
History and Spirit of C and C++
Olve Maudal

To get a deep understanding of C and C++, it is useful to know the history of these wonderful programming languages. It is perhaps even more important to
appreciate the driving forces, motivation and the spirit that has shaped these languages into what we have today.

In the first half of this talk we go back to the early days of programmable digital computers. We will take a brief look at really old machine code, assembler,
Fortran, IAL, Algol 60 and CPL, before we discuss the motivations behind BCPL, B and then early C. We will also discuss influential hardware architectures
represented by EDSAC, Atlas, PDP-7, PDP-11 and Interdata 8/32. From there we quickly move through the newer language versions such as K&R C, C89, C99
and C11.

In the second half we backtrack into the history again, now including Simula, Algol 68, Ada, ML, Clu into the equation. We will discuss the motivation for
creating C++, and with live coding we will demonstrate by example how it has evolved from the rather primitive “C with Classes” into a supermodern and
capable programming language as we now have with C++11/14 and soon with C++17.

A 90 minute session at ACCU 2015, April 23, Bristol, UK

https://c1.staticflickr.com/1/118/300053732_0b20ed7e73.jpg

Part I

History and spirit of C
The short version
Before C
Early C and K&R
ANSI C
Modern C
Q&A

Part II

History and spirit of C++
Before C++
Developing the initial versions of C++ (pre-1985)
Development of C++ (after-1985)
Evolution of C++ by examples

Part I

History and spirit of C
The short version
Before C
Early C and K&R
ANSI C
Modern C
Q&A

Part II

History and spirit of C++
Before C++
Developing the initial versions of C++ (pre-1985)
Development of C++ (after-1985)
Evolution of C++ by examples

(~90 minutes) (a few minutes)

Part I

History and spirit of C
The short version
Before C
Early C and K&R
ANSI C
Modern C
Q&A

Part II

History and spirit of C++
Before C++
Developing the initial versions of C++ (pre-1985)
Development of C++ (after-1985)
Evolution of C++ by examples

(~90 minutes) (a few minutes)

C

History and Spirit of C
Olve Maudal

To get a deep understanding of C, it is useful to know the history of this wonderful programming language. It is perhaps even more important to appreciate
the driving forces, motivation and the spirit that has shaped the language into what we have today.

In this talk we go back to the early days of programmable digital computers. We will take a brief look at really old machine code, assembler, Fortran, IAL, Algol
60 and CPL, before we discuss the motivations behind BCPL, B and then early C. We will also discuss influential hardware architectures represented by
EDSAC, Atlas, PDP-7, PDP-11 and Interdata 8/32. From there we quickly move through the newer language versions such as K&R C, C89, C99 and C11.

A ~90 minute session at ACCU 2015, April 23, Bristol, UK

https://c1.staticflickr.com/1/118/300053732_0b20ed7e73.jpg

This is based on research partly done together with Jon Jagger

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Unix
Dennis Ritchie

BCPL
K&R

ANSI C
Portability

Trust the pro
grammer

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Unix
Dennis Ritchie

BCPL
K&R

ANSI C
Portability

Trust the pro
grammer

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Unix
Dennis Ritchie

BCPL
K&R

ANSI C
Portability

Trust the pro
grammer

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Unix
Dennis Ritchie

BCPL
K&R

ANSI C
Portability

Trust the pro
grammer

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Unix
Dennis Ritchie

BCPL
K&R

ANSI C
Portability

Trust the pro
grammer

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Unix
Dennis Ritchie

BCPL
K&R

ANSI C
Portability

Trust the pro
grammer

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Unix
Dennis Ritchie

BCPL
K&R

ANSI C
Portability

Trust the pro
grammer

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Unix
Dennis Ritchie

BCPL
K&R

ANSI C
Portability

Trust the pro
grammer

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Unix
Dennis Ritchie

BCPL
K&R

ANSI C
Portability

Trust the pro
grammer

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

7

Unix
Dennis Ritchie

BCPL
K&R

ANSI C
Portability

Trust the pro
grammer

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

ENIAC The entry keyword Influence from Smalltalk Summer of ‘69 ISO/IEC/IEEE 60559:2011 Ada Lovelace DEC PDP-8

7

Unix
Dennis Ritchie

BCPL
K&R

ANSI C
Portability

Trust the pro
grammer

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

ENIAC The entry keyword Influence from Smalltalk Summer of ‘69 ISO/IEC/IEEE 60559:2011 Ada Lovelace DEC PDP-8

7

Unix
Dennis Ritchie

BCPL
K&R

ANSI C
Portability

Trust the pro
grammer

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

ENIAC The entry keyword Influence from Smalltalk Summer of ‘69 ISO/IEC/IEEE 60559:2011 Ada Lovelace DEC PDP-8

7

Unix
Dennis Ritchie

BCPL
K&R

ANSI C
Portability

Trust the pro
grammer

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

ENIAC The entry keyword Influence from Smalltalk Summer of ‘69 ISO/IEC/IEEE 60559:2011 Ada Lovelace DEC PDP-8

7

Unix
Dennis Ritchie

BCPL
K&R

ANSI C
Portability

Trust the pro
grammer

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

ENIAC The entry keyword Influence from Smalltalk Summer of ‘69 ISO/IEC/IEEE 60559:2011 Ada Lovelace DEC PDP-8

7
3

http://thesourceny.com/welcome/wp-content/uploads/2014/02/stage-red-curtain.jpg

http://thesourceny.com/welcome/wp-content/uploads/2014/02/stage-red-curtain.jpg

The history of C

http://thesourceny.com/welcome/wp-content/uploads/2014/02/stage-red-curtain.jpg

The history of C
in 90

http://thesourceny.com/welcome/wp-content/uploads/2014/02/stage-red-curtain.jpg

The history of C
in 90 seconds

http://www3.nd.edu/~atrozzol/BellLabs1959.jpg

At Bell Labs.

http://www.multicians.org/picnics.html

Back in 1969.

Ken Thompson wanted to play.

http://upload.wikimedia.org/wikipedia/commons/3/36/Ken_n_dennis.jpg

Ken Thompson wanted to play.

http://en.wikipedia.org/wiki/PDP-7#/media/File:Pdp7-oslo-2005.jpeg

He found a little used PDP-7.

https://archive.org/stream/byte-magazine-1983-08/1983_08_BYTE_08-08_The_C_Language#page/n190/mode/1up

Ended up writing a nearly complete operating system from scratch.

“Essentially one person for a month, it was just my self.”!
(Ken Thompson, 1989 Interview)

In about 4 weeks.

http://bitsavers.trailing-edge.com/pdf/dec/pdp7/PDP-7_AsmMan.pdf

In pure assembler of course.

http://upload.wikimedia.org/wikipedia/commons/3/36/Ken_n_dennis.jpg

Dennis Ritchie soon joined the effort.

http://cm.bell-labs.com/who/dmr/picture.html

While porting Unix to a PDP-11

http://cm.bell-labs.com/who/dmr/picture.html

Ken

While porting Unix to a PDP-11

http://cm.bell-labs.com/who/dmr/picture.html

Dennis

Ken

While porting Unix to a PDP-11

http://cm.bell-labs.com/cm/cs/who/dmr/ctut.pdf

they invented C,

http://cm.bell-labs.com/cm/cs/who/dmr/ctut.pdf

heavily inspired by Martin Richards’ portable
systems programming language BCPL.

GET “LIBHDR”
LET START() BE WRITES(“Hello, World”)

Martin Richards, Dec 2014

https://code.google.com/p/unix-jun72/source/browse/trunk/src/c/c03.c

In 1972 Unix was rewritten in C,

http://www.computerhistory.org/collections/catalog/102691249 http://www.technikum29.de/en/computer/early-computers http://en.wikipedia.org/wiki/IBM_System/370 http://alegion63.tripod.com/bob/id6.html

and later ported to many other machines

aided by Steve Johnsons Portable C Compiler.

Fact: from “The Development of the C Language” by Dennis Ritchie

http://blogs.jpmsonline.com/wp-content/uploads/2014/11/Success.jpg

C also gained popularity outside the realm of PDP-11 and Unix.

K&R (1978)

C99ANSI/ISO C (C89/C90) C11

Initially K&R was the definitive reference until the language was standardized
by ANSI and ISO in 1989/1990, and thereafter updated in 1999 and 2011.

http://powerlisting.wikia.com/wiki/File:The-end.jpg

At Bell Labs. Back In 1969. Ken Thompson wanted to play. He found a
little used PDP-7. Ended up writing a nearly complete operating
system from scratch. In about 4 weeks. In pure assembler of course.
Dennis Ritchie soon joined the effort. While porting Unix to a
PDP-11 they invented C, heavily inspired by Martin Richards’ portable
systems programming language BCPL. In 1972 Unix was rewritten in
C, and later ported to many other machines aided by Steve Johnsons
Portable C Compiler. C gained popularity outside the realm of
PDP-11 and Unix. Initially the K&R was the definitive reference until
the language was standardized by ANSI and ISO in 1989/1990 and
thereafter updated in 1999 and 2011.

http://web.mit.edu/saltzer/www/multics.html

Ken Thompson, Dennis Ritchie and 20+ more technical staff from Bell Labs
had been working on the very innovative Multics project for several years.

The MULTICS ("Multiplexed Information and Computing Service) was started
in 1964, as a cooperative project led by MIT's Project MAC (Multiple Access

Computing), General Electric and Bell Labs.

Bell Labs pulled out of the project in 1969.

http://web.mit.edu/saltzer/www/multics.html

Multics was a huge project, with great ambitions. It was a secure time-sharing
system with lots of advanced features, and it was one of the few operating

systems at the time written in a high level language, PL/1.

While working on the Multics projects, Dennis and Ken had also been exposed
to the very portable language systems programming language BCPL.

 "Both of us were really taken by the language and did a lot of work
with it." (Ken Thompson, 1989 interview)

http://www.princeton.edu/~hos/mike/transcripts/thompson.htm

GET “LIBHDR”
LET START() BE WRITES(“Hello, World”)

BCPL, Basic CPL, had been described and implemented for the Project MAC in
1967 by a visiting researcher, Martin Richards from Cambridge University.

Before visiting MIT, Martin Richards had been actively involved in developing a
compiler for a very ambitious programming language - CPL.

Designed jointly by the Mathematical Laboratory at the University of
Cambridge and the University of London Computer Unit

for the Atlas computer (ordered in 1961, operational in 1964)

EDSAC 2 users in 1960
http://en.wikipedia.org/wiki/EDSAC_2

CPL was designed and partly implemented before the Atlas computer was
operational. Martin Richard and the others had to work on the EDSAC 2

computer.

Which was an upgrade of the EDSAC computer. Arguably, the first
electronic digital stored-program computer. It ran its first

program May 6, 1949

Maurice Wilkes and Bill Renwick in front of the complete EDSAC

http://en.wikipedia.org/wiki/Electronic_Delay_Storage_Automatic_Calculator

Maurice Wilkes' himself commenting on the 1951 film about how EDSAC was
used in practice:

https://youtu.be/x-vS0WcJyNM

EDSAC Initial Orders and Squares Program

Martin Richards Computer Laboratory

EDSAC
EDSAC (Electronic Delay Storage Automatic Computer), pictured below, was the world’s first stored-program computer to
operate a regular computing service. Maurice Wilkes lead the team responsible for its design and construction. It ran its
first program successfully on May 6, 1949.

