

Coding Without Words

Roger Orr

OR/2 Limited

Some strengths and weaknesses of C++ programming
without explicitly naming things.

– ACCU 2015 –

What's in a name?

● There are various features of C++ that allow
you to avoid providing your own names

 lambda (unnamed functions)

 tuple (unnamed members)

 auto (unnamed types)

● This can help with genericity and brevity
● Let's see how we get on in practice ...

What's in a name?

● One of the motivations for this talk was,
somewhat simplified:

● It was easy to miss that the return false didn't
actually mean the value returned from doit

bool A::doit()
{
 return _coll->apply([&](value b) {
 if (/* ... */) {
 // ...
 return true;
 }
 log("Failed to process " + to_string(b));
 return false;
 });
}

What's in a name?

● To make it even more galling, the apply method was
actually taking std::function<void(value)> so in fact
the inner return value was being completely ignored

● My interest though was what was it about the use of
the lambda that seemed to change the way the code
was being read – in particular that the return
statement exited the lambda rather than the enclosing
function

What's in a name?

● We usually have a choice between a named and an
unnamed way of writing the code

● What are some of the issues we should think about
when making these choices?

● For obvious reasons most of the examples are short;
however most of the programs we actually work on
are not: there are some larger scale issues at work too
as well as the more local ones. I hope to mention
both.

Example 'straw man' program

● Let's start with a simple program and
implement it in a number of ways...
#include <fstream>
#include <iostream>

#include "readnames.h"
#include "sortnames.h"
#include "printnames.h"

int main()
{
 std::ifstream ifs("names.txt");
 Names names;

 readnames(ifs, names);
 sortnames(names);
 printnames(std::cout, names);
}

Headers – old school C++

Possible data types:

 struct Name
 {
 std::string first;
 std::string last;
 };

 typedef std::vector<Name> Names; // don't worry about the precise collection type!

The corresponding function declarations:

 void readnames(std::istream & is, Names & names);

 void sortnames(Names & names);

 void printnames(std::ostream & os, Names const & names);

(Note that the declarations don't explicitly refer to Name, first or last)

readnames – old school C++
void readnames(std::istream & is, Names & names)
{
 Name next; // or Names::value_type next;
 while (is >> next.first >> next.last)
 {
 names.push_back(next);
 }
}

We might prefer to factor out a helper function:

std::istream & operator>>(std::istream & is, Names::value_type & name)
{
 return is >> name.first >> name.last;
}

void readnames(std::istream & is, Names & names)
{
 Names::value_type next;
 while (is >> next)
 {
 names.push_back(next);
 }
}

sortnames – old school C++

struct first_last
{
 bool operator()(Name const & lhs, Name const & rhs)
 {
 if (lhs.first < rhs.first)
 return true;
 else if (lhs.first == rhs.first)
 return lhs.last < rhs.last;
 return false;
 }
};

void sortnames(Names & names)
{
 std::sort(names.begin(), names.end(), first_last());
}

● Using a functor

sortnames – old school C++

bool operator<(Name const & lhs, Name const & rhs)
{
 if (lhs.first < rhs.first)

return true;
 else if (lhs.first == rhs.first)
 return lhs.last < rhs.last;
 return false;
}

void sortnames(Names & names)
{
 std::sort(names.begin(), names.end());
}

● Or use operator< to remove another name

printnames – old school C++

namespace
{
 class print
 {
 std::ostream & os;
 public:
 print(std::ostream &os) : os(os) {}
 void operator()(Names::value_type const &name)
 { os << name.first << ' ' << name.last << '\n'; }
 };
}

void printnames(std::ostream & os, Names const & names)
{
 std::for_each(names.begin(), names.end(), print(os));
}

● We could use for_each:

printnames – old school C++

std::ostream & operator<<(std::ostream & os, Names::value_type const & name)
{
 return os << name.first << ' ' << name.last;
}

void printnames(std::ostream & os, Names const & names)
{
 std::copy(names.begin(), names.end(), std::ostream_iterator<Names::value_type>(os, "\n"));
}

● Or use another operator: operator<<

What's good and bad so far?
● Pro:

 The code is simple to understand

 The meaning of the code is clear
● Con:

 It would be hard to re-use – the algorithms
are generic but the names are very specific

 Lots of repetition – more work to write & read
● Can we do better?

