & os, Names const & names)
{
    class f
    {
        std::ostream & os;
    public:
        f(std::ostream &os) : os(os) {}
        void operator()(Names::value_type const &name)
        { os << name.first << ' ' << name.last << '\n'; }
    };

    std::for_each(names.begin(), names.end(), f(os));
}

We can now use a local name and it is scoped inside the method using it.
Since the scope is very restricted we can use a “placeholder” name.

This proposal was first formally made in 2001 (by Anthony Williams) and
adopted into C++11 in 2008 after five further papers. Phew...



  

Changing code: C++11
● lambda

void printnames(std::ostream & os, Names const & names)
{
    std::for_each(names.begin(), names.end(), [&os](Name const & name)
    { os << name.first << ' ' << name.last << '\n'; });
}

We don't need to name the target functoid of 'for_each'



  

C++11
● This lambda is (roughly) equivalent to

● So, if we understand the previous example, lambda is 
'easy'; it is just that the compiler

 names it

 writes much of the scaffolding

void printnames(std::ostream & os, Names const & names)
{
    class unnamed {
        std::ostream &os;
    public:
        unnamed(std::ostream &os) : os(os) {}
        void operator()(Name const & name)
        { os << name.first << ' ' << name.last << '\n'; }
   };

    std::for_each(names.begin(), names.end(), unnamed(os));
}



  

C++14
● Generic lambda

● We can remove the use of the name of the contained type.

● Except we might need to think rather than naively just use 
auto...

void printnames(std::ostream & os, Names const & names)
{
    std::for_each(names.begin(), names.end(), [&os](auto name)
    { os << name.first << ' ' << name.last << '\n'; });
}



  

C++14
● Generic lambda

● The original proposals for generic lambda used the term 
'polymorphic lambda', but in this case we're not actually 
using the lambda in a polymorphic fashion at all. In my 
experience this is a common use case for generic 
lambdas.

void printnames(std::ostream & os, Names const & names)
{
    std::for_each(names.begin(), names.end(), [&os](auto const & name)
    { os << name.first << ' ' << name.last << '\n'; });
}



  

C++14
● The generic lambda is roughly equivalent to

● A generic lambda changes the C++11 style member 
function into a member function template

void printnames(std::ostream & os, Names const & names)
{
    class unnamed {
        std::ostream &os;
    public:
        unnamed(std::ostream &os) : os(os) {}
        template <typename T>
        void operator()(T const & name)
        { os << name.first << ' ' << name.last << '\n'; }
   };

    std::for_each(names.begin(), names.end(), unnamed(os));
}



  

Concepts TS
● The generic lambda is roughly equivalent to

● This makes the correspondence more uniform

● Voting is in progress on the TS

● A variation of this TS is likely to be in a future standard

void printnames(std::ostream & os, Names const & names)
{
    class unnamed {
        std::ostream &os;
    public:
        unnamed(std::ostream &os) : os(os) {}
        void operator()(auto const & name)
        { os << name.first << ' ' << name.last << '\n'; }
   };

    std::for_each(names.begin(), names.end(), unnamed(os));
}



  

Another way: C++11
● Range-for and auto

● We don't need to concern ourselves with the iteration itself nor 
directly with the type 'Name'.

● In the case of for this is likely to be both shorter and simpler 
than using for_each

● There are however many other algorithms that haven't got 
language support and for these lambda is useful

● As with generic lambda earlier avoid naïve use of auto

void printnames(std::ostream & os, Names const & names)
{
    for (auto name : names)
    {
        os << name.first << ' ' << name.second << '\n';
    }
}



  

Another way: C++11
● Range-for and auto

● One problem with auto and range-based for is that you rarely 
want a plain auto 

● You typically want a reference to the target object – just as we 
saw earlier for generic lambda

void printnames(std::ostream & os, Names const & names)
{
    for (auto const & name : names)
    {
        os << name.first << ' ' << name.second << '\n';
    }
}



  