EDSAC’s main memory used mercury delay lines to hold 512 words of 35 bits. We will use the notation: w[0],
w[2],...,w[1022] to refer to these words of memory. Each word could be split into two 17-bit halves, separated by a
padding bit. We will use the notation m[a], a = 0, 1, .., 1023 to represent these 17-bit memory locations. The word
at address 2n, namely w[2n], consisted of the concatenation of m[2n + 1], a padding bit, and m[2n]. Note that
m[1] is the senior half of w[0].

17 1 17
w[2n]: *

m[2n + 1] m[2n]

The machine had two central registers visible to the user: the 71-bit accumulator and the 35-bit multiplier register. We will
use the notation ABC to represent the whole accumulator, and A and AB to represent its senior 17 and 35 bits, respectively.
We will use RS to represent the whole multiplier register and R to represent its senior 17 bits. The leftmost bit of each
register was the sign bit and the remaining bits form a binary fraction.

EDSAC’s machine instructions (also called orders) occupied 17 bits. The leftmost 5 bits was the operation code, the next
bit was unused, the following 10 bits was the address field and the last bit specified (where appropriate) whether the order
used 17 or 35-bit operands.

5 1 10 1
Order format: * * * * * * * * * * * * * * * * *

Op Unused Address S/L

Orders were punched on paper tape and consisted of: a character that directly gave the 5-bit operation code, followed by
zero or more decimal digits giving the address, and terminated by S or L specifying the operand length bit. For example,

R16S assembled to 00100 0 0000010000 0 and T11L to 00101 0 0000001011 1 . Note that the characters R and

T had codes 4 and 5, respectively.

The Character Set
EDSAC used 5-bit integers (0 to 31) to represent characters using two shifts: letters and figures. In letter shift the codes 0
to 31 respectively represented: P, Q, W, E, R, T, Y, U, I, O, J, figs, S, Z, K, lets, null, F, cr, D, sp, H, N, M, lf, L, X, G, A, B, C and
V. In figure shift the encoding was as follows: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ?, figs, ", +, (, lets, null, $, cr, ;, sp, £, ,, ., lf,
), /, #, −, ?, : and =. In these tables, figs, cr, sp and lf denote figure shift, carriage return, space and line feed, and on the
paper tape perforator their keys were labelled π, θ, φ and ∆, respectively. In this document, these codes correspond to the
ASCII characters #, @, ! and &. The paper tape reader complemented the high order bit of each 5-bit character, so the rows

, and are read as codes 0(P), 7(U) and 27(G), respectively. The machine could read paper
tape at a rate of 50 characters per second and output to a Creed teleprinter at nearly 7 characters per second.

The 1949 Instruction set
EDSAC’s instructions in 1949 was very simple and were executed at a rate of about 600 per second. They were as follows:

AnS: A += m[n] AnL: AB += w[n]
SnS: A −= m[n] SnL: AB −= w[n]
HnS: R += m[n] HnL: RS += w[n]
VnS: AB += m[n] * R VnL: ABC += w[n] * RS
NnS: AB −= m[n] * R NnL: ABC −= w[n] * RS
TnS: m[n] = A; ABC = 0 TnL: w[n] = AB; ABC = 0
UnS: m[n] = A UnL: w[n] = AB
CnS: AB += m[n] & R CnL: ABC += w[n] & RS
RnS, RnL: Shift ABC right arithmetically by the number of places corresponding to the

position of the least significant one in the shift instruction. For example,
R0L, R1S, R16S and R0S shift by 1, 2, 6 and 15 places, respectively.

LnS, LnL: Shift ABC left arithmetically by the number of places corresponding to the
position of the least significant one in the shift instruction. For example,
L0L, L1S, L16S, L64S and L0S shift by 1, 2, 6, 8 and 13 places, respec-
tively.

EnS: if A >= 0 goto n
GnS: if A < 0 goto n
InS: Place the next paper tape character in the least significant 5 bits of m[n].
OnS: Output the character in the most significant 5 bits of m[n].
FnS: Verify the last character output.
XnS: No operation.
YnS: Add a one to bit position 35 of ABC, counting the sign bit as bit zero. This

effectively rounds ABC up to 34 fractional bits.
ZnS: Stop the machine and ring a bell.

The numerical values in the accumulator and multiplier registers are normally thought of as signed binary fractions, but
integer operations could also be done easily. For example, the order V1S can be interpreted as adding the product of the
17-bit signed integer in m[1] and to the 17-bit integer in RS and adding the result into bits 0 to 32 of the ABC. With a
suitable shift, the integer result can be placed in the senior 17 bits of A ready for storing in memory.

Initial Orders
The four glass panels on your right contain 20 segments of 5 track paper tape. Reading from right to left and from top to
bottom, the first five segments correspond to the initial orders, and the remaining 15 to a program to compute squares. The
glass panels contain errors so a corrected version of the panels are given below.

The initial orders were written by David Wheeler in May 1949 to load and enter a paper tape represention of a program.
When EDSAC was started, these initial orders were placed in memory locations 0 to 30 by a mechanism involving uniselec-
tors before execution stared from location 0.

The glass panels give a paper tape representation of these orders even though no such paper tape ever existed. The following
is an annotated listing of this program.

Order bit pattern Loc Order Meaning Comment

00101 0 0000000000 0 0: T0S m[0]=A; ABC=0
10101 0 0000000010 0 1: H2S R=m[2] Put 10<<11 in R
00101 0 0000000000 0 2: T0S m[0]=A; ABC=0
00011 0 0000000110 0 3: E6S goto 6 Jump to main loop

00000 0 0000000001 0 4: P1S data 2 The constant 2
00000 0 0000000101 0 5: P5S data 10 The constant 10

00101 0 0000000000 0 6: T0S m[0]=A; ABC=0 Start of the main loop
01000 0 0000000000 0 7: I0S m[0]=rdch() Get operation code
11100 0 0000000000 0 8: A0S A+=m[0] Put it in A
00100 0 0000010000 0 9: R16S ABC>>=6 Shift and store it
00101 0 0000000000 1 10: T0L w[0]=AB; ABC=0 so that it becomes the

senior 5 bits of m[0]
m[1] is now zero

01000 0 0000000010 0 11: I2S m[2]=rdch() Put next ch in m[2]
11100 0 0000000010 0 12: A2S A+=m[2] Put ch in A
01100 0 0000000101 0 13: S5S A−=m[5] A=ch−10
00011 0 0000010101 0 14: E21S if A>=0 goto 21 Jump to 21, if ch>=10

00101 0 0000000011 0 15: T3S m[3]=A; ABC=0 Clear A, m[3] is junk
11111 0 0000000001 0 16: V1S AB+=m[1]*R A = m[1]*(10<<11)
11001 0 0000001000 0 17: L8S A<<=5 Shift 5 more places
11100 0 0000000010 0 18: A2S A+=m[2] Add the new digit
00101 0 0000000001 0 19: T1S m[1]=A; ABC=0 Store back in m[1]
00011 0 0000001011 0 20: E11S goto 11 Repeat from 11

A=2, if ch=‘S’(=12)
A=15, if ch=‘L’(=25)

00100 0 0000000100 0 21: R4S ABC>>=4 lenbit=0, if ch=‘S’
lenbit=1, if ch=‘L’

11100 0 0000000001 0 22: A1S A+=m[1] Add in the address
11001 0 0000000000 1 23: L0L ABC<<=1 Shift to correct position
11100 0 0000000000 0 24: A0S A+=m[0] Add in the operation field
00101 0 0000011111 0 25: T31S m[31]= A; ABC=0 Store the order

in next location
11100 0 0000011001 0 26: A25S A+=m[25] Increment the address

field of m[25]
11100 0 0000000100 0 27: A4S A+=m[4] m[4] holds 2
00111 0 0000011001 0 28: U25S m[25]=A Update m[25]

01100 0 0000011111 0 29: S31S A−=m[31] Jump to 6, if there are
11011 0 0000000110 0 30: G6S if A<0 goto 6 more orders to load

The instruction at location 0 does nothing useful, but the instruction at 1 loads the multiplier register R with a 17-bit
pattern 00101000000000000 which is also 10 shifted left 11 places. The instruction instruction at 2 (T0S) assembles into
exactly this bit pattern, so is used both as data and as an instruction to clear m[0]. The instruction at 3 skips to location 6
over the instructions at 4 and 5 that assemble as the 17-bit constants 2 and 10, respectively.

The main assembly loop starts at 6, leaving locations m[0] to m[5] available as variables and constants in the program.
They are used as follows:

m[0] uses include holding the first character of an order,
m[1] used to hold the address field of the current order,
m[2] initially 001010...0 as discussed above but also

used for characters other than the first of an order,
m[3] used as a junk register when the instruction at 15 clears ABC,
m[4] the constant 2 used at 27 to add one to an address field,
m[5] the constant 10 used to check for the end of address digits.

The order at 25 is of the form TnS, initially T31S. It is used to store an order at location n. This instruction is modified
by the code in locations 26 to 28 which adds one to its address field, so the next time it is executed it will update the
next location. Location 31 is the first order to be loaded and must be of the form TnS where n−1 is the address of last
instruction of the program. It is used by the code in locations 29 and 30 which compares it with the current version of TnS
in 25. If loading is not yet complete execution jumps to 11, otherwise it fall through to 31. Note that the instruction at 31
will do no damage, since it just writes a value to the first location following the loaded program. The first real instruction
of the program is in m[32].

M.V Wilkes and W.A. Renwick

The Squares Program
This program, written by Maurice Wilkes in June 1949, outputs the following table of squares and differences of the
numbers 1 to 100.

1 1 1
2 4 3
3 9 5

....
98 9604 195
99 9801 197

100 10000 199

The following is an annotated listing of the program.