Reducing scope: C++11
● Local classes

void printnames(std::ostream & os, Names const & names)
{
 class print
 {
 std::ostream & os;
 public:
 print(std::ostream &os) : os(os) {}
 void operator()(Names::value_type const &name)
 { os << name.first << ' ' << name.last << '\n'; }
 };

 std::for_each(names.begin(), names.end(), print(os));
}

We can now use a local name and it is scoped inside the method using it.
But we've still got to name it – but only in this scope.

Reducing scope: C++11
● Local classes

void printnames(std::ostream & os, Names const & names)
{
 class f
 {
 std::ostream & os;
 public:
 f(std::ostream &os) : os(os) {}
 void operator()(Names::value_type const &name)
 { os << name.first << ' ' << name.last << '\n'; }
 };

 std::for_each(names.begin(), names.end(), f(os));
}

We can now use a local name and it is scoped inside the method using it.
Since the scope is very restricted we can use a “placeholder” name.

This proposal was first formally made in 2001 (by Anthony Williams) and
adopted into C++11 in 2008 after five further papers. Phew...

Changing code: C++11
● lambda

void printnames(std::ostream & os, Names const & names)
{
 std::for_each(names.begin(), names.end(), [&os](Name const & name)
 { os << name.first << ' ' << name.last << '\n'; });
}

We don't need to name the target functoid of 'for_each'

C++11
● This lambda is (roughly) equivalent to

● So, if we understand the previous example, lambda is
'easy'; it is just that the compiler

 names it

 writes much of the scaffolding

void printnames(std::ostream & os, Names const & names)
{
 class unnamed {
 std::ostream &os;
 public:
 unnamed(std::ostream &os) : os(os) {}
 void operator()(Name const & name)
 { os << name.first << ' ' << name.last << '\n'; }
 };

 std::for_each(names.begin(), names.end(), unnamed(os));
}

C++14
● Generic lambda

● We can remove the use of the name of the contained type.

● Except we might need to think rather than naively just use
auto...

void printnames(std::ostream & os, Names const & names)
{
 std::for_each(names.begin(), names.end(), [&os](auto name)
 { os << name.first << ' ' << name.last << '\n'; });
}

C++14
● Generic lambda

● The original proposals for generic lambda used the term
'polymorphic lambda', but in this case we're not actually
using the lambda in a polymorphic fashion at all. In my
experience this is a common use case for generic
lambdas.

void printnames(std::ostream & os, Names const & names)
{
 std::for_each(names.begin(), names.end(), [&os](auto const & name)
 { os << name.first << ' ' << name.last << '\n'; });
}

C++14
● The generic lambda is roughly equivalent to

● A generic lambda changes the C++11 style member
function into a member function template

void printnames(std::ostream & os, Names const & names)
{
 class unnamed {
 std::ostream &os;
 public:
 unnamed(std::ostream &os) : os(os) {}
 template <typename T>
 void operator()(T const & name)
 { os << name.first << ' ' << name.last << '\n'; }
 };

 std::for_each(names.begin(), names.end(), unnamed(os));
}

Concepts TS
● The generic lambda is roughly equivalent to

● This makes the correspondence more uniform

● Voting is in progress on the TS

● A variation of this TS is likely to be in a future standard

void printnames(std::ostream & os, Names const & names)
{
 class unnamed {
 std::ostream &os;
 public:
 unnamed(std::ostream &os) : os(os) {}
 void operator()(auto const & name)
 { os << name.first << ' ' << name.last << '\n'; }
 };

 std::for_each(names.begin(), names.end(), unnamed(os));
}

Another way: C++11
● Range-for and auto

● We don't need to concern ourselves with the iteration itself nor
directly with the type 'Name'.

