History and Spirit of C and C++

Olve Maudal

To get a deep understanding of C and C++, it is useful to know the history of these wonderful programming languages. It is perhaps even more important to
appreciate the driving forces, motivation and the spirit that has shaped these languages into what we have today.

In the first half of this talk we go back to the early days of programmable digital computers.VVe will take a brief look at really old machine code, assembler,
Fortran, AL, Algol 60 and CPL, before we discuss the motivations behind BCPL, B and then early C.We will also discuss influential hardware architectures

represented by EDSAC, Atlas, PDP-7, PDP-11 and Interdata 8/32. From there we quickly move through the newer language versions such as K&R C, C89, C99
and CI 1.

In the second half we backtrack into the history again, now including Simula, Algol 68,Ada, ML, Clu into the equation.We will discuss the motivation for

creating C++, and with live coding we will demonstrate by example how it has evolved from the rather primitive “C with Classes” into a supermodern and
capable programming language as we now have with C++11/14 and soon with C++17.

A 90 minute session at ACCU 2015, April 23, Bristol, UK

Part | Part ||

History and spirit of C History and spirit of C++
The short version Before C++
Before C Developing the initial versions of C++ (pre-1985)
Early C and K&R Development of C++ (after-1985)
ANSI C Evolution of C++ by examples
Modern C

Q&A

Part |

History and spirit of C

The short version

Before C

Early C and K&R
ANSI| C

Modern C

Q&A

(~90 minutes)

Part ||

History and spirit of C++
Before C++
Developing the initial versions of C++ (pre-1985)
Development of C++ (after-1985)
Evolution of C++ by examples

(a few minutes)

Part |

History and spirit of C

The short version

Before C

Early C and K&R
ANSI| C

Modern C

Q&A

(~90 minutes)

Part ||

History and spirit of C++

Before C++

Developing the initial versions of C++ (pre-1985)
Development of C++ (after-1985)

&~

" A ~ T A LT BT s D A e gt T P B A A < «

(a few minutes)

History and Spirit of C

Olve Maudal

To get a deep understanding of C, it is useful to know the history of this wonderful programming language. It is perhaps even more important to appreciate
the driving forces, motivation and the spirit that has shaped the language into what we have today.

In this talk we go back to the early days of programmable digital computers.VWe will take a brief look at really old machine code, assembler, Fortran, IAL, Algol
60 and CPL, before we discuss the motivations behind BCPL, B and then early C.We will also discuss influential hardware architectures represented by
EDSAC, Atlas, PDP-7, PDP-1 | and Interdata 8/32. From there we quickly move through the newer language versions such as K&R C, C89, C99 and CI I.

A ~90 minute session at ACCU 2015, April 23, Bristol, UK

This is based on research partly done together with Jon Jagger

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Linix

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

Let’s play bingo! Write down 7 words/names/concepts/whatever that
you expect/hope to be discussed/mentioned in a talk titled “History and Spirit of C”.

/ 7 ol / / - o — // /_
) / _ : \/

. & < e -' — /,/ /—
/' - / / // / I/ / s

At Bell Labs.

http://www3.nd.edu/~atrozzol/BellLabs 1959.jpg

Back in 1969.

S
YN AN

T
A SaAtlr
\.‘ 2'"}

o

http://www.multicians.org/picnics.html

Ken Thompson wanted to play.

Ken Thompson wanted to play.

http://upload.wikimedia.org/wikipedia/commons/3/36/Ken_n_dennis.jpg

......

..................

P W

-—-aaad

. . ']
“ — - —
. !t.‘,_\- : \ ..v
¥ - A\
= w -
- =5) |
)' \f;" e

Ended up writing a nearly complete operating system from scratch.