Digression: range for and auto
● Simpler syntax for range-for was proposed by 

Stephan T. Lavavej in Jan 2014 (N3853), but this has 
proved quite controversial

● He states the correct default for range for as auto &&

● The syntax originally proposed was

   for (elem : range)

● The original proposal was rejected in Urbana 2014 
after being provisionally accepted while C++14 was in 
ballot

● Since generic lambda - and concepts TS - have the 
same issue I'm personally less persuaded we need 
special syntax for the case of range for as it is 
something that people will need to be aware of



  

C++11
● Lambda with another algorithm

void sortnames(Names & names)
{
    std::sort(names.begin(), names.end(),
        [](Name const & lhs, Name const & rhs)
        {
            if (lhs.first < rhs.first)
                return true;
            else if (lhs.first == rhs.first)
                return lhs.last < rhs.last;
            return false;
        }
    );
}

One problem with lambdas is finding the best way to format them...



  

Datatypes
● The examples so far made small changes 

to the individual functions without attacking 
the basic datatype or interfaces.

● We can use a generic data type to avoid 
having to make one of our own.

● On the plus side this means less code to 
write / more code we get 'for free'



  

Datatypes: C++03
● Use pair to get rid of 'Name'

using Names = std::vector<std::pair<std::string, std::string>>;

We've saved defining, and naming, a struct.

void sortnames(Names & names)
{
    std::sort(names.begin(), names.end());
}

There – that was easy, wasn't it? We get an operator< for free!

But pair is restricted to only two items (the hint is in the name).
This is a solution that doesn't generalise to more than two fields*.

*Trying to use pairs of pairs is a shortcut to madness.



  

Datatypes: C++03
● Use pair to get rid of 'Name'

using Names = std::vector<std::pair<std::string, std::string>>;

We've saved defining, and naming, a struct.

void sortnames(Names & names)
{
    std::sort(names.begin(), names.end());
}

There – that was easy, wasn't it? We get an operator< for free!

But pair is restricted to only two items (the hint is in the name).
This is a solution that doesn't generalise to more than two fields*.

*Trying to use pairs of pairs is a shortcut to madness.

Unfortunately it hasn't stopped people trying it.

I resisted an example...



  

Datatypes: C++11
● Use tuple to get rid of 'Name'

using Names = std::vector<std::tuple<std::string, std::string>>;

We've again saved defining, and naming, a struct.

void sortnames(Names & names)
{
    std::sort(names.begin(), names.end());
}

There – as easy as pair, and more generic! 
(We still get an operator< for free)



  

Datatypes: C++11
● Access to tuple is a little … painful

● std::get<0>() is not, to my mind anyway, very readable

● Note: we have to qualify the call with std:: as argument 
dependent lookup doesn't work well with templates

● However, you might have hoped tuple would have an 
operator<< already wouldn't you ... how hard can it be?

void printnames(std::ostream & os, Names const & names)
{
    for (auto const & name : names) {
        os << std::get<0>(name) << ' ' << std::get<1>(name) << '\n';
    }
}



  

Datatypes: C++11
● Writing operator<< for tuple: YAGNI

std::ostream & operator<<(std::ostream & os, Names::value_type const & name)
{
    return os << std::get<0>(name) << ' ' << std::get<1>(name);
}

That's cheating: it works for our specific case only!
Can we do it for any sized tuple?



  

Datatypes: C++11
● A possible generic operator<<
template <size_t Pos, class... Args>
struct print_tuple {
    std::ostream& operator()(std::ostream& os, std::tuple<Args...> const & t) {
        return print_tuple<Pos-1, Args...>()(os, t) << ' ' << std::get<Pos>(t);
    }
};

template <class... Args>
struct print_tuple<0, Args...> {
    std::ostream& operator()(std::ostream& os, std::tuple<Args...> const & t) {
        return os << std::get<0>(t);
    }
};
 
template <class... Args>
std::ostream& operator<<(std::ostream& os, std::tuple<Args...> const & t) {
    return print_tuple<sizeof...(Args)-1, Args...>()(os, t);
}



  