● In the case of for this is likely to be both shorter and simpler
than using for_each

● There are however many other algorithms that haven't got
language support and for these lambda is useful

● As with generic lambda earlier avoid naïve use of auto

void printnames(std::ostream & os, Names const & names)
{
 for (auto name : names)
 {
 os << name.first << ' ' << name.second << '\n';
 }
}

Another way: C++11
● Range-for and auto

● One problem with auto and range-based for is that you rarely
want a plain auto

● You typically want a reference to the target object – just as we
saw earlier for generic lambda

void printnames(std::ostream & os, Names const & names)
{
 for (auto const & name : names)
 {
 os << name.first << ' ' << name.second << '\n';
 }
}

Digression: range for and auto
● Simpler syntax for range-for was proposed by

Stephan T. Lavavej in Jan 2014 (N3853), but this has
proved quite controversial

● He states the correct default for range for as auto &&

● The syntax originally proposed was

 for (elem : range)

● The original proposal was rejected in Urbana 2014
after being provisionally accepted while C++14 was in
ballot

● Since generic lambda - and concepts TS - have the
same issue I'm personally less persuaded we need
special syntax for the case of range for as it is
something that people will need to be aware of

C++11
● Lambda with another algorithm

void sortnames(Names & names)
{
 std::sort(names.begin(), names.end(),
 [](Name const & lhs, Name const & rhs)
 {
 if (lhs.first < rhs.first)
 return true;
 else if (lhs.first == rhs.first)
 return lhs.last < rhs.last;
 return false;
 }
);
}

One problem with lambdas is finding the best way to format them...

Datatypes
● The examples so far made small changes

to the individual functions without attacking
the basic datatype or interfaces.

● We can use a generic data type to avoid
having to make one of our own.

● On the plus side this means less code to
write / more code we get 'for free'

Datatypes: C++03
● Use pair to get rid of 'Name'

using Names = std::vector<std::pair<std::string, std::string>>;

We've saved defining, and naming, a struct.

void sortnames(Names & names)
{
 std::sort(names.begin(), names.end());
}

There – that was easy, wasn't it? We get an operator< for free!

But pair is restricted to only two items (the hint is in the name).
This is a solution that doesn't generalise to more than two fields*.

*Trying to use pairs of pairs is a shortcut to madness.

Datatypes: C++03
● Use pair to get rid of 'Name'

using Names = std::vector<std::pair<std::string, std::string>>;

We've saved defining, and naming, a struct.

void sortnames(Names & names)
{
 std::sort(names.begin(), names.end());
}

There – that was easy, wasn't it? We get an operator< for free!

But pair is restricted to only two items (the hint is in the name).
This is a solution that doesn't generalise to more than two fields*.

*Trying to use pairs of pairs is a shortcut to madness.

Unfortunately it hasn't stopped people trying it.

I resisted an example...

Datatypes: C++11
● Use tuple to get rid of 'Name'

using Names = std::vector<std::tuple<std::string, std::string>>;

We've again saved defining, and naming, a struct.

void sortnames(Names & names)
{
 std::sort(names.begin(), names.end());
}

There – as easy as pair, and more generic!
(We still get an operator< for free)

Datatypes: C++11
● Access to tuple is a little … painful

● std::get<0>() is not, to my mind anyway, very readable

● Note: we have to qualify the call with std:: as argument
dependent lookup doesn't work well with templates

● However, you might have hoped tuple would have an
operator<< already wouldn't you ... how hard can it be?

void printnames(std::ostream & os, Names const & names)
{
 for (auto const & name : names) {
 os << std::get<0>(name) << ' ' << std::get<1>(name) << '\n';
 }
}

Datatypes: C++11
● Writing operator<< for tuple: YAGNI

std::ostream & operator<<(std::ostream & os, Names::value_type const & name)
{
 return os << std::get<0>(name) << ' ' << std::get<1>(name);
}

That's cheating: it works for our specific case only!
Can we do it for any sized tuple?