TEXT PROCESSING

TEXT FORMATTERS TYPESETTING
LINE AND SCREEN EDITORS

SPELLING CHECKER MEMO MACROS FILE AND
STRING

MANIPULATION

SORT AND SELECT -
FILES AND STRINGS

LANGUAGES :
C AND FORTRAN 77
COMMON OBJECT CODE

FILE FORMATY
{COFF)

HIERARCHICAL
FILE SYSTEM

PIPES AND
FILTERS FOREGROUND
AND

BACKGROUND

EXECUTION

DATABASE
BUILDING
BLOCKS

CONFIGURABLE
ENVIRONMENT

THE
KERNEL

PROGRAMMER'S

ADDITIONAL
UTILITIES WORKBENCH
FLEXIBLE SC FILE TIME AND
DEVICE DRIVERS COMMANDGE DATE STAMPING
GAMES g g SOURCE CODE f
GRAPHICS 170 REDIRECTION CONTROL. SYSTEM '
CALENDAR COMMAND CHAINING
. (SCCS)
LEARN : '
INCREASE PROGRAMMER'S
(CAI SYSTEM) PRODUCTIVITY

COMMUNICATIONS AND NETWORKING

Uuce MAIL
NETWORKING STANDARDS

TERMINAL DRIVERS

https://archive.org/stream/byte-magazine-1983-08/1983_08_BYTE_08-08_The_C_Language#page/n|90/mode/lup

In about 4 weeks.

"Essentially one person for a month, it was just my self”
(Ken Thompson, 1989 Interview)

In pure assembler of course.

GO, LAS
SPA!CMA /EXAMINE AC SWITCHES
JMP GO /WAIT UNTIL ACS0=0
DAC CNTSET
LAC ONE /1 1S A CONSTANT
DAC BIT
CLL /CLEAR THE LINK

LOOP, LAC CNTSET
DAC CNT
LAC BIT

LOORPI, ISZ CNT /LOOP UNTIL CNT GOES TO ZERO
JMP LOOPI /JUMP TO PRECEDING LOCATION
RAL
DAC BIT /ROTATE BIT
LAS
SMA /IF ACS0=1, RESET TIME CONSTANT
JMP LOOP
JMP GO

/STORAGE FOR PROGRAM DATA
CNT, 0
BIT, 0
CNTSET, 0
ONE,]

START GO

http://bitsavers.trailing-edge.com/pdf/dec/pdp7/PDP-7_AsmMan.pdf

Dennis Ritchie soon joined the effort.

http://upload.wikimedia.org/wikipedia/commons/3/36/Ken_n_dennis.jpg

While porting Unix to a PDP-1 |

http://cm.bell-labs.com/who/dmr/picture.html

While porting Unix to a PDP-1 |

Ken

http://cm.bell-labs.com/who/dmr/picture.html

While porting Unix to a PDP-1 |

Dennis

Ken

http://cm.bell-labs.com/who/dmr/picture.html

they invented C,

main() {
printf("hello, world");
}

http://cm.bell-labs.com/cm/cs/who/dmr/ctut.pdf

heavily inspired by Martin Richards’ portable
systems programming language BCPL.

GET “LIBHDR"”
LET START() BE WRITES(“Hello, World”)

Martin Richards, Dec 2014

http://cm.bell-labs.com/cm/cs/who/dmr/ctut.pdf

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

In 1972 Unix was rewritten in C,

printf(fmt,x1,x2,x3,x4,x5,x6,x7,x8,x9)

char fmt[]; {
extern printn, putchar, namsiz, ncpw;
char s[];
auto adx[], x, ¢, i[];
adx = &x1; /* argument pointer */
loop:
while((c = *fmt++) != "%') {
if(c == '\0')
return;
putchar(c);
}
X = *adx++;
switch (¢ = *fmt++) {
case 'd': /* decimal */
case 'o': /* octal */
if(x < 0) {
X = -X;
1f(x<@) { /* - infinity */
if(c="0")
printf("100000");
else
printf("-32767");
goto loop;
}
putchar('-");
}

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

brintn(x, C=='
goto loop;

0'78:10);

case 's’': /* string ¥/

S = X;

while(c = *s++)
putchar(c);

goto loop;

case 'p':
S = X;
putchar('_");
C = namsiz;
while(c--)
1f(*s)

goto loop;
 §
putchar('%"');
fmt--;
adx--;
goto loop;

putchar(*s++);

https://code.google.com/p/unix-jun72/source/browse/trunk/src/c/c03.c

and later ported to many other machines

http://www.computerhistory.org/collections/catalog/ 102691249 http://www.technikum29.de/en/computer/early-computers http://en.wikipedia.org/wiki/IBM_System/370 http://alegion63.tripod.com/bob/id6.html

aided by Steve Johnsons Portable C Compiler.