Datatypes: C++11
● Add a bugfix for tuple<>
template <size_t Pos, class... Args>
struct print_tuple {
    std::ostream& operator()(std::ostream& os, std::tuple<Args...> const & t) {
        return print_tuple<Pos-1, Args...>()(os, t) << ' ' << std::get<Pos>(t);
    }
};

template <class... Args>
struct print_tuple<0, Args...> {
    std::ostream& operator()(std::ostream& os, std::tuple<Args...> const & t) {
        return os << std::get<0>(t);
    }
};
 
template <class... Args>
std::ostream& operator<<(std::ostream& os, std::tuple<Args...> const & t) {
    return print_tuple<sizeof...(Args)-1, Args...>()(os, t);
}

template <> std::ostream& operator<<(std::ostream& os, std::tuple<> const &) {
    return os;
} 



  

Datatypes: C++11/14
● Using the generic operator<<
void printnames(std::ostream & os, Names const & names)
{
    std::for_each(names.begin(), names.end(),
    [&os](Names::value_type const & name) { os << name << '\n'; });
}

Or (C++14)

void printnames(std::ostream & os, Names const & names)
{
    std::for_each(names.begin(), names.end(), [&os](auto const & name) { os << name << '\n'; });
}

Looks good to me – let's ship it.



  

Datatypes: C++11
● Pitfall – 'Names' is no longer our type
This alternative fails to compile:

void printnames(std::ostream & os, Names const & names)
{
    std::copy(names.begin(), names.end(), std::ostream_iterator<Names::value_type>(os, "\n"));
}

The error is:

.../include/c++/bits/stream_iterator.h:198:13: error: cannot bind
 'std::ostream_iterator<std::tuple<std::basic_string<char, std::char_traits<char>,
  std::allocator<char> >, std::basic_string<char, std::char_traits<char>,
  std::allocator<char> > > >::ostream_type {aka std::basic_ostream<char>}' lvalue
to 'std::basic_ostream<char>&&'
  *_M_stream << __value;

So that's obviously what's wrong then....



  

Datatypes: C++11
● Pitfall – 'Names' is no longer our type
This alternative fails to compile:

void printnames(std::ostream & os, Names const & names)
{
    std::copy(names.begin(), names.end(), std::ostream_iterator<Names::value_type>(os, "\n"));
}

What the error message was trying to tell us.

  The problem is that Names::value_type is tuple, which is in the std 
  namespace, as is ostream_iterator and ostream – hence inside the
  template expansion there's nothing to allow the compiler to find the operator<<
  we have defined in the default namespace. (Do not try changing this!)

Note: What's potentially worse is that if some other source code has defined
another operator<< for tuple we have an ODR violation: we're likely to get one
of the implementations selected but with no clear pattern as to which one!



  

Datatypes: C++11
● Pitfall – 'Names' is no longer our type
● How can we fix this?

 Inheritance

struct Name : tuple<string, string> 
{...};

 Using tuple in the implementation of < for 
our own class

 But we need a name again



  

Datatypes: C++11
● Inheritance example

 May need to explicitly inherit ctors (C++11)

● Now we can use the implementation of the 
standard type while keeping this type ours

struct Name : std::tuple<std::string, std::string>
{
    using std::tuple<std::string, std::string>::tuple;
};



  

Datatypes: C++11
● Using tuple for implementing operator<

struct Name

{

    std::string first;

    std::string last;

};

bool operator<(Name const &lhs, Name const &rhs) {

      return std::tie(lhs.first, lhs.last) <

             std::tie(rhs.first, rhs.last);

}

 Note this may be as fast as hand-written comparisons



  

Ease of change
● Code rarely stays the same; how does the 

presence or absence of a name help with 
code refactoring?

● If the change is in line with the genericity 
provided by the C++ feature it's easy

● For example, consider the changes needed 
if we add a middle name.

● (We'll not consider dealing with the fact that 
is optional!)