Datatypes: C++11
● A possible generic operator<<
template <size_t Pos, class... Args>
struct print_tuple {
 std::ostream& operator()(std::ostream& os, std::tuple<Args...> const & t) {
 return print_tuple<Pos-1, Args...>()(os, t) << ' ' << std::get<Pos>(t);
 }
};

template <class... Args>
struct print_tuple<0, Args...> {
 std::ostream& operator()(std::ostream& os, std::tuple<Args...> const & t) {
 return os << std::get<0>(t);
 }
};

template <class... Args>
std::ostream& operator<<(std::ostream& os, std::tuple<Args...> const & t) {
 return print_tuple<sizeof...(Args)-1, Args...>()(os, t);
}

Datatypes: C++11
● Add a bugfix for tuple<>
template <size_t Pos, class... Args>
struct print_tuple {
 std::ostream& operator()(std::ostream& os, std::tuple<Args...> const & t) {
 return print_tuple<Pos-1, Args...>()(os, t) << ' ' << std::get<Pos>(t);
 }
};

template <class... Args>
struct print_tuple<0, Args...> {
 std::ostream& operator()(std::ostream& os, std::tuple<Args...> const & t) {
 return os << std::get<0>(t);
 }
};

template <class... Args>
std::ostream& operator<<(std::ostream& os, std::tuple<Args...> const & t) {
 return print_tuple<sizeof...(Args)-1, Args...>()(os, t);
}

template <> std::ostream& operator<<(std::ostream& os, std::tuple<> const &) {
 return os;
}

Datatypes: C++11/14
● Using the generic operator<<
void printnames(std::ostream & os, Names const & names)
{
 std::for_each(names.begin(), names.end(),
 [&os](Names::value_type const & name) { os << name << '\n'; });
}

Or (C++14)

void printnames(std::ostream & os, Names const & names)
{
 std::for_each(names.begin(), names.end(), [&os](auto const & name) { os << name << '\n'; });
}

Looks good to me – let's ship it.

Datatypes: C++11
● Pitfall – 'Names' is no longer our type
This alternative fails to compile:

void printnames(std::ostream & os, Names const & names)
{
 std::copy(names.begin(), names.end(), std::ostream_iterator<Names::value_type>(os, "\n"));
}

The error is:

.../include/c++/bits/stream_iterator.h:198:13: error: cannot bind
 'std::ostream_iterator<std::tuple<std::basic_string<char, std::char_traits<char>,
 std::allocator<char> >, std::basic_string<char, std::char_traits<char>,
 std::allocator<char> > > >::ostream_type {aka std::basic_ostream<char>}' lvalue
to 'std::basic_ostream<char>&&'
 *_M_stream << __value;

So that's obviously what's wrong then....

Datatypes: C++11
● Pitfall – 'Names' is no longer our type
This alternative fails to compile:

void printnames(std::ostream & os, Names const & names)
{
 std::copy(names.begin(), names.end(), std::ostream_iterator<Names::value_type>(os, "\n"));
}

What the error message was trying to tell us.

 The problem is that Names::value_type is tuple, which is in the std
 namespace, as is ostream_iterator and ostream – hence inside the
 template expansion there's nothing to allow the compiler to find the operator<<
 we have defined in the default namespace. (Do not try changing this!)

Note: What's potentially worse is that if some other source code has defined
another operator<< for tuple we have an ODR violation: we're likely to get one
of the implementations selected but with no clear pattern as to which one!

Datatypes: C++11
● Pitfall – 'Names' is no longer our type
● How can we fix this?

 Inheritance

struct Name : tuple<string, string>
{...};

 Using tuple in the implementation of < for
our own class

 But we need a name again

Datatypes: C++11
● Inheritance example

 May need to explicitly inherit ctors (C++11)

● Now we can use the implementation of the
standard type while keeping this type ours

struct Name : std::tuple<std::string, std::string>
{
 using std::tuple<std::string, std::string>::tuple;
};

Datatypes: C++11
● Using tuple for implementing operator<

struct Name

{

 std::string first;

 std::string last;

};

bool operator<(Name const &lhs, Name const &rhs) {

 return std::tie(lhs.first, lhs.last) <

 std::tie(rhs.first, rhs.last);

}

 Note this may be as fast as hand-written comparisons

Ease of change
● Code rarely stays the same; how does the

presence or absence of a name help with
code refactoring?