Fact: from “The Development of the C Language” by Dennis Ritchie

C also gained popularity outside the realm of PDP-11 and Unix.

K&R (1978)

http://blogs.jpmsonline.com/wp-content/uploads/2014/1 1/S

CCCCCCCC

by ANSI

* 3l minimat

dized

1. IN’NCKJU('IIN
1.1 Pumpose

INTE
This Stasdarg Specit

”“‘"’ONAL
STANDA.;;D

€S he form arg CITAL Lishes the u*lcr:'rla!.u'

of pregrams WFitten in the ¢ aregramaing l.'-)ome./l"

1.2 SCore

ISonge
9899
This Stasdard spe¢ Lites:

. the VCD'QSO"OKIO' of (DfOG’J‘SZ
* the Sntax aneg Coastraingy of the ¢ l:nq..npf,'
. e
® the semantic fules for interpreting Bregrams;
. the rogrcuﬂnx:-'. of input S91s 19 be Processed o ¢ Programs;
* Ihe rcp'eu"!aluﬂ of sutpyr data Produced & (C Prograss;
. the restv(rr(pwx ang l;llts i"pises h, » ro-lnrl1~q .upﬁplcn?)lxcn of ¢
This Staadarg does mat ipecify:
* the Sechanisa oy which ¢ Prograss are "on"af-o-u for use 8 »
d-tn-;'b:r\\xr-] Systes;
. Lhe Sechanise 8y which [4 prog
da!r:'o(enl'-)

fans are
Systes;

ifhvoked for use by »

. the mechanise Sy which ANput dats are t.'nrv\'a'nna for use Y e Program;

* the Sechanise By which Sutput data are H.nm'urne.' after beling
Produces by a ¢ D’O;'d‘;

S the size or r:nnmxnv of » Progras ard
the Copacity or 8y specifie

its data that
data-
& particular Processar;

will exceed
Processing Sriten or the Copacity of
euiresents of » Uola-n':-:t“l'q Systes thyt
Copable of \ub;nrtl-'-] »

s
r:vi:r!an ::;er-n!a!;an.

ANSI/ISO C (C89/C90)

jonal Standard

American Nat

Iaformad

C
lasguages

aln

n dechsology
shom &

[
Programsisy

Doveloped BY

cit

»]
where IT all begin

At Bell Labs. Back In 1969. Ken Thompson wanted to play. He found a
little used PDP-7. Ended up writing a nearly complete operating
system from scratch. In about 4 weeks. In pure assembler of course.
Dennis Ritchie soon joined the effort.While porting Unix to a
PDP-11 they invented C, heavily inspired by Martin Richards’ portable
systems programming language BCPL. In 1972 Unix was rewritten in
C, and later ported to many other machines aided by Steve Johnsons
Portable C Compiler. C gained popularity outside the realm of
PDP-11 and Unix. Initially the K&R was the definitive reference until
the language was standardized by ANSI and ISO in 1989/1990 and
thereafter updated in 1999 and 201 1.

Ken Thompson, Dennis Ritchie and 20+ more technical staff from Bell Labs
had been working on the very innovative Multics project for several years.

GE-645 SYSTEM

http://web.mit.edu/saltzer/www/multics.html

The MULTICS ("Multiplexed Information and Computing Service) was started
in 1964, as a cooperative project led by MIT's Project MAC (Multiple Access
Computing), General Electric and Bell Labs.

Bell Labs pulled out of the project in 1969.

Multics was a huge project, with great ambitions. It was a secure time-sharing
system with lots of advanced features, and it was one of the few operating
systems at the time written in a high level language, PL/I.

FACT: PROC;

DCL I FIXED, PRINT ENTRY, F ENTRY RETURNS(FIXED), N INT;
DO I =1 TO 10;

CALL PRINT("Factorial is", F(I));
END;

F: PROC (N) FIXED;

DCL N FIXED;

IF N = 0 THEN RETURN(1l);
RETURN (N*F (N-1));

END F;

END FACT:

http://web.mit.edu/saltzer/www/multics.html

While working on the Multics projects, Dennis and Ken had also been exposed
to the very portable language systems programming language BCPL.