Order bit pattern Loc Order Meaning Comment

00101 0 0001111011 0 31: T123S m[123]=A; ABC=0 The required first word
00011 0 0001010100 0 32: E84S goto 84 Jump to start

00000 0 0000000000 0 33: PS data 0 For the next decimal digit
00000 0 0000000000 0 34: PS data 0 For the current power of ten

00100 1 1100010000 0 35: P10000S data 10000<<1 The table of 16-bit
00000 0 1111101000 0 36: P1000S data 1000<<1 powers of ten
00000 0 0001100100 0 37: P100S data 100<<1
00000 0 0000001010 0 38: P10S data 10<<1
00000 0 0000000001 0 39: P1S data 1<<1

00001 0 0000000000 0 40: QS data 1<<12 00001 in MS 5 bits,
used to form digits

01011 0 0000000000 0 41: #S data 11<<12 Figure shift character
11100 0 0000101000 0 42: A40S End limit for values

placed in m[52]
10100 0 0000000000 0 43: !S data 20<<12 Space character
11000 0 0000000000 0 44: &S data 24<<12 Line feed character
10010 0 0000000000 0 45: @S data 18<<12 Carriage return character
01001 0 0000101011 0 46: O43S wr(m[43]) Write a space
01001 0 0000100001 0 47: O33S wr(m[33]) Write a digit
00000 0 0000000000 0 48: PS data 0 The number to print

11100 0 0000101110 0 49: A46S A+=m[46] Print subroutine entry point
00101 0 0001000001 0 50: T65S m[65]=A; ABC=0 Put O43S in m[65]

00101 0 0010000001 0 51: T129S m[129]=A; ABC=0 Clear A
11100 0 0000100011 0 52: A35S A+=m[35] A is next power of ten.

m[52] cycles through
A35S, A36S, A37S,
A38S and A39S

00101 0 0000100010 0 53: T34S m[34]=A; ABC=0 Store it in m[34]
00011 0 0000111101 0 54: E61S goto 61
00101 0 0000110000 0 55: T48S m[48]=A; ABC=0 Store value to be printed

11100 0 0000101111 0 56: A47S A+=m[47] Store instruction O33S
00101 0 0001000001 0 57: T65S m[65]=A; ABC=0 in m[65]
11100 0 0000100001 0 58: A33S A+=m[33] Increment the decimal digit
11100 0 0000101000 0 59: A40S A+=m[40] held in the MS 5 bits
00101 0 0000100001 0 60: T33S m[33]=A; ABC=0 of m[33]

11100 0 0000110000 0 61: A48S A+=m[48]; ABC=0 Get value to print
11100 0 0000100010 0 62: S34S A−=m[34] Subtract a power of 10
00011 0 0000110111 0 63: E55S if A>=0 goto 55 Repeat, if positive

11100 0 0000100010 0 64: A34S A+=m[34] Add back the power of 10
00000 0 0000000000 0 65: PS data 0 This is replaced by either

O43S to write a space, or
O33S to write a digit

00101 0 0000110000 0 66: T48S m[48]=A; ABC=0 Set the value to print
00101 0 0000100001 0 67: T33S m[33]=A; ABC=0 Set digit to 0
11100 0 0000110100 0 68: A52S A+=m[52] Increment the address field
11100 0 0000000100 0 69: A4S A+=m[4] of the instruction
00111 0 0000110100 0 70: U52S m[52]=A in m[52]
01100 0 0000101010 0 71: S42S A−=m[42] Compare with A40S and
11011 0 0000110011 0 72: G51S if A<0 goto 51 Repeat, if more digits

11100 0 0001110101 0 73: A117S A+=m[117] Put A35S back
00101 0 0000110100 0 74: T52S m[52]=A; ABC=0 in m[52]
00000 0 0000000000 0 75: PS data 0 To hold the return jump

instruction which is
E95S, E110S or E118S

00000 0 0000000000 0 76: PS data 0 Holds x
00000 0 0000000000 0 77: PS data 0 Holds x2

00000 0 0000000000 0 78: PS data 0 Holds previous x2

00000 0 0000000000 0 79: PS data 0 Holds ∆x2

00011 0 0001101110 0 80: E110S goto 110 Order to place in m[52]
00011 0 0001110110 0 81: E118S goto 118 Order to place in m[52]
00000 0 0001100100 0 82: P100S data 100<<1 End limit for x
00011 0 0001011111 0 83: E95S goto 95 Order to place in m[52]

01001 0 0000101001 0 84: O41S wr(m[41]) Write figure shift

00101 0 0010000001 0 85: T129S m[129]=A; ABC=0 Start of main loop
01001 0 0000101100 0 86: O44S wr(m[44]) Write line feed
01001 0 0000101101 0 87: O45S wr(m[45]) Write carriage return
11100 0 0001001100 0 88: A76S A+=m[76]; ABC=0 Get x
11100 0 0000000100 0 89: A4S A+=m[4] Increment it
00111 0 0001001100 0 90: U76S m[76]=A and store it back in x
00101 0 0000110000 0 91: T48S m[48]=A; ABC=0 Put it also in m[48]

for printing
11100 0 0001010011 0 92: A83S A+=m[83] Put return jump E95S
00101 0 0001001011 0 93: T75S m[75]=A; ABC=0 into m[75]
00011 0 0000110001 0 94: E49S goto 49 Enter the print subroutine
01001 0 0000101011 0 95: O43S wr(m[43]) Write a space
01001 0 0000101011 0 96: O43S wr(m[43]) Write a space
10101 0 0001001100 0 97: H76S R=m[76] Multiply x by
11111 0 0001001100 0 98: V76S ABC+=m[76]*RS itself and
11001 0 0001000000 0 99: L64S ABC<<8 re-position
11001 0 0000100000 0 100: L32S ABC<<7 the result
00111 0 0001001101 0 101: U77S m[77]=A Store in location for x2
01100 0 0001001110 0 102: S78S A−=m[78] Subtract the previous value
00101 0 0001001111 0 103: T79S m[79]=A; ABC=0 and store the new ∆x2
11100 0 0001001101 0 104: A77S A+=m[77] Update variable holding
00111 0 0001001110 0 105: U78S m[78]=A the previous x2

00101 0 0000110000 0 106: T48S m[48]=A; ABC=0 Put x2
in m[48] for printing

11100 0 0001010000 0 107: A80S A+=m[80] Put return jump E110S
00101 0 0001001011 0 108: T75S m[75]=A; ABC=0 into m[75]
00011 0 0000110001 0 109: E49S goto 49 Enter the print subroutine

01001 0 0000101011 0 110: O43S wr(m[43]) Write a space
01001 0 0000101011 0 111: O43S mr(m[43]) Write a space
11100 0 0001001111 0 112: A79S A+=m[79] Get ∆x2
00101 0 0000110000 0 113: T48S m[48]=A; ABC=0 Put it in m[48] for printing
11100 0 0001010001 0 114: A81S A+=m[81] Put return jump E118S
00101 0 0001001011 0 115: T75S m[75]=A; ABC=0 into m[75]
00011 0 0000110001 0 116: E49S goto 49 Enter the print subroutine

11100 0 0000100011 0 117: A35S A+=m[35] Order to place in m[52]

11100 0 0001001100 0 118: A76S A+=m[76] Get x
01100 0 0001010010 0 119: S82S A−=m[82] Subtract the end limit (=100)
11011 0 0001010101 0 120: G85S if A<0 goto 85 Repeat, if more to do
01001 0 0000101001 0 121: O41S wr(m[41]) Write figure shift
01101 0 0000000000 0 122: ZS Stop Stop the machine

The Green Door
The green door on your left was the Corn Exchange Street entrance to the Mathematical Laboratory where EDSAC was
built. By convention, the brass plaque on this door holds the engraved names of those retired members of the Laboratory
who used the door in its original location.

Links

http://www.dcs.warwick.ac.uk/~edsac/
This links to Martin Campbell-Kelly’s excellent EDSAC simulator and related documents.

http://www.cl.cam.ac.uk/U0CCL/misc/EDSAC99
This links to pages relating to the celebration, held in Cambridge in April 1999, of the 50th anniversary of the
EDSAC 1 Computer.

http://www.cl.cam.ac.uk/~mr/Edsac.html
This links to a shell based EDSAC simulator that runs on Pentium based Linux systems. It was designed to
be educational having a built-in interactive debugger allowing single step execution, the setting of breakpoints
and convenient inspection and setting of memory and register values. It can be used to explore the execution of
the programs described in this poster. This simulator also appears as a demonstration program in the Cintcode
BCPL system (http://www.cl.cam.ac.uk/~mr/BCPL.html).

http://www.cl.cam.ac.uk/~mr/edsacposter.pdf
This is a PDF version of this poster on two A4 pages.

A2 S 1 3 T S 0 A 0 L S 1 A S 4 R S 1 1 E SL ST 2 A S 8 L S 1 S 3 T S 1 2 E S 5 S S 2 AV1 S LI 0 T S 6 1 R S A S 0 I S 0 S 5 P S 1 P02 ST E6 S 0 S 2 H S T0T

T6 S 6 4 A S P S 3 O S 3 4 O S @ S & S ! S3 A4 S # S Q S 1 P 0 1 P S 0 0 1 P S 0 0 0 1S0 P 00 0 0 1 P S P S S 4 8 E S 3 2 1 TPS S 6 S 1 3 S S 5 2 U S 4 A S 5G

52 T S 7 1 1 A S 5 G S 2 4 S S 2 5 U S 4 A1 52 A S 3 3 T S 8 T S P S 4 3 A S 5 5 E S 44S 3 8S 4 A S 3 3 T S 4 A S 3 3 A S 5 6 T 7 40S AS 8S 4 T S 1 6 E S 3 T S 5 3 A S 9 2 1 T S 54

L3 S 4 6 L S 6 7 S 6 7 H S 3 4 O S 3 4 O SV E4 S 5 7 T S 3 8 S 8 4 T S 6 7 U S 4 A S 6A9 7 5S 4 O S 4 4 O S 2 1 T S 1 4 O S 5 9 E S 09A 0 P1 S 8 1 1 E S 0 1 E S P S P S P S P S P S1

S S 1 4 O S 5 8 G S 2 8 S SZ A7 S 5 3 A S 9 4 S 5 7 T S 1 8 A S 8 4 T SE6 9 SA 3 4 O S 3 4 O 9 4 E S 5 7 T S 0 8 A S 8S7 4 ST 8 7 U S 7 7 A 9 7 T S 8 7 S S 7 7 U S 2S

The corrected tape segments etched on the Tea Room glass panels

http://www.cl.cam.ac.uk/~mr10/edsacposter.pdf

T44S 31 T _end+1 mark end of program
E38S 32 E _start jump to beginning of program
*S 33 lshift * letter shift
HS 34 _H H letter H
IS 35 _I I letter I
&S 36 lf & LF - line feed character
@S 37 cr @ CR - carriage return character
O33S 38 _start O lshift prepare for printing lettersn
O34S 39 O _H print H
O35S 40 O _I print I
O36S 41 O lf print lf
O37S 42 O cr print cr
ZS 43 _end Z end of program

“Hi” on the EDSAC / Initial Orders 1

T44SE38S*SHSIS&S@SO33SO34SO35SO36SO37SZS

T62S 31 T _end+1 mark end of program
E43S 32 E _start jump to beginning of program
#S 33 fshift # figure shift
&S 34 lf & LF - line feed character
@S 35 cr @ CR - carriage return character
PS 36 dummy P dummy (used to reset Acc)
P0S 37 first P 0 first value
P9S 38 last P 9 last value
P1S 39 incr P 1 increment
PS 40 cur P current value
PS 41 d P d - digit to be printed
XS 42 _start X nop
O33S 43 O fshift prepare for printing digits
T36S 44 T dummy reset Acc
A37S 45 A first load first
T40S 46 T cur store to cur
XS 47 _loop X nop
T36S 48 T dummy reset Acc
A40S 49 A cur load current value
L512S 50 L 2^(11-2) Acc << 11, create a digit
T41S 51 T d store digit to be printed
O41S 52 O d print digit
A40S 53 A cur load current value
A39S 54 A incr acc += 1
T40S 55 T cur store current value
A38S 56 A last load last value
S40S 57 S cur last - cur < 0, should we break?
E48S 58 E _loop if no, jump to loop
O34S 59 O lf print line feed
O35S 60 O cr print carriage return
ZS 61 _end Z stop program

“Count to 10” on the EDSAC / Initial Orders 1

“FizzBuzz” on the EDSAC / Initial Orders 1

written in a “primitive” 1949-like style
by Olve Maudal, Monday, April 20, 2015

I pretended I was a student, who had won a single chance to run my program
on this precious computer.