● If the change is in line with the genericity
provided by the C++ feature it's easy

● For example, consider the changes needed
if we add a middle name.

● (We'll not consider dealing with the fact that
is optional!)

Ease of change - fields
● Adding a middle name – “old school”
● With our own struct we need to

 add a new field to the struct

 change the implementations of many of our
functions to use the new field

● There may be some sort of refactoring support

● Alternatively, simply search for the existing field
names and data types in the codebase (again, there
may be tool support for this)

Ease of change - fields
● Adding a middle name – tuple
● With tuple we need to

 Change the type to a tuple with three
elements

 Generic functions such as operator<<,
operator>> and operator< 'just work'

 Add processing for the extra element to non-
generic code

● Hard to see how we can get refactoring support – it's
not our type

● There's no field name to search for – we have to find
the relevant usages of get<> and add another. We
may also have to find the relevant usages of get<1>
and change them to get<2>.

Ease of change - functionality
● Suppose we want to sort our list of names

by last name and then first name.
● With our own type we can simply change

the function used in the sort function
bool last_first(Name const & lhs, Name const & rhs)
{
 if (lhs.last < rhs.last)

return true;
 else if (lhs.last == rhs.last)
 return lhs.first < rhs.first;
 return false;
}

void sortnames(Names & names)
{
 std::sort(names.begin(), names.end(), last_first);
}

Ease of change - functionality
● Suppose we want to sort our list of names

by last name and then first name.
● If we're using a standard system type and
operator< we can't do this

 This might encourage some dubious
practice

 “Let's read the name in reverse
order”

Ease of change - functionality
● One reason I've seen tuple used is to take

advantage of the implicit operator<
● Has anyone in the room ever seen an

incorrectly implemented operator< ?
● However, since the implementation is fixed,

I've seen cases where the element use is
non-intuitive simply to get the comparison
semantics right

● What other solutions are there?

Ease of change - functionality
● I've already mentioned using std::tie
● This lets you pick which fields are included

in the comparison and which order

● However, you still have to write some code,
and this needs maintenance if you change
the class, for example if we add a middle
name...

 return std::tie(lhs.last, lhs.first) < std::tie(rhs.last, rhs.first);

Ease of change - functionality
● There is ongoing discussion about letting

the compiler generate operator<

 Oleg Smolsky (N3950 and more)
 Bjarne Stroustrup (N4175 and more)
 Agreement may yet be reached
 Questions to resolve include:

 Opt-in or opt-out?
 Other operators?
 Which fields are included?

Scoping issues
● Lambda allows you to implicitly 'capture' a

variable.
● This adds a member to the (created) class

● The compiler-generated class contains a
reference member variable os initialised
from os

● But only if the name is local scope

void printnames(std::ostream & os, Names const & names) {
 std::for_each(names.begin(), names.end(), [&](auto name) {
 os << name.first << ' ' << name.last << '\n';
 });
}

Scoping issues
● Quick test (and short enough to be obvious)

● What do you expect as output?
● Scott Meyers EMC++ recommends not

using capture defaults ([=], [&])

#include <iostream>

int i{};

int main()
{
 static int j{};
 int k{};
 auto lambda = [=]() mutable {++i; ++j; ++k; };
 lambda();
 std::cout << i << ' ' << j << ' ' << k << std::endl;
}

More fun with lambdas
● C++ provides some standard functoids

● We can do something similar with generic
lambda in C++14

#include <functional>

void modify(std::vector<double> & vec)
{
 using namespace std::placeholders;

 std::transform(vec.begin(), vec.end(), vec.begin(),
 std::bind(std::plus<double>(), _1, 1));

 std::transform(vec.begin(), vec.end(), vec.begin(),
 std::bind(std::plus<>(), _1, 1)); // C++14
}

More fun with lambdas
● Here's one approach

● Provides the function exactly where it is
needed

● Not restricted to the set of functions
predefined in the standard library

void modify(std::vector<double> & vec)
{
 std::transform(vec.begin(), vec.end(), vec.begin(),
 [](auto x) { return x + 1; });
}

Lambdas on lambdas
● Here's another approach

● The outer lambda returns a lambda that uses the supplied
argument

● Concise to write, no boiler-plate template class necessary

● Useful where the function is a little more complex than '+'

auto plus = [](auto y) {
 return [y](auto x) {
 return x + y; };
};

void modify(std::vector<double> & vec)
{
 std::transform(vec.begin(), vec.end(), vec.begin(),
 plus(1));
}

Lambdas on lambdas
● Or should it be:

● The outer lambda returns a lambda that uses the supplied
argument – but this may be a temporary

● Do we want a reference or value for 'y' in the inner
lambda?