GET “LIBHDR"”
LET START() BE WRITES(“Hello, World")

"Both of us were really taken by the language and did a lot of work
with it." (Ken Thompson, 1989 interview)

http://www.princeton.edu/~hos/mike/transcripts/thompson.htm

BCPL, Basic CPL, had been described and implemented for the Project MAC in
1967 by a visiting researcher, Martin Richards from Cambridge University.

o BCPL is a simple recursive programming language
e designed for compiler writing and system programming: it
S PT— was derived from true CPL (Combined Programming }_a.nguage)
e e it o by removing those features of the full language which make
P compilation difficult namely, the type and mode matbhing
T R e rules and the variety of definition structures with their

by removing these features of the mull
s difficult namely, the 1ype and mode matahirg

n strestures with thalr

i ko ke of Qi associated scope rules.

Before visiting MIT, Martin Richards had been actively involved in developing a
compiler for a very ambitious programming language - CPL.

function Euler [function Fct, real Eps; integer Tim]= result of
§1 dec §1.1 real Mn, Ds, Sum
integer i, ¢
index n=0
m = Array [real, (0, 15)] §1.1
i, t, m[0] := 0, 0, Fct[0]

Sum = m[0]/2
§1.27i =i+ 1
Mn = Fct[i]

for Kk = step 0, 1, n do
m(k], Mn := Mn, (Mn + ml[k])/2
test Mod[Mn] < Mod[m[n]] A n < 15
then do Ds, n, m[n-+1] := Mn/2, n+1, Mn
ordo Ds := Mn
Sum := Sum + Ds
t .= (Mod[Ds] < Eps) >t +1,0§..2
repeat while 1t < Tim
result := Sum §1.

Designed jointly by the Mathematical Laboratory at the University of
Cambridge and the University of London Computer Unit

for the Atlas computer (ordered in 1961, operational in |964)

CPL was designed and partly implemented before the Atlas computer was
operational. Martin Richard and the others had to work on the EDSAC 2
computer.

Ay, el ot
- .“' '&."_ F o~ v
* ' : .
o . ——

m gt i1

EDSAC 2 users in 1960

http://en.wikipedia.org/wiki/EDSAC_2

Which was an upgrade of the EDSAC computer. Arguably, the first
electronic digital stored-program computer. It ran its first
program May 6, 1949

® A
har 3 -, on ba :

...........

llllllllll

o
LT B .

Maurice Wilkes and Bill Renwick in front of the complete EDSAC

http://en.wikipedia.org/wiki/Electronic_Delay Storage Automatic_Calculator

Maurice Wilkes' himself commenting on the 1951 film about how EDSAC was
used in practice:

https://youtu.be/x-vSOW<cJyNM

The EDSAC 1951 film
abridged version

Commentary by
M. V. Wilkes

The EDSAC 1951 film
abridged version

Commentary by
M. V. Wilkes

EDSAC Initial Orders and Squares Program

Martin Richards

EDSAC

EDSAC (Electronic Delay Storage Automatic Computer), pictured below, was the world’s first stored-program computer to
operate a regular computing service. Maurice Wilkes lead the team responsible for its design and construction. It ran its
first program successfully on May 6, 1949.

TLITTIL]

EDSAC’s main memory used mercury delay lines to hold 512 words of 35 bits. We will use the notation: w[0],
w[2],...,w[1022] to refer to these words of memory. Each word could be split into two 17-bit halves, separated by a
padding bit. We will use the notation m[a], a = 0, 1, .., 1023 to represent these 17-bit memory locations. The word
at address 2n, namely w[2n], consisted of the concatenation of m[2n + 1], a padding bit, and m [2n]. Note that
m [1] is the senior half of w[0].

17 1 17
wi2nl [Frrrrrrrrrrrrrrrr|[x][Frrrrrrrr iy
mi2n + 1] mi2n]

The machine had two central registers visible to the user: the 71-bit accumulator and the 35-bit multiplier register. We will
use the notation ABC to represent the whole accumulator, and A and AB to represent its senior 17 and 35 bits, respectively.
We will use RS to represent the whole multiplier register and R to represent its senior 17 bits. The leftmost bit of each
register was the sign bit and the remaining bits form a binary fraction.

EDSAC’s machine instructions (also called orders) occupied 17 bits. The leftmost 5 bits was the operation code, the next
bit was unused, the following 10 bits was the address field and the last bit specified (where appropriate) whether the order
used 17 or 35-bit operands.