The program did actually ran on the very first attempt!

T123S 31 T L_end mark end of program
E60S 32 E L_start jump to the beginning of program
#S 33 _FS # figure shift
*S 34 _LS * letter shift
&S 35 _LF & linefeed character
@S 36 _CR @ carriage return character
P100S 37 _100 P 100 constant 100
P10S 38 _10 P 10 constant 10
P5S 39 _5 P 5 constant 5
P3S 40 _3 P 3 constant 3
P1S 41 _1 P 1 constant 1
QS 42 _'1' Q constant figure 1
PS 43 _'0' P constant figure 0
BS 44 _B B constant letter B
FS 45 _F F constant letter F
IS 46 _I I constant letter I
US 47 _U U constant letter U
ZS 48 _Z Z constant letter Z
PS 49 _dummy P used to flush and reset the accumulator
P1S 50 _cnt P 1 counter, current number to be considered, will be increased
PS 51 _num P number to be printed, negative if counter is mod 3 or mod 5
PS 52 _d P digit to be printed
O34S 53 L_next O _LS output LS, prepare for printing letters
O35S 54 O _LF output LF, linefeed
O36S 55 O _CR output CR, carriage return
T49S 56 T _dummy reset Acc
A50S 57 A _cnt load Acc with _cnt
A41S 58 A _1 increase Acc
T50S 59 T _cnt store Acc into _cnt, reset Acc
A50S 60 L_start A _cnt load Acc with _cnt (we know that Acc initially is 0)
U51S 61 U _num tentatively set number to be printed
S40S 62 L_tryFizz S _3 subtract 3
E62S 63 E L_tryFizz loop until Acc < 0
A40S 64 A _3 add 3, restore previous value
S41S 65 S _1 subtract 1, to check if Acc was 0
E73S 66 E L_notFizz jump if Acc was not 0, ie number was not divisable by 3
T51S 67 T _num set _num to negative value, flag that no value should be printed
O34S 68 O _LS prepare printing letters
O45S 69 O _F output F
O46S 70 O _I output I
O48S 71 O _Z output Z
O48S 72 O _Z output Z
T49S 73 L_notFizz T _dummy reset Acc
A50S 74 A _cnt load Acc with _cnt
S39S 75 L_Buzz S _5 subtract 5
E75S 76 E L_Buzz loop until Acc < 0
A39S 77 A _5 add 5, restore previous value
S41S 78 S _1 subtract 1, to check if Acc was 0
E86S 79 E L_notBuzz jump if Acc was not 0, ie number was not divisable by 5
T51S 80 T _num set _num to negative value, flag that no value should be printed
O34S 81 O _LS prepare printing letters
O44S 82 O _B output B
O47S 83 O _U output U
O48S 84 O _Z output Z
O48S 85 O _Z output Z
T49S 86 L_notBuzz T _dummy reset Acc
A51S 87 A _num load _num to check number to be printed
G53S 88 G L_next goto next iteration if _num is negative
O33S 89 L_printNum O _FS prepare for printing numbers
T49S 90 T _dummy reset Acc
A50S 91 A _cnt load counter
S37S 92 S _100 subtract 100, check if we should stop
G98S 93 G L_not100 jump if not 100 yet
O42S 94 O _'1' output 1
O43S 95 O _'0' output 0
O43S 96 O _'0' output 0
ZS 97 Z end the program
T49S 98 L_not100 T _dummy reset Acc
T52S 99 T _d reset digit
A50S 100 A _cnt load counter
S38S 101 L_count10s S _10 subtract 10
G109S 102 G L_print10s goto print 10s if Acc < 0
T51S 103 T _num store number
A52S 104 A _d load digit
A41S 105 A _1 increase digit
T52S 106 T _d store digit
A51S 107 A _num load number
E101S 108 E L_count10s loop unconditionally
T49S 109 L_print10s T _dummy reset Acc
A52S 110 A _d load digit
S41S 111 S _1 decrease digit by 1
G117S 112 G L_1 if negative (digit was 0), skip printing of tens digits
A41S 113 A _1 restore digit, by increasing with 1
L512S 114 L 2^(11-2) Acc << 11, create a printable figure
T52S 115 T _d save printable figure
O52S 116 O _d print figure / digit
T49S 117 L_1: T _dummy reset Acc
A51S 118 A _num load number
L512S 119 L 2^(11-2) Acc << 11, create a printable figure
T52S 120 T _d save printable figure
O52S 121 O _d print figure / digit
E53S 122 E L_next unconditional jump
XS 123 L_end X

“FizzBuzz” on the EDSAC / Initial Orders 1

T123S 31 T L_end mark end of program
E60S 32 E L_start jump to the beginning of program
#S 33 _FS # figure shift
*S 34 _LS * letter shift
&S 35 _LF & linefeed character
@S 36 _CR @ carriage return character
P100S 37 _100 P 100 constant 100
P10S 38 _10 P 10 constant 10
P5S 39 _5 P 5 constant 5
P3S 40 _3 P 3 constant 3
P1S 41 _1 P 1 constant 1
QS 42 _'1' Q constant figure 1
PS 43 _'0' P constant figure 0
BS 44 _B B constant letter B
FS 45 _F F constant letter F
IS 46 _I I constant letter I
US 47 _U U constant letter U
ZS 48 _Z Z constant letter Z
PS 49 _dummy P used to flush and reset the accumulator
P1S 50 _cnt P 1 counter, current number to be considered, will be increased
PS 51 _num P number to be printed, negative if counter is mod 3 or mod 5
PS 52 _d P digit to be printed

T123S 31 T L_end mark end of program
E60S 32 E L_start jump to the beginning of program
#S 33 _FS # figure shift
*S 34 _LS * letter shift
&S 35 _LF & linefeed character
@S 36 _CR @ carriage return character
P100S 37 _100 P 100 constant 100
P10S 38 _10 P 10 constant 10
P5S 39 _5 P 5 constant 5
P3S 40 _3 P 3 constant 3
P1S 41 _1 P 1 constant 1
QS 42 _'1' Q constant figure 1
PS 43 _'0' P constant figure 0
BS 44 _B B constant letter B
FS 45 _F F constant letter F
IS 46 _I I constant letter I
US 47 _U U constant letter U
ZS 48 _Z Z constant letter Z
PS 49 _dummy P used to flush and reset the accumulator
P1S 50 _cnt P 1 counter, current number to be considered, will be increased
PS 51 _num P number to be printed, negative if counter is mod 3 or mod 5
PS 52 _d P digit to be printed
O34S 53 L_next O _LS output LS, prepare for printing letters
O35S 54 O _LF output LF, linefeed
O36S 55 O _CR output CR, carriage return
T49S 56 T _dummy reset Acc
A50S 57 A _cnt load Acc with _cnt
A41S 58 A _1 increase Acc
T50S 59 T _cnt store Acc into _cnt, reset Acc
A50S 60 L_start A _cnt load Acc with _cnt (we know that Acc initially is 0)
U51S 61 U _num tentatively set number to be printed
S40S 62 L_tryFizz S _3 subtract 3
E62S 63 E L_tryFizz loop until Acc < 0
A40S 64 A _3 add 3, restore previous value
S41S 65 S _1 subtract 1, to check if Acc was 0
E73S 66 E L_notFizz jump if Acc was not 0, ie number was not divisable by 3
T51S 67 T _num set _num to negative value, flag that no value should be printed
O34S 68 O _LS prepare printing letters
O45S 69 O _F output F
O46S 70 O _I output I
O48S 71 O _Z output Z
O48S 72 O _Z output Z
T49S 73 L_notFizz T _dummy reset Acc
A50S 74 A _cnt load Acc with _cnt
S39S 75 L_Buzz S _5 subtract 5
E75S 76 E L_Buzz loop until Acc < 0
A39S 77 A _5 add 5, restore previous value
S41S 78 S _1 subtract 1, to check if Acc was 0
E86S 79 E L_notBuzz jump if Acc was not 0, ie number was not divisable by 5
T51S 80 T _num set _num to negative value, flag that no value should be printed
O34S 81 O _LS prepare printing letters
O44S 82 O _B output B
O47S 83 O _U output U
O48S 84 O _Z output Z
O48S 85 O _Z output Z
T49S 86 L_notBuzz T _dummy reset Acc
A51S 87 A _num load _num to check number to be printed
G53S 88 G L_next goto next iteration if _num is negative
O33S 89 L_printNum O _FS prepare for printing numbers
T49S 90 T _dummy reset Acc
A50S 91 A _cnt load counter
S37S 92 S _100 subtract 100, check if we should stop
G98S 93 G L_not100 jump if not 100 yet
O42S 94 O _'1' output 1
O43S 95 O _'0' output 0
O43S 96 O _'0' output 0
ZS 97 Z end the program
T49S 98 L_not100 T _dummy reset Acc
T52S 99 T _d reset digit
A50S 100 A _cnt load counter
S38S 101 L_count10s S _10 subtract 10
G109S 102 G L_print10s goto print 10s if Acc < 0
T51S 103 T _num store number
A52S 104 A _d load digit
A41S 105 A _1 increase digit
T52S 106 T _d store digit
A51S 107 A _num load number
E101S 108 E L_count10s loop unconditionally
T49S 109 L_print10s T _dummy reset Acc
A52S 110 A _d load digit
S41S 111 S _1 decrease digit by 1
G117S 112 G L_1 if negative (digit was 0), skip printing of tens digits
A41S 113 A _1 restore digit, by increasing with 1
L512S 114 L 2^(11-2) Acc << 11, create a printable figure
T52S 115 T _d save printable figure
O52S 116 O _d print figure / digit
T49S 117 L_1: T _dummy reset Acc
A51S 118 A _num load number
L512S 119 L 2^(11-2) Acc << 11, create a printable figure
T52S 120 T _d save printable figure
O52S 121 O _d print figure / digit
E53S 122 E L_next unconditional jump
XS 123 L_end X

“FizzBuzz” on the EDSAC / Initial Orders 1

O34S 53 L_next O _LS output LS, prepare for printing letters
O35S 54 O _LF output LF, linefeed
O36S 55 O _CR output CR, carriage return
T49S 56 T _dummy reset Acc
A50S 57 A _cnt load Acc with _cnt
A41S 58 A _1 increase Acc
T50S 59 T _cnt store Acc into _cnt, reset Acc
A50S 60 L_start A _cnt load Acc with _cnt (we know that Acc initially is 0)
U51S 61 U _num tentatively set number to be printed
S40S 62 L_tryFizz S _3 subtract 3
E62S 63 E L_tryFizz loop until Acc < 0
A40S 64 A _3 add 3, restore previous value
S41S 65 S _1 subtract 1, to check if Acc was 0
E73S 66 E L_notFizz jump if Acc was not 0, ie number was not divisable by 3
T51S 67 T _num set _num to negative value, flag that no value should be printed
O34S 68 O _LS prepare printing letters
O45S 69 O _F output F
O46S 70 O _I output I
O48S 71 O _Z output Z
O48S 72 O _Z output Z