● And how do we do perfect forwarding?

auto plus = [](auto && y) {
 return [&y](auto && x) {
 return x + y; };
};

Using std::forward
● With a regular template it's easy to forward

● Using std::forward means that the
argument type of g() will now match the
argument type of the template instantiation

template <typename T> void f(T && t)
{
 g(std::forward<T>(t));
}

Using std::forward
● How do we forward with a generic lambda?

● Using a generic lambda we no longer have
a name for the template argument to use
with std::forward

auto f = [](auto && t)
{
 return g(std::forward<???>(t));
}

Using std::forward
● How do we forward with a generic lambda?

● We can use decltype on the variable

auto f = [](auto && t)
{
 return g(std::forward<???>(t));
}

auto f = [](auto && t)
{
 return g(std::forward<decltype(t)>(t));
}

Type of x and decltype of x ...

● “The name of the song is called 'Haddocks' Eyes'!”

● "Oh, that's the name of the song, is it?" Alice said, trying to feel interested.

● "No, you don't understand," the Knight said, looking a little vexed. "That's
what the name is called. The name really is, 'The Aged Aged Man.'"

● "Then I ought to have said "That's what the song is called'?" Alice corrected
herself.

● "No, you oughtn't: that's quite another thing! The song is called 'Ways and
Means': but that's only what it is called you know!"

● "Well, what is the song then?" said Alice, who was by this time completely
bewildered.

● "I was coming to that," the Knight said. "The song really is "A-sitting on a
Gate": and the tune's my own invention."

● -- Lewis Carroll, "Through the Looking Glass"

Variadic templates
● Some 'interesting' constructs are possible

● foo is invoked for each argument (in an undetermined
order) - the results are discarded by the comma operator

● The list of 0s is passed to the varargs lambda … that does
nothing with it

● Is this wonderful or dreadful – or both?

template<class F, class ...Ts>
void for_each_arg(F f, Ts &&...args) {
 [](...){}((f(std::forward<Ts>(args)), 0)...);
}

void foo(int i) {std::cout << i << std::endl;}

int main() {
 for_each_arg(foo, 1, 2, 3);
}

Variadic templates
● What does this code print?

● ab or ba ?

void f(int, int) {}

int x(const char *p)
{
 std::cout << p;
 return 0;
}

int main()
{
 f(x("a"), x("b"));
}

Variadic templates
● It would be nice if we had deterministic

ordering with the function call
● The lack of determinism is confusing and

also produces some subtly broken code
● There has been an initial proposal, N4228,

to specify evaluation order
● a(b,c,d) would evaluate in the order a,b,c,d.

 EWG showed strong support
 Can change output for some

compilers
 May reduce optimisation

opportunities

Variadic templates
● If you want deterministic ordering

● foo is invoked for each argument as the initializer_list
is constructed and hence the order of evaluation will be
left-to-right

template<class F, class ...Ts>
void for_each_arg(F f, Ts &&...args) {
 (void)std::initializer_list<int>{(f(std::forward<Ts>(args)), 0)... };
}

void foo(int i) {std::cout << i << std::endl;}

int main() {
 for_each_arg(foo, 1, 2, 3);
}

Some conclusions
● C++ provides some features that let you

dispense with naming things

 lambda (unnamed functions)
 tuple (unnamed members)
 auto (unnamed types)

● These can be very useful for simple cases
● Names are useful to express intent and can

also help with type ownership and code
maintenance

● There are also issues to consider with
scoping and the lifetime of implicit fields

	Title
	Intro 1
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