  

Ease of change - fields
● Adding a middle name – “old school”
● With our own struct we need to

 add a new field to the struct

 change the implementations of many of our 
functions to use the new field

● There may be some sort of refactoring support

● Alternatively, simply search for the existing field 
names and data types in the codebase (again, there 
may be tool support for this)



  

Ease of change - fields
● Adding a middle name – tuple
● With tuple we need to

 Change the type to a tuple with three 
elements

 Generic functions such as operator<<, 
operator>> and operator< 'just work'

 Add processing for the extra element to non-
generic code

● Hard to see how we can get refactoring support – it's 
not our type

● There's no field name to search for – we have to find 
the relevant usages of get<> and add another. We 
may also have to find the relevant usages of get<1> 
and change them to get<2>.



  

Ease of change - functionality
● Suppose we want to sort our list of names 

by last name and then first name.
● With our own type we can simply change 

the function used in the sort function
bool last_first(Name const & lhs, Name const & rhs)
{
    if (lhs.last < rhs.last)

return true;
    else if (lhs.last == rhs.last)
        return lhs.first < rhs.first;
    return false;
}

void sortnames(Names & names)
{
    std::sort(names.begin(), names.end(), last_first);
}



  

Ease of change - functionality
● Suppose we want to sort our list of names 

by last name and then first name.
● If we're using a standard system type and 
operator< we can't do this

 This might encourage some dubious 
practice

 “Let's read the name in reverse 
order”



  

Ease of change - functionality
● One reason I've seen tuple used is to take 

advantage of the implicit operator<
● Has anyone in the room ever seen an 

incorrectly implemented operator< ?
● However, since the implementation is fixed, 

I've seen cases where the element use is 
non-intuitive simply to get the comparison 
semantics right

● What other solutions are there?



  

Ease of change - functionality
● I've already mentioned using std::tie
● This lets you pick which fields are included 

in the comparison and which order

● However, you still have to write some code, 
and this needs maintenance if you change 
the class, for example if we add a middle 
name...

    return std::tie(lhs.last, lhs.first) < std::tie(rhs.last, rhs.first);



  

Ease of change - functionality
● There is ongoing discussion about letting 

the compiler generate operator<

 Oleg Smolsky (N3950 and more)
 Bjarne Stroustrup (N4175 and more)
 Agreement may yet be reached
 Questions to resolve include:

 Opt-in or opt-out?
 Other operators?
 Which fields are included?



  

Scoping issues
● Lambda allows you to implicitly 'capture' a 

variable.
● This adds a member to the (created) class

● The compiler-generated class contains a 
reference member variable os initialised 
from os

● But only if the name is local scope

void printnames(std::ostream & os, Names const & names) {
    std::for_each(names.begin(), names.end(), [&](auto name) {
        os << name.first << ' ' << name.last << '\n';
    });
}



  

Scoping issues
● Quick test (and short enough to be obvious) 

● What do you expect as output?
● Scott Meyers EMC++ recommends not 

using capture defaults ([=], [&])

#include <iostream>

int i{};

int main()
{
   static int j{};
   int k{};
   auto lambda = [=]() mutable {++i; ++j; ++k; };
   lambda();
   std::cout << i << ' ' << j << ' ' << k << std::endl;
}



  

More fun with lambdas
● C++ provides some standard functoids

● We can do something similar with generic 
lambda in C++14

#include <functional>

void modify(std::vector<double> & vec)
{
   using namespace std::placeholders;

   std::transform(vec.begin(), vec.end(), vec.begin(), 
      std::bind(std::plus<double>(), _1, 1));

   std::transform(vec.begin(), vec.end(), vec.begin(), 
      std::bind(std::plus<>(), _1, 1)); // C++14
}



  

More fun with lambdas
● Here's one approach

● Provides the function exactly where it is 
needed

● Not restricted to the set of functions 
predefined in the standard library

void modify(std::vector<double> & vec)
{
   std::transform(vec.begin(), vec.end(), vec.begin(), 
      [](auto x) { return x + 1; });
}



  

Lambdas on lambdas
● Here's another approach

● The outer lambda returns a lambda that uses the supplied 
argument

● Concise to write, no boiler-plate template class necessary

● Useful where the function is a little more complex than '+'

auto plus = [](auto y) {
  return [y](auto x) {
    return x + y; };
};

void modify(std::vector<double> & vec)
{
   std::transform(vec.begin(), vec.end(), vec.begin(), 
      plus(1));
}



  

Lambdas on lambdas
● Or should it be:

● The outer lambda returns a lambda that uses the supplied 
argument – but this may be a temporary

● Do we want a reference or value for 'y' in the inner 
lambda?