T123S 31 T L_end mark end of program
E60S 32 E L_start jump to the beginning of program
#S 33 _FS # figure shift
*S 34 _LS * letter shift
&S 35 _LF & linefeed character
@S 36 _CR @ carriage return character
P100S 37 _100 P 100 constant 100
P10S 38 _10 P 10 constant 10
P5S 39 _5 P 5 constant 5
P3S 40 _3 P 3 constant 3
P1S 41 _1 P 1 constant 1
QS 42 _'1' Q constant figure 1
PS 43 _'0' P constant figure 0
BS 44 _B B constant letter B
FS 45 _F F constant letter F
IS 46 _I I constant letter I
US 47 _U U constant letter U
ZS 48 _Z Z constant letter Z
PS 49 _dummy P used to flush and reset the accumulator
P1S 50 _cnt P 1 counter, current number to be considered, will be increased
PS 51 _num P number to be printed, negative if counter is mod 3 or mod 5
PS 52 _d P digit to be printed
O34S 53 L_next O _LS output LS, prepare for printing letters
O35S 54 O _LF output LF, linefeed
O36S 55 O _CR output CR, carriage return
T49S 56 T _dummy reset Acc
A50S 57 A _cnt load Acc with _cnt
A41S 58 A _1 increase Acc
T50S 59 T _cnt store Acc into _cnt, reset Acc
A50S 60 L_start A _cnt load Acc with _cnt (we know that Acc initially is 0)
U51S 61 U _num tentatively set number to be printed
S40S 62 L_tryFizz S _3 subtract 3
E62S 63 E L_tryFizz loop until Acc < 0
A40S 64 A _3 add 3, restore previous value
S41S 65 S _1 subtract 1, to check if Acc was 0
E73S 66 E L_notFizz jump if Acc was not 0, ie number was not divisable by 3
T51S 67 T _num set _num to negative value, flag that no value should be printed
O34S 68 O _LS prepare printing letters
O45S 69 O _F output F
O46S 70 O _I output I
O48S 71 O _Z output Z
O48S 72 O _Z output Z
T49S 73 L_notFizz T _dummy reset Acc
A50S 74 A _cnt load Acc with _cnt
S39S 75 L_Buzz S _5 subtract 5
E75S 76 E L_Buzz loop until Acc < 0
A39S 77 A _5 add 5, restore previous value
S41S 78 S _1 subtract 1, to check if Acc was 0
E86S 79 E L_notBuzz jump if Acc was not 0, ie number was not divisable by 5
T51S 80 T _num set _num to negative value, flag that no value should be printed
O34S 81 O _LS prepare printing letters
O44S 82 O _B output B
O47S 83 O _U output U
O48S 84 O _Z output Z
O48S 85 O _Z output Z
T49S 86 L_notBuzz T _dummy reset Acc
A51S 87 A _num load _num to check number to be printed
G53S 88 G L_next goto next iteration if _num is negative
O33S 89 L_printNum O _FS prepare for printing numbers
T49S 90 T _dummy reset Acc
A50S 91 A _cnt load counter
S37S 92 S _100 subtract 100, check if we should stop
G98S 93 G L_not100 jump if not 100 yet
O42S 94 O _'1' output 1
O43S 95 O _'0' output 0
O43S 96 O _'0' output 0
ZS 97 Z end the program
T49S 98 L_not100 T _dummy reset Acc
T52S 99 T _d reset digit
A50S 100 A _cnt load counter
S38S 101 L_count10s S _10 subtract 10
G109S 102 G L_print10s goto print 10s if Acc < 0
T51S 103 T _num store number
A52S 104 A _d load digit
A41S 105 A _1 increase digit
T52S 106 T _d store digit
A51S 107 A _num load number
E101S 108 E L_count10s loop unconditionally
T49S 109 L_print10s T _dummy reset Acc
A52S 110 A _d load digit
S41S 111 S _1 decrease digit by 1
G117S 112 G L_1 if negative (digit was 0), skip printing of tens digits
A41S 113 A _1 restore digit, by increasing with 1
L512S 114 L 2^(11-2) Acc << 11, create a printable figure
T52S 115 T _d save printable figure
O52S 116 O _d print figure / digit
T49S 117 L_1: T _dummy reset Acc
A51S 118 A _num load number
L512S 119 L 2^(11-2) Acc << 11, create a printable figure
T52S 120 T _d save printable figure
O52S 121 O _d print figure / digit
E53S 122 E L_next unconditional jump
XS 123 L_end X

“FizzBuzz” on the EDSAC / Initial Orders 1

T49S 73 L_notFizz T _dummy reset Acc
A50S 74 A _cnt load Acc with _cnt
S39S 75 L_Buzz S _5 subtract 5
E75S 76 E L_Buzz loop until Acc < 0
A39S 77 A _5 add 5, restore previous value
S41S 78 S _1 subtract 1, to check if Acc was 0
E86S 79 E L_notBuzz jump if Acc was not 0, ie number was not divisable by 5
T51S 80 T _num set _num to negative value, flag that no value should be printed
O34S 81 O _LS prepare printing letters
O44S 82 O _B output B
O47S 83 O _U output U
O48S 84 O _Z output Z
O48S 85 O _Z output Z
T49S 86 L_notBuzz T _dummy reset Acc
A51S 87 A _num load _num to check number to be printed
G53S 88 G L_next goto next iteration if _num is negative
O33S 89 L_printNum O _FS prepare for printing numbers
T49S 90 T _dummy reset Acc
A50S 91 A _cnt load counter
S37S 92 S _100 subtract 100, check if we should stop
G98S 93 G L_not100 jump if not 100 yet
O42S 94 O _'1' output 1
O43S 95 O _'0' output 0
O43S 96 O _'0' output 0
ZS 97 Z end the program

T123S 31 T L_end mark end of program
E60S 32 E L_start jump to the beginning of program
#S 33 _FS # figure shift
*S 34 _LS * letter shift
&S 35 _LF & linefeed character
@S 36 _CR @ carriage return character
P100S 37 _100 P 100 constant 100
P10S 38 _10 P 10 constant 10
P5S 39 _5 P 5 constant 5
P3S 40 _3 P 3 constant 3
P1S 41 _1 P 1 constant 1
QS 42 _'1' Q constant figure 1
PS 43 _'0' P constant figure 0
BS 44 _B B constant letter B
FS 45 _F F constant letter F
IS 46 _I I constant letter I
US 47 _U U constant letter U
ZS 48 _Z Z constant letter Z
PS 49 _dummy P used to flush and reset the accumulator
P1S 50 _cnt P 1 counter, current number to be considered, will be increased
PS 51 _num P number to be printed, negative if counter is mod 3 or mod 5
PS 52 _d P digit to be printed
O34S 53 L_next O _LS output LS, prepare for printing letters
O35S 54 O _LF output LF, linefeed
O36S 55 O _CR output CR, carriage return
T49S 56 T _dummy reset Acc
A50S 57 A _cnt load Acc with _cnt
A41S 58 A _1 increase Acc
T50S 59 T _cnt store Acc into _cnt, reset Acc
A50S 60 L_start A _cnt load Acc with _cnt (we know that Acc initially is 0)
U51S 61 U _num tentatively set number to be printed
S40S 62 L_tryFizz S _3 subtract 3
E62S 63 E L_tryFizz loop until Acc < 0
A40S 64 A _3 add 3, restore previous value
S41S 65 S _1 subtract 1, to check if Acc was 0
E73S 66 E L_notFizz jump if Acc was not 0, ie number was not divisable by 3
T51S 67 T _num set _num to negative value, flag that no value should be printed
O34S 68 O _LS prepare printing letters
O45S 69 O _F output F
O46S 70 O _I output I
O48S 71 O _Z output Z
O48S 72 O _Z output Z
T49S 73 L_notFizz T _dummy reset Acc
A50S 74 A _cnt load Acc with _cnt
S39S 75 L_Buzz S _5 subtract 5
E75S 76 E L_Buzz loop until Acc < 0
A39S 77 A _5 add 5, restore previous value
S41S 78 S _1 subtract 1, to check if Acc was 0
E86S 79 E L_notBuzz jump if Acc was not 0, ie number was not divisable by 5
T51S 80 T _num set _num to negative value, flag that no value should be printed
O34S 81 O _LS prepare printing letters
O44S 82 O _B output B
O47S 83 O _U output U
O48S 84 O _Z output Z
O48S 85 O _Z output Z
T49S 86 L_notBuzz T _dummy reset Acc
A51S 87 A _num load _num to check number to be printed
G53S 88 G L_next goto next iteration if _num is negative
O33S 89 L_printNum O _FS prepare for printing numbers
T49S 90 T _dummy reset Acc
A50S 91 A _cnt load counter
S37S 92 S _100 subtract 100, check if we should stop
G98S 93 G L_not100 jump if not 100 yet
O42S 94 O _'1' output 1
O43S 95 O _'0' output 0
O43S 96 O _'0' output 0
ZS 97 Z end the program
T49S 98 L_not100 T _dummy reset Acc
T52S 99 T _d reset digit
A50S 100 A _cnt load counter
S38S 101 L_count10s S _10 subtract 10
G109S 102 G L_print10s goto print 10s if Acc < 0
T51S 103 T _num store number
A52S 104 A _d load digit
A41S 105 A _1 increase digit
T52S 106 T _d store digit
A51S 107 A _num load number
E101S 108 E L_count10s loop unconditionally
T49S 109 L_print10s T _dummy reset Acc
A52S 110 A _d load digit
S41S 111 S _1 decrease digit by 1
G117S 112 G L_1 if negative (digit was 0), skip printing of tens digits
A41S 113 A _1 restore digit, by increasing with 1
L512S 114 L 2^(11-2) Acc << 11, create a printable figure
T52S 115 T _d save printable figure
O52S 116 O _d print figure / digit
T49S 117 L_1: T _dummy reset Acc
A51S 118 A _num load number
L512S 119 L 2^(11-2) Acc << 11, create a printable figure
T52S 120 T _d save printable figure
O52S 121 O _d print figure / digit
E53S 122 E L_next unconditional jump
XS 123 L_end X

“FizzBuzz” on the EDSAC / Initial Orders 1

T49S 98 L_not100 T _dummy reset Acc
T52S 99 T _d reset digit
A50S 100 A _cnt load counter
S38S 101 L_count10s S _10 subtract 10
G109S 102 G L_print10s goto print 10s if Acc < 0
T51S 103 T _num store number
A52S 104 A _d load digit
A41S 105 A _1 increase digit
T52S 106 T _d store digit
A51S 107 A _num load number
E101S 108 E L_count10s loop unconditionally
T49S 109 L_print10s T _dummy reset Acc
A52S 110 A _d load digit
S41S 111 S _1 decrease digit by 1
G117S 112 G L_1 if negative (digit was 0), skip printing of tens digits
A41S 113 A _1 restore digit, by increasing with 1
L512S 114 L 2^(11-2) Acc << 11, create a printable figure
T52S 115 T _d save printable figure
O52S 116 O _d print figure / digit
T49S 117 L_1: T _dummy reset Acc
A51S 118 A _num load number
L512S 119 L 2^(11-2) Acc << 11, create a printable figure
T52S 120 T _d save printable figure
O52S 121 O _d print figure / digit
E53S 122 E L_next unconditional jump
XS 123 L_end X

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SG98SO42SO43S
O43SZST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SG98SO42SO43S
O43SZST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

There is a small bug in the program. Did you notice?