5 10
Order format: [xx*x+= K F KKK K x X % x|
Op Unused Address

Orders were punched on paper tape and consisted of: a character that directly gave the S-bit operation code, followed by
zero or more decimal digits giving the address, and terminated by S or L specifying the operand length bit. For example,
R16S assembled to 00100 0 0000010000 0 and T1iLto 00101 O 0000001011 1 . Note that the characters R and
T had codes 4 and 5, respectively.

The Character Set

EDSAC used 5-bit integers (0 to 31) to represent characters using two shifts: letters and figures. In letter shift the codes 0
to 31 respectively represented: P, Q, W, E, R, T, Y, U, 1, 0, J, figs, S, Z, K, lets, null, F, cr, D, sp, H, N, M, If, L, X, G, A, B, C and
V. In figure shift the encoding was as follows: 0, 1, 2, 3, 4,5, 6,7, 8,9, ?, figs, ", +, (, lets, null, $, cr, 5, sp, £, ,, -, If,
), /,#,-,7, : and =. In these tables, figs, cr, sp and If denote figure shift, carriage return, space and line feed, and on the
paper tape perforator their keys were labelled 7, 6, ¢ and A, respectively. In this document, these codes correspond to the
ASCII characters #, @, ! and &. The paper tape reader complemented the high order bit of each 5-bit character, so the rows
[I, Jand] are read as codes 0(P), 7(U) and 27(G), respectively. The machine could read paper
tape at a rate of 50 characters per second and output to a Creed teleprinter at nearly 7 characters per second.

The 1949 Instruction set

EDSAC’s instructions in 1949 was very simple and were executed at a rate of about 600 per second. They were as follows:

Ans: A += m[n] AnL: wln)

Sns: = m(n] SnL: = wln]

HnS: [n] HnL: RS += wn]

Vns: m[n] * R VnL: wn] * RS
NnS: mn] * R NnL: ABC -= w(n] * RS
TnsS: A; ABC = 0 TnL: wln] = AB; ABC = 0
Uns: A UnL: wln] = AB

Cns: AB += m(n] & R CnL: ABC += w(n] & RS

RnS, RnL: Shift ABC right arithmetically by the number of places corresponding to the
position of the least significant one in the shift instruction. For example,
ROL, R1S, R168S and ROS shift by 1, 2, 6 and 15 places, respectively.

LnS, LnL: Shift ABC left arithmetically by the number of places corresponding to the
position of the least significant one in the shift instruction. For example,
LOL, L1S, L168S, L64S and LOS shift by 1, 2, 6, 8 and 13 places, respec-

tively.

EnS: ifA >= 0goton

GnS: ifA < 0goton

InS: Place the next paper tape character in the least significant 5 bits of m[n].

ons: Output the character in the most significant 5 bits of m.[n].

FnS: Verify the last character output.

XnsS: No operation.

YnsS: Add a one to bit position 35 of ABC, counting the sign bit as bit zero. This
effectively rounds ABC up to 34 fractional bits.

Zns: Stop the machine and ring a bell.

The numerical values in the accumulator and multiplier registers are normally thought of as signed binary fractions, but
integer operations could also be done casily. For example, the order V1S can be interpreted as adding the product of the
17-bit signed integer in m[1] and to the 17-bit integer in RS and adding the result into bits 0 to 32 of the ABC. With a
suitable shift, the integer result can be placed in the senior 17 bits of A ready for storing in memory.

UNIVERSITY OF
CAMBRIDGE

Computer Laboratory

Initial Orders

The four glass panels on your right contain 20 segments of 5 track paper tape. Reading from right to left and from top to
bottom, the first five segments correspond to the initial orders, and the remaining 15 to a program to compute squares. The
glass panels contain errors so a corrected version of the panels are given below.

The initial orders were written by David Wheeler in May 1949 to load and enter a paper tape represention of a program.
When EDSAC was started, these initial orders were placed in memory locations 0 to 30 by a mechanism involving uniselec-
tors before execution stared from location 0.

The glass panels give a paper tape representation of these orders even though no such paper tape ever existed. The following
is an annotated listing of this program.