● And how do we do perfect forwarding?

auto plus = [](auto && y) {
  return [&y](auto && x) {
    return x + y; };
};



  

Using std::forward
● With a regular template it's easy to forward

● Using std::forward means that the 
argument type of g() will now match the 
argument type of the template instantiation

template <typename T> void f(T && t)
{
   g(std::forward<T>(t));
}



  

Using std::forward
● How do we forward with a generic lambda?

● Using a generic lambda we no longer have 
a name for the template argument to use 
with std::forward

auto f = [](auto && t)
{
   return g(std::forward<???>(t));
}



  

Using std::forward
● How do we forward with a generic lambda?

● We can use decltype on the variable

auto f = [](auto && t)
{
   return g(std::forward<???>(t));
}

auto f = [](auto && t)
{
   return g(std::forward<decltype(t)>(t));
}



  

Type of x and decltype of x ...

● “The name of the song is called 'Haddocks' Eyes'!”

● "Oh, that's the name of the song, is it?" Alice said, trying to feel interested.

● "No, you don't understand," the Knight said, looking a little vexed. "That's 
what the name is called. The name really is, 'The Aged Aged Man.'"

● "Then I ought to have said "That's what the song is called'?" Alice corrected 
herself.

● "No, you oughtn't: that's quite another thing! The song is called 'Ways and 
Means': but that's only what it is called you know!"

● "Well, what is the song then?" said Alice, who was by this time completely 
bewildered.

● "I was coming to that," the Knight said. "The song really is "A-sitting on a 
Gate": and the tune's my own invention."

● -- Lewis Carroll, "Through the Looking Glass" 



  

Variadic templates
● Some 'interesting' constructs are possible

● foo is invoked for each argument (in an undetermined 
order) - the results are discarded by the comma operator

● The list of 0s is passed to the varargs lambda … that does 
nothing with it

● Is this wonderful or dreadful – or both?

template<class F, class ...Ts>
void for_each_arg(F f, Ts &&...args) {
  [](...){}((f(std::forward<Ts>(args)), 0)...);
}

void foo(int i) {std::cout << i << std::endl;}

int main() {
    for_each_arg(foo, 1, 2, 3);
}



  

Variadic templates
● What does this code print?

● ab or ba ?

void f(int, int) {}

int x(const char *p)
{
  std::cout << p;
  return 0;
}

int main()
{
   f(x("a"), x("b"));
}



  

Variadic templates
● It would be nice if we had deterministic 

ordering with the function call
● The lack of determinism is confusing and 

also produces some subtly broken code
● There has been an initial proposal, N4228, 

to specify evaluation order
● a(b,c,d) would evaluate in the order a,b,c,d.

 EWG showed strong support
 Can change output for some 

compilers
 May reduce optimisation 

opportunities



  

Variadic templates
● If you want deterministic ordering

● foo is invoked for each argument as the initializer_list 
is constructed and hence the order of evaluation will be 
left-to-right

template<class F, class ...Ts>
void for_each_arg(F f, Ts &&...args) {
  (void)std::initializer_list<int>{(f(std::forward<Ts>(args)), 0)... };
}

void foo(int i) {std::cout << i << std::endl;}

int main() {
    for_each_arg(foo, 1, 2, 3);
}



  

Some conclusions
● C++ provides some features that let you 

dispense with naming things

 lambda (unnamed functions)
 tuple (unnamed members)
 auto (unnamed types)

● These can be very useful for simple cases
● Names are useful to express intent and can 

also help with type ownership and code 
maintenance

● There are also issues to consider with 
scoping and the lifetime of implicit fields
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