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SG98SO42SO43S
O43SZST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SG98SO42SO43S
O43SZST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

Here is a quick and dirty fix!

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SA41SG98SZSO4
3SO43ST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SA41SG98SZSO4
3SO43ST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

T123SE60S#S*S&S@SP100SP10SP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPSO34SO35SO36ST49SA50SA41ST50SA50SU5
1SS40SE62SA40SS41SE73ST51SO34SO45SO46SO48SO48S
T49SA50SS39SE75SA39SS41SE86ST51SO34SO44SO47SO4
8SO48ST49SA51SG53SO33ST49SA50SS37SA41SG98SZSO4
3SO43ST49ST52SA50SS38SG109ST51SA52SA41ST52SA51
SE101ST49SA52SS41SG117SA41SL512ST52SO52ST49SA5
1SL512ST52SO52SE53SXS

“FizzBuzz” on the EDSAC / Initial Orders 1

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

Enjoy!

http://en.wikipedia.org/wiki/IBM_701

Speedcoding, John Backus, 1953 on the IBM 701

IBM 701 processor frameIBM 701 operator's console

http://en.wikipedia.org/wiki/IBM_704

Backus later did work on the IBM 704

Fortran (appeared 1957, designed by John Backus)

http://en.wikipedia.org/wiki/Fortran

Simple FORTRAN II program

IAL (aka Algol 58) (designed by
Friedrich L. Bauer, Hermann Bottenbruch, Heinz Rutishauser, Klaus Samelson,

John Backus, Charles Katz, Alan Perlis, Joseph Henry Wegstein

http://en.wikipedia.org/wiki/ALGOL_58
http://www.softwarepreservation.org/projects/ALGOL/report/Algol58_preliminary_report_CACM.pdf/

http://i.telegraph.co.uk/multimedia/archive/02012/oxbridge-1_2012609b.jpg

Cambridge

EDSAC 2 users in 1960
http://en.wikipedia.org/wiki/EDSAC_2

http://en.wikipedia.org/wiki/Titan_(computer)

A scaled down version of Atlas (called Titan / Atlas2) was ordered
in 1961, delivered to Cambridge in 1963, but not usable until early 1964

“How BCPL evolved from CPL”, Martin Richards

a programming language was needed!

Many existing programming languages was concidered, but….

ALGOL 60 was just “a language, not a programming system”

wikipedia on Algol 60
From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Algol 60 was criticized as not enabling efficient compilation, call by name being cited as a main
cause. A second area of concern was the side effects of procedures necessitating a strict left-to-

right rule for the evaluation of expressions.

ALGOL 60 was just “a language, not a programming system”

wikipedia on Algol 60
From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Algol 60 was criticized as not enabling efficient compilation, call by name being cited as a main
cause. A second area of concern was the side effects of procedures necessitating a strict left-to-

right rule for the evaluation of expressions.

Fortran IV was too tied up to IBM 709/7090

http://www.fortran.bcs.org/2005/fortran/img10.jpg

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Example of Atlas Autocode (designed by Tony Brooker and Derrick Morris)

http://history.dcs.ed.ac.uk/archive/docs/atlasautocode.html

“the use of compiler-compiler technology frightened us”
From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

But, hey….

In the early 1960's, it was common to think "we are building a new
computer, so we need a new programming language."

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

(David Hartley, in 2013 article)

CPL
Cambridge Programming Language

CPL
Cambridge Programming Language

CPL
Cambridge Programming Language

Cambridge Plus London

CPL
Cambridge Programming Language

Cambridge Plus London

CPL
Cambridge Programming Language

Combined Programming Language
Cambridge Plus London

CPL
Cambridge Programming Language

Combined Programming Language
(Cristophers’ Programming Language)

Cambridge Plus London

"anything not explicity allowed should be forbidden ... nothing should be left
undefined, as occurs in ALGOL 60"

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"It was envisagd that [the language] would be sufficiently general and
versatile to dispense with machine-code programming as far as possible"

"anything not explicity allowed should be forbidden ... nothing should be left
undefined, as occurs in ALGOL 60"

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"It was envisagd that [the language] would be sufficiently general and
versatile to dispense with machine-code programming as far as possible"

Advanced were made in understanding the evaluation of expressions
so as to recognize not just the value of data but also its location.
Taking terminology related to the assignment statement, we
developed the concept of left-hand and right-hand values ... this
enabled an assignment statement to have the generalized form

 <expression> := <expression>

the first being evaluated in left-hand mode to reveal a location and
the second in right-hand mode to obtain a value to be assigned to
that location.

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Advanced were made in understanding the evaluation of expressions
so as to recognize not just the value of data but also its location.
Taking terminology related to the assignment statement, we
developed the concept of left-hand and right-hand values ... this
enabled an assignment statement to have the generalized form

 <expression> := <expression>

the first being evaluated in left-hand mode to reveal a location and
the second in right-hand mode to obtain a value to be assigned to
that location.

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

http://comjnl.oxfordjournals.org/content/6/2/134.full.pdf+html

CPL as described in 1963

Example of CPL from 1963

http://www.math.bas.bg/~bantchev/place/cpl/features.pdf

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963double floating point precision

support for complex numbers

polymorphic operators

transfer functions (
aka, coercion)

closures and lamda calculus

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963double floating point precision

support for complex numbers

polymorphic operators

transfer functions (
aka, coercion)

closures and lamda calculus

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

Martin Richards started as a research student in 1963double floating point precision

support for complex numbers

polymorphic operators

transfer functions (
aka, coercion)

closures and lamda calculus

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

http://s3.amazonaws.com/rapgenius/BIg-Pill.jpg

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

CPL was once compared to the invention of a pill that could
cure every type of ill.

Writing a compiler for CPL was too difficult.

Cambridge never succeeded writing a working CPL compiler.

Writing a compiler for CPL was too difficult.

Cambridge never succeeded writing a working CPL compiler.

Development on CPL ended December 1966.

Writing a compiler for CPL was too difficult.

Inspired by his work on CPL, Martin Richards wanted to create a language:

Inspired by his work on CPL, Martin Richards wanted to create a language:

• that was simple to compile
• with direct mapping to machine code
• that assumes the programmer know what he is doing

Inspired by his work on CPL, Martin Richards wanted to create a language:

 "The philosophy of BCPL is not one of the tyrant who thinks he knows
 best and lay down the law on what is and what is not allowed;
 rather, BCPL acts more as a servant offering his services to the
 best of his ability without complaint, even when confronted with
 apparent nonsense. The programmer is always assumed to know what he
 is doing and is not hemmed in by petty restrictions.” (The BCPL book, 1979)

• that was simple to compile
• with direct mapping to machine code
• that assumes the programmer know what he is doing

Inspired by his work on CPL, Martin Richards wanted to create a language:

 "The philosophy of BCPL is not one of the tyrant who thinks he knows
 best and lay down the law on what is and what is not allowed;
 rather, BCPL acts more as a servant offering his services to the
 best of his ability without complaint, even when confronted with
 apparent nonsense. The programmer is always assumed to know what he
 is doing and is not hemmed in by petty restrictions.” (The BCPL book, 1979)

• that was simple to compile
• with direct mapping to machine code
• that assumes the programmer know what he is doing

Inspired by his work on CPL, Martin Richards wanted to create a language:

 "The philosophy of BCPL is not one of the tyrant who thinks he knows
 best and lay down the law on what is and what is not allowed;
 rather, BCPL acts more as a servant offering his services to the
 best of his ability without complaint, even when confronted with
 apparent nonsense. The programmer is always assumed to know what he
 is doing and is not hemmed in by petty restrictions.” (The BCPL book, 1979)

• that was simple to compile
• with direct mapping to machine code
• that assumes the programmer know what he is doing

The BCPL Reference Manual, Martin Richards, July 1967

The BCPL Reference Manual, Martin Richards, July 1967

Computer Laboratory, Cambridge, December 2014

Lucky and humble fans meet Martin Richards, the inventor of BCPL

So what is the link between BCPL and B and C?

Interviewer: Did you develop B?

Thompson: I did B.

Interviewer: As a subset of BCPL?

Thompson: It wasn't a subset. It was almost exactly the same.
...
Thompson: It was the same language as BCPL, it looked
 completely different, syntactically it was, you
 know, a redo. The semantics was exactly the same
 as BCPL. And in fact the syntax of it was, if you
 looked at, you didn't look too close, you would
 say it was C. Because in fact it was C, without
 types.
...

http://www.princeton.edu/~hos/mike/transcripts/thompson.htm

From an interview with Ken Thompson in 1989

From the HOPL article by Dennis Ritchie in 1993

BCPL, B and C differ syntactically in many
details, but broadly they are similar.

The C programming language was devised in the
early 1970s as a system implementation language

for the nascent Unix operating system. Derived from
the typeless language BCPL, it evolved a type

structure; created on a tiny machine as a tool to
improve a meager programming environment, it has

become one of the dominant languages of today.
This paper studies its evolution.

…

Users’ Reference to B, Ken Thompson, January 1972

Users’ Reference to B, Ken Thompson, January 1972

Users’ Reference to B, Ken Thompson, January 1972The BCPL Reference Manual, Martin Richards, July 1967

vs

excerpt from the BCPL reference manual (Richards, 1967), page 6

excerpt from the B reference manual (Thompson, 1972), page 6

excerpt from the BCPL reference manual (Richards, 1967), page 6

excerpt from the B reference manual (Thompson, 1972), page 6

excerpt from the BCPL reference manual (Richards, 1967), page 6

excerpt from the B reference manual (Thompson, 1972), page 6

The C Reference Manual, Dennis Ritchie, Jan 1974 (aka C74)

Interesting fact:

The C74 reference manual does not mention BCPL at all.

Interesting fact:

The C74 reference manual does not mention BCPL at all.
It does not even mention the B reference manual by Ken Thompson.

Interesting fact:

The C74 reference manual does not mention BCPL at all.
It does not even mention the B reference manual by Ken Thompson.

Interesting fact:

“Good artists copy. Great artists steal.”