Order bit pattern Order Meaning Comment

00101 0 0000000000 0 TOS m[0]=A; ABC=0
10101 0 0000000010 O H2S =m[2] Put 10<<11 in R
00101 0 0000000000 O TOS ABC=0
00011 0 0000000110 O E6S Jump to main loop
00000 0 0000000001 O 4: P1S The constant 2
00000 0 0000000101 0O 5B P58 The constant 10
00101 0 0000000000 O TOS ABC=0 Start of the main loop
01000 0 0000000000 O 108 rdch () Get operation code
11100 0 0000000000 O A0S [0] Putitin A
00100 0 0000010000 O R16S ABC>>=6 Shift and store it
00101 0 0000000000 1 TOL w[0]=AB; ABC=0 so that it becomes the
senior S bits of m [0]
m[1] is now zero
01000 0 0000000010 0 125 m[2]=rdch () Put next ch in m 2]
11100 0 0000000010 O A28 A [2] Put ch in A
01100 0 0000000101 O S5S A [5] A=ch-10
00011 0 0000010101 O E21S if A>=0 goto 21 Jump to 21, if ch>=10
00101 0 0000000011 O T3S m[3]=A; ABC=0 Clear A, m [3] is junk
11111 0 0000000001 O V1S AB+=m [1]+R A = m[1]*(10<<11)
11001 0 0000001000 O L8s A<<=5 Shift 5 more places
11100 0 0000000010 O A28 A+=m[2] Add the new digit
00101 0 0000000001 O T1S ‘m[1]=A; ABC=0 Store back in 1 [1]
00011 0 0000001011 O E118 goto 11 Repeat from 11
00100 0 0000000100 O 21: R4S ABC>>=4
11100 0 0000000001 O A1S A+=m[1] Add in the address
11001 0 0000000000 1 LOL ABC<<=1 Shift to correct position
11100 0 0000000000 O A0S A+=m[0] Add in the operation field
00101 0 0000011111 O 25: T31S m[31]= A; ABC=0 Store the order
in next location
11100 0 0000011001 O 26: A258 A+=m[25] Increment the address
field of m [25]
11100 0 0000000100 0 27: A48 A+=m [4] m[4] holds 2
00111 0 0000011001 O 28: U258 m[25]=A Update m [25]
01100 0 0000011111 O S318 A-=m[31] Jump to 6, if there are
11011 0 0000000110 O GBS if A<O goto 6 more orders to load

The instruction at location 0 does nothing useful, but the instruction at 1 loads the multiplier register R with a 17-bit
pattern 00101000000000000 which is also 10 shifted left 11 places. The instruction instruction at 2 (TOS) assembles into
exactly this bit pattern, so is used both as data and as an instruction to clear m [0]. The instruction at 3 skips to location 6
over the instructions at 4 and 5 that assemble as the 17-bit constants 2 and 10, respectively.

The main assembly loop starts at 6, leaving locations 1m.[0] to m[5] available as variables and constants in the program.
They are used as follows:

m[0] uses include holding the first character of an order,
m[1] used to hold the address field of the current order,
m([2] initially 001010. . .0 as discussed above but also

used for characters other than the first of an order,
m[3] used as a junk register when the instruction at 15 clears ABC,
m[4] the constant 2 used at 27 to add one to an address field,
m[5] the constant 10 used to check for the end of address digits.

The order at 25 is of the form TnS, initially T318S. It is used to store an order at location n. This instruction is modified
by the code in locations 26 to 28 which adds one to its address ficld, so the next time it is executed it will update the
next location. Location 31 is the first order to be loaded and must be of the form TnS where n-1 is the address of last
instruction of the program. It is used by the code in locations 29 and 30 which compares it with the current version of TnS
in 25. If loading is not yet complete execution jumps to 11, otherwise it fall through to 31. Note that the instruction at 31
will do no damage, since it just writes a value to the first location following the loaded program. The first real instruction
of the program is in m [32].

M.V Wilkes and W.A. Renwick

The Squares Program

This program, written by Maurice Wilkes in June 1949, outputs the following table of squares and differences of the

numbers 1 to 100.

(RN

98 9604

99 9801
100 10000

The following is an annotated listing of the program.