Picasso?

good_research_labs(knowledge k);
great_research_labs(knowledge && k);

/* Bell Labs? */

GET "LIBHDR"

GLOBAL $(
 COUNT: 200
 ALL: 201
$)

LET TRY(LD, ROW, RD) BE
 TEST ROW = ALL THEN
 COUNT := COUNT + 1
 ELSE $(
 LET POSS = ALL & ~(LD | ROW | RD)
 UNTIL POSS = 0 DO $(
 LET P = POSS & -POSS
 POSS := POSS - P
 TRY(LD + P << 1, ROW + P, RD + P >> 1)
 $)
 $)

LET START() = VALOF $(
 ALL := 1
 FOR I = 1 TO 12 DO $(
 COUNT := 0
 TRY(0, 0, 0)
 WRITEF("%I2-QUEENS PROBLEM HAS %I5 SOLUTIONS*N", I, COUNT)
 ALL := 2 * ALL + 1
 $)
 RESULTIS 0
$)

• Designed by Martin Richards, appeared in 1966, typeless (everything is a word)
• Influenced by Fortran and Algol
• Intended for writing compilers for other languages
• Simplified version of CPL by "removing those features of the full language which make

compilation difficult"

BCPL

PDP-7
(18-bit computer, introduced 1965)

/* The following program will calculate the constant e-2 to about
 4000 decimal digits, and print it 50 characters to the line in
 groups of 5 characters. */

main() {
extrn putchar, n, v;
auto i, c, col, a;

i = col = 0;
while(i<n)

v[i++] = 1;
while(col<2*n) {

a = n+1 ;
c = i = 0;
while (i<n) {

c =+ v[i] *10;
v[i++] = c%a;
c =/ a--;

}

putchar(c+'0');
if(!(++col%5))

putchar(col%50?' ': '*n');
}
putchar('*n*n');

}

v[2000];
n 2000;

Designed by Ken Thompson, appeared in ~1969, typeless (everything is a word)
"BCPL squeezed into 8K words of memory and filtered through Thompson's brain"

B

/* The following program will calculate the constant e-2 to about
 4000 decimal digits, and print it 50 characters to the line in
 groups of 5 characters. */

main() {
extrn putchar, n, v;
auto i, c, col, a;

i = col = 0;
while(i<n)

v[i++] = 1;
while(col<2*n) {

a = n+1 ;
c = i = 0;
while (i<n) {

c =+ v[i] *10;
v[i++] = c%a;
c =/ a--;

}

putchar(c+'0');
if(!(++col%5))

putchar(col%50?' ': '*n');
}
putchar('*n*n');

}

v[2000];
n 2000;

Designed by Ken Thompson, appeared in ~1969, typeless (everything is a word)
"BCPL squeezed into 8K words of memory and filtered through Thompson's brain"

B

if
else
while
switch
case

/* The following program will calculate the constant e-2 to about
 4000 decimal digits, and print it 50 characters to the line in
 groups of 5 characters. */

main() {
extrn putchar, n, v;
auto i, c, col, a;

i = col = 0;
while(i<n)

v[i++] = 1;
while(col<2*n) {

a = n+1 ;
c = i = 0;
while (i<n) {

c =+ v[i] *10;
v[i++] = c%a;
c =/ a--;

}

putchar(c+'0');
if(!(++col%5))

putchar(col%50?' ': '*n');
}
putchar('*n*n');

}

v[2000];
n 2000;

Designed by Ken Thompson, appeared in ~1969, typeless (everything is a word)
"BCPL squeezed into 8K words of memory and filtered through Thompson's brain"

B

if
else
while
switch
case

goto
return

/* The following program will calculate the constant e-2 to about
 4000 decimal digits, and print it 50 characters to the line in
 groups of 5 characters. */

main() {
extrn putchar, n, v;
auto i, c, col, a;

i = col = 0;
while(i<n)

v[i++] = 1;
while(col<2*n) {

a = n+1 ;
c = i = 0;
while (i<n) {

c =+ v[i] *10;
v[i++] = c%a;
c =/ a--;

}

putchar(c+'0');
if(!(++col%5))

putchar(col%50?' ': '*n');
}
putchar('*n*n');

}

v[2000];
n 2000;

Designed by Ken Thompson, appeared in ~1969, typeless (everything is a word)
"BCPL squeezed into 8K words of memory and filtered through Thompson's brain"

B

auto
extrn

if
else
while
switch
case

goto
return

PDP-11
•16-bit computer
•introduced 1970
•orthogonal instruction set
•byte-oriented

•Designed by Dennis Ritchie and Ken Thompson
•Developed during 1969-1972 in parallel with Unix
•Developed because of the PDP-11, a 16-bit, byte-oriented machine
•C introduced more types: integer types, characters and floating point types
•A key design principle was to make C amenable to translation by simple compilers
•Storage limitations often demanded a one-pass technique in which output was generated as soon
as possible.

•While C had been ported to other architectures, until about 1977 Unix itself had only been
running on DEC architectures.

•The PCC (Portable C Compiler, Stephen C. Johnson) was an important reference implementation
•It was not until 1977-1979 that the portability of Unix was demonstrated
•very productive time 1977-1979 for C as Unix was ported to new platforms

Early C

http://en.wikipedia.org/wiki/Stephen_C._Johnson

/* C78 example, K&R C */

mystrcpy(s,t)
char *s;
char *t;
{
 int i;

 for (i = 0; (*s++ = *t++) != '\0'; i++)
 ;
 return(i);
}

main()
{
 char str1[10];
 char str2[] = "Hello, C78!";
 int len = mystrcpy(str1, str2);
 int i;
 for (i = 0; i < len; i++)
 putchar(str1[i]);
 exit(0);
}

The seminal book "The C Programming Language" (1978) acted for a long time as the
only formal definition of the language.

K&R C

http://www.faqs.org/docs/artu/c_evolution.html

Standardization of C started in 1983

http://www.faqs.org/docs/artu/c_evolution.html

Standardization of C started in 1983

Standardization of C

• Dennis Ritchie not involved(except for the “noalias must go” article)
• Committee met four times a year, from 83 til publication
• All meetings in the US (due to political issues between ANSI and ISO)
• The committee avoided inventing features
• All features had to be demonstrated by one or more existing compilers
• Hot topic: value preserving vs unsigned preserving (value preserving won)
• The idea of text files vs binary files (due to Microsofts CR/NL vs Unix NL)
• The standard was delayed about 2 years due to a US protest

Private conversation with Tom Plum, April 2015

/* C89 example, ANSI C */

#include <stdio.h>

int mystrcpy(char *s, const char *t)
{
 int i;

 for (i = 0; (*s++ = *t++) != '\0'; i++)
 ;
 return i;
}

int main(void)
{
 char str1[10];
 char str2[] = "Hello, C89!";
 size_t len = mystrcpy(str1, str2);
 size_t i;
 for (i = 0; i < len; i++)
 putchar(str1[i]);
 return 0;
}

ANSI published in 1989. ISO adopted in 1990 (but changed the chapter numbers).
Soon after it was all ISO/IEC

ANSI C / C89 / C90

• Add more extensive support for international character sets (mostly done by Japan)
• Corrected some details

ISO/IEC 9899/AMD1:1995, aka “C95”

Private conversation with David Keaton, April 2015

// C99 example, ISO/IEC 9899:1999

#include <stdio.h>

size_t mystrcpy(char *restrict s, const char *restrict t)
{
 size_t i;

 for (i = 0; (*s++ = *t++) != '\0'; i++)
 ;
 return i;
}

int main(void)
{
 char str1[10];
 char str2[] = "Hello, C99!";
 size_t len = mystrcpy(str1, str2);
 for (size_t i = 0; i < len; i++)
 putchar(str1[i]);
}

C99 added a lot of stuff to C89, perhaps too much. Especially a lot of features for scientific
computing was added, but also a few things that made life easier for programmers.

C99

The main focus:
- security, eg Anneks K (the bounds checking library, contributed by Microsoft)
- support for multicore systems (threads from WG14, memory model from WG21)

The most interesting features:

• Type-generic expressions using the _Generic keyword.
• Multi-threading support
• Improved Unicode support
• Removal of the gets() function
• Bounds-checking interfaces
• Anonymous structures and unions
• Static assertions
• Misc library improvements

Made a few C99 features optional.

C11

WG14 meeting at Lysaker, April 2015

• Currently working on defect reports
• There are some nasty/interesting differences between C11 and C++11
• IEEE 754 floating point standard updated in 2008
• CPLEX - C parallel language extentions (started after C11)

Next version of C - C2x?

Private conversation with David Keaton, April 2015

/* C78 example, K&R C */

mystrcpy(s,t)
char *s;
char *t;
{
 int i;

 for (i = 0; (*s++ = *t++) != '\0'; i++)
 ;
 return(i);
}

main()
{
 char str1[10];
 char str2[] = "Hello, C78!";
 int len = mystrcpy(str1, str2);
 int i;
 for (i = 0; i < len; i++)
 putchar(str1[i]);
 exit(0);
}

/* C89 example, ANSI C */

#include <stdio.h>

int mystrcpy(char *s, const char *t)
{
 int i;

 for (i = 0; (*s++ = *t++) != '\0'; i++)
 ;
 return i;
}

int main(void)
{
 char str1[10];
 char str2[] = "Hello, C89!";
 size_t len = mystrcpy(str1, str2);
 size_t i;
 for (i = 0; i < len; i++)
 putchar(str1[i]);
 return 0;
}

// C99 example, ISO/IEC 9899:1999

#include <stdio.h>

size_t mystrcpy(char *restrict s,
 const char *restrict t)
{
 size_t i;

 for (i = 0; (*s++ = *t++) != '\0'; i++)
 ;
 return i;
}

int main(void)
{
 char str1[10];
 char str2[] = "Hello, C99!";
 size_t len = mystrcpy(str1, str2);
 for (size_t i = 0; i < len; i++)
 putchar(str1[i]);
}

K&R C C89/C90 C99

Evolution of Keywords in C (1972-2011)

B (1972)

auto
extrn

if
else
while
switch
case

goto
return

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

auto
extrn

if
else
while
switch
case

goto
return

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

from B to C (1972-1974)

auto
extrn

if
else
while
switch
case

goto
return

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

int
char
float
double
struct

from B to C (1972-1974)

auto
extrn

if
else
while
switch
case

goto
return

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

int
char
float
double
struct

static
register

from B to C (1972-1974)

auto
extrn

if
else
while
switch
case

goto
return

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

int
char
float
double
struct

static
register

break
continue

from B to C (1972-1974)

auto
extrn

if
else
while
switch
case

goto
return

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

int
char
float
double
struct

static
register

break
continue

default
do
for

from B to C (1972-1974)

auto
extrn

if
else
while
switch
case

goto
return

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

int
char
float
double
struct

static
register

break
continue

default
do
for

sizeof
entry

from B to C (1972-1974)

auto
extrn

if
else
while
switch
case

goto
return

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

int
char
float
double
struct

static
register

break
continue

default
do
for

sizeof
entry

from B to C (1972-1974)

auto
extern
static
register

if
else
while
switch
case
default
do
for

goto
return
break
continue

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

int
char
float
double
struct

sizeof
entry

Early C (1974)

auto
extern
static
register

if
else
while
switch
case
default
do
for

goto
return
break
continue

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

int
char
float
double
struct

sizeof
entry

from Early C to K&R C (1974-1978)

auto
extern
static
register

if
else
while
switch
case
default
do
for

goto
return
break
continue

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

int
char
float
double
struct

sizeof
entry

short
long
union
unsigned

from Early C to K&R C (1974-1978)

auto
extern
static
register

if
else
while
switch
case
default
do
for

goto
return
break
continue

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

int
char
float
double
struct

sizeof
entry

short
long
union
unsigned

typedef

from Early C to K&R C (1974-1978)

auto
extern
static
register

if
else
while
switch
case
default
do
for

goto
return
break
continue

K&R

int
char
float
double
struct
short
long
union
unsigned

sizeof
entry
typedef

K&R C (1978)

auto
extern
static
register

if
else
while
switch
case
default
do
for

goto
return
break
continue

int
char
float
double
struct
short
long
union
unsigned

from K&R C to ANSI C (1978-1989)

sizeof
entry
typedef

auto
extern
static
register

if
else
while
switch
case
default
do
for

goto
return
break
continue

int
char
float
double
struct
short
long
union
unsigned
signed
enum
void

from K&R C to ANSI C (1978-1989)

sizeof
entry
typedef

auto
extern
static
register

if
else
while
switch
case
default
do
for

goto
return
break
continue

int
char
float
double
struct
short
long
union
unsigned
signed
enum
void

volatile
const

from K&R C to ANSI C (1978-1989)

sizeof
entry
typedef

auto
extern
static
register

if
else
while
switch
case
default
do
for

goto
return
break
continue

int
char
float
double
struct
short
long
union
unsigned
signed
enum
void

volatile
const

from K&R C to ANSI C (1978-1989)

sizeof
entry
typedef

auto
extern
static
register

if
else
while
switch
case
default
do
for

goto
return
break
continue

int
char
float
double
struct
short
long
union
unsigned
signed
enum
void

volatile
const

from K&R C to ANSI C (1978-1989)

sizeof
entry
typedef

The entry keyword came from PL/I and allowed multiple

entry points into a function. The keyword was implemented

by some compilers but was never standardized.

(stackoverflow.com/questions/254395)

auto
extern
static
register
volatile
const

if
else
while
switch
case
default
do
for

goto
return
break
continue

int
char
float
double
struct
short
long
union
unsigned
signed
enum
void

sizeof
typedef

ANSI C (1989)

auto
extern
static
register
volatile
const

if
else
while
switch
case
default
do
for

goto
return
break
continue

int
char
float
double
struct
short
long
union
unsigned
signed
enum
void

sizeof
typedef

from ANSI C to C99 (1989-1999)

auto
extern
static
register
volatile
const

if
else
while
switch
case
default
do
for

goto
return
break
continue

int
char
float
double
struct
short
long
union
unsigned
signed
enum
void

sizeof
typedef

_Bool
_Complex
_Imaginary

from ANSI C to C99 (1989-1999)

auto
extern
static
register
volatile
const

if
else
while
switch
case
default
do
for

goto
return
break
continue

int
char
float
double
struct
short
long
union
unsigned
signed
enum
void

sizeof
typedef

_Bool
_Complex
_Imaginary

restrict
inline

from ANSI C to C99 (1989-1999)

auto
extern
static
register
volatile
const
restrict
inline

if
else
while
switch
case
default
do
for

goto
return
break
continue

_Bool
_Complex
_Imaginary
int
char
float
double
struct
short
long
union
unsigned
signed
enum
void

sizeof
typedef

C99

auto
extern
static
register
volatile
const
restrict
inline

if
else
while
switch
case
default
do
for

goto
return
break
continue

_Bool
_Complex
_Imaginary
int
char
float
double
struct
short
long
union
unsigned
signed
enum
void

sizeof
typedef

from C99 to C11 (1999-2011)

auto
extern
static
register
volatile
const
restrict
inline

if
else
while
switch
case
default
do
for

goto
return
break
continue

_Bool
_Complex
_Imaginary
int
char
float
double
struct
short
long
union
unsigned
signed
enum
void

sizeof
typedef

_Alignas
_Atomic
_Thread_local

from C99 to C11 (1999-2011)

auto
extern
static
register
volatile
const
restrict
inline

if
else
while
switch
case
default
do
for

goto
return
break
continue

_Bool
_Complex
_Imaginary
int
char
float
double
struct
short
long
union
unsigned
signed
enum
void

sizeof
typedef

_Alignas
_Atomic
_Thread_local

_Noreturn
_Static_assert
_Alignof
_Generic

from C99 to C11 (1999-2011)

auto
extern
static
register
volatile
const
restrict
inline
_Alignas
_Atomic
_Thread_local

if
else
while
switch
case
default
do
for

goto
return
break
continue

_Bool
_Complex
_Imaginary
int
char
float
double
struct
short
long
union
unsigned
signed
enum
void

sizeof
typedef
_Noreturn
_Static_assert
_Alignof
_Generic

C11

C11_Standard

The spirit of C

trust the programmer
• let them do what needs to be done
• the programmer is in charge not the compiler

keep the language small and simple
• small amount of code → small amount of assembler
• provide only one way to do an operation
• new inventions are not entertained

make it fast, even if its not portable
• target efficient code generation
• int preference, int promotion rules
• sequence points, maximum leeway to compiler

rich expression support
• lots of operators
• expressions combine into larger expressions

http://www.open-std.org/jtc1/sc22/wg14/www/C99RationaleV5.10.pdf

http://thesourceny.com/welcome/wp-content/uploads/2014/02/stage-red-curtain.jpg

http://thesourceny.com/welcome/wp-content/uploads/2014/02/stage-red-curtain.jpg

The history of C

At Bell Labs. Back In 1969. Ken Thompson wanted to play. He found a
little used PDP-7. Ended up writing a nearly complete operating
system from scratch. In pure assembler of course. In about 4 weeks!
Dennis Ritchie soon joined the effort. While porting Unix to a
PDP-11 they invented C, heavily inspired by Martin Richards’ portable
systems programming language BCPL. In 1972 Unix was rewritten in
C, and later ported to many other machines aided by Steve Johnsons
Portable C Compiler. C gained popularity outside the realm of
PDP-11 and Unix. Initially the K&R was the definitive reference until
the language was standardized by ANSI and ISO in 1989/1990 and
thereafter updated in 1999 and 2011.

http://powerlisting.wikia.com/wiki/File:The-end.jpg

!

?

C++

History and Spirit of C++
Olve Maudal

To get a deep understanding of C++, it is useful to know the history of this wonderful programming language. It is perhaps even more important to appreciate
the driving forces, motivation and the spirit that has shaped this languages into what we have today.

We assume you know the history and spirit of C. We will now include Simula, Algol 68, Ada, ML, Clu into the equation. We will discuss the motivation for
creating C++, and with live coding we will demonstrate by example how it has evolved from the rather primitive “C with Classes” into a supermodern and
capable programming language as we now have with C++11/14 and soon with C++17.

A lightning talk at ACCU 2015, April 23, Bristol, UK

https://c1.staticflickr.com/1/118/300053732_0b20ed7e73.jpg

http://thesourceny.com/welcome/wp-content/uploads/2014/02/stage-red-curtain.jpg

http://thesourceny.com/welcome/wp-content/uploads/2014/02/stage-red-curtain.jpg

The history of C++

http://thesourceny.com/welcome/wp-content/uploads/2014/02/stage-red-curtain.jpg

The history of C++
in 5

http://thesourceny.com/welcome/wp-content/uploads/2014/02/stage-red-curtain.jpg

The history of C++
in 5 minutes

with approximately the words of Bjarne Stroustrup himself as copied from
"The Design and Evolution of C++", Bjarne Stroustrup, 1994

Before C++

I was working on my PhD thesis

http://computersweden.idg.se/polopoly_fs/1.346563!imageManager/1326219611.jpg

Bjarne

Cambridge Computing, The first 75 years, Haroon Ahmed, 2013

in the Computing Laboratory at

in the Computing Laboratory at University of Cambridge.

I was working on a simulator to study alternatives for the organization of
system software for distributed systems.

The initial version of this simulator was written in Simula

http://en.wikipedia.org/wiki/Simula

and ran on the IBM 360/165 mainframe.

https://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_PP3165.html

System/370 model 165

The concepts of Simula and object orientation became increasingly helpful as
the size of the program increased. Unfortunately, the implementation of Simula

did not scale the same way.

Eventually, I had to rewrite the simulator in ? and run it on the
experimental CAP computer.

Eventually, I had to rewrite the simulator in ? and run it on the
experimental CAP computer.

BCPL

The experience of coding and debugging the simulator in BCPL was horrible.
BCPL makes C look like a very high-level language and provides absolutely no

type checking or run-time support.

http://theleafsnation.com/2011/2/7/phil-kessels-frustrated-you-would-be-too

The experience of coding and debugging the simulator in BCPL was horrible.
BCPL makes C look like a very high-level language and provides absolutely no

type checking or run-time support.

http://theleafsnation.com/2011/2/7/phil-kessels-frustrated-you-would-be-too

Upon leaving Cambridge, I swore never again to attack a problem with
tools as unsuitable as those I had suffered while designing and
implementing the simulator.

A good tool should:
• have support for program organization, eg classes, concurrency,

strong type checking
• produce programs that run as fast as the BCPL programs
• support separately compiled units into a program
• allow for highly portable implementations

After finishing my PhD Thesis in Cambridge I got a job at

After finishing my PhD Thesis in Cambridge I got a job at Bell Labs.

Where I learned C properly from people like Stu Feldman, Steve Johnson, Brian
Kernighan, and Dennis Ritchie.

Developing the initial version of C++ (pre-1985)

 (p44, TDEC++)

• Simula gave classes

• Simula gave classes
• Algol68 gave operator overloading and references

• Simula gave classes
• Algol68 gave operator overloading and references
• Algol68 also gave the ability to declare variables anywhere in a block

• Simula gave classes
• Algol68 gave operator overloading and references
• Algol68 also gave the ability to declare variables anywhere in a block
• The only direct influence from BCPL was

• Simula gave classes
• Algol68 gave operator overloading and references
• Algol68 also gave the ability to declare variables anywhere in a block
• The only direct influence from BCPL was // comments

Development of C++ (post-1985)

(p45, TDEC++)

ML (Robin Milner, 1973) influenced exceptions

CLU (Barbara Liskov, 1974) also influenced exception

http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-225.pdf

Ada (Jean Ichbiah++, 1980) influenced templates, namespaces and exceptions

80's
C with classes, C++/CFront, ARM

90's
X3J16, C++arm, WG21, C++98, STL

C++ was improved and became standardized

Ouch... Template Metaprogramming

C++03, TR1, Boost and other external libraries

While the language itself saw some minor improvements after C++98, Boost and other external
libraries acted like laboratories for experimenting with potential new C++ features. Resulting in...

C++11/C++14

With the latest version C++ feels like a new language

The future of C++?

http://powerlisting.wikia.com/wiki/File:The-end.jpg

!

?