Order bit pattern

00101
00011

00000
00000

00100
00000
00000
00000
00000

00001

01011
11100

10100
11000
10010
01001
01001
00000

11100
00101

00101
11100

00101
00011
00101

11100
00101
11100
11100
00101

11100
11100
00011

11100
00000

00101
00101
11100
11100
00111
01100
11011

11100
00101
00000

co oo

oo oo 000000 ©0O O ocOoOoOR

oo ooo ooooo ooo

0001111011
0001010100

0000000000
0000000000

1100010000
1111101000
0001100100
0000001010
0000000001

0000000000

0000000000
0000101000

0000000000
0000000000
0000000000
0000101011
0000100001
0000000000

0000101110
0001000001

0010000001
0000100011

0000100010
0000111101
0000110000

0000101111
0001000001
0000100001
0000101000
0000100001

0000110000
0000100010
0000110111

0000100010
0000000000

0000110000
0000100001
0000110100
0000000100
0000110100
0000101010
0000110011

0001110101
0000110100
0000000000

00 00 000000 ©O0O ©O 00000 OO OO

©o ooo ooooco ooo

©coo ooocoocoo

Order

T1238
E84S

PS
PS

P10000S
P1000S
P100S
P10S
P1S

[

Meaning

m[123]=A; ABC=0
goto 84

data 0
data 0

data 10000<<1
data 1000<<1
data 100<<1
data 10<<1
data 1<<1

data 1<<12
data 11<<12
data 20<<12
data 24<<12
data 18<<12
wr (m[43])
wr (m[33])
data 0

A+=n[46]
m[65]=A; ABC=0

m[129]=A; ABC=0
A+=m[35]

m[34]=A; ABC=0
goto
m[48]=A; ABC=0

A+=m[47]
m[65]=A; ABC=0
A 33

A 40
m[33]=A; ABC=0

A+=mn[48]; ABC=0

A
if A>=0 goto 55

A+=m[34]
data 0

if A<O goto 51

A+=m[117]
m[52]=A; ABC=0
data 0

Comment

The required first word
Jump to start

For the next decimal digit
For the current power of ten

The table of 16-bit
powers of ten

00001 in MS § bits,
used to form digits

Figure shift character

End limit for values
placed in m [52]

Space character

Line feed character

Carriage return character

Write a space

Write a digit

The number to print

Print subroutine entry point
Put 0438 in m [65]

Clear A

A is next power of ten.
m[52] cycles through
A35S, A368, A37S,
A38S and A39S

Store it in m [34]

Store value to be printed

Store instruction 0338
inm

Increment the decimal digit
held in the MS § bits
of m[33]

Get value to print
Subtract a power of 10
Repeat, if positive

Add back the power of 10

This is replaced by either
0438 to write a space, or
0338 to write a digit

Set the value to print

Set digit to 0

Increment the address field
of the instruction
inm([52]

Compare with A40S and

Repeat, if more digits

Put A35S back
inm[52]
To hold the return jump

instruction which is
E95S, E110S or E1185

00000 0 0000000000 O 76: PS data 0 Holds =
00000 0 0000000000 O 77: PS data 0 Holds a;2
00000 0 0000000000 O 78: PS data 0 Holds previous 12
00000 0 0000000000 O 79: PS data 0 Holds Azz
00011 0 0001101110 O 80: E110S goto 110 Order to place in m [52]
00011 0 0001110110 O 81: E118S goto 118 Order to place in m[52]
00000 0 0001100100 O 82: P100S data 100<<1 End limit for
00011 0 0001011111 O 83: E958 goto 95 Order to place in 'm,[52]
01001 0 0000101001 O 84: 0418 wr(m[41]) Write figure shift
00101 0 0010000001 O 85: T129S m[129]=A; ABC=0 Start of main loop
01001 0 0000101100 O 86: 044s wr(m[44]) Write line feed
01001 0 0000101101 O 87: 0458 wr(m/[45]) ‘Write carriage return
11100 0 0001001100 O 88: A76S A+=m/|[76]; ABC=0 Get
11100 0 0000000100 O 89: A4S A+=m[4] Increment it
00111 0 0001001100 O 90: u76s and store it back in =
00101 0 0000110000 O 91 T48S Put it also in m. [48]

for printing,
11100 0 0001010011 O 92: A83s A+=m 83] Put return jump E958
00101 0 0001001011 O 93: T758 m[75 =A; ABC=0 into 'm,[75]
00011 0 0000110001 O 94 E49s goto 49 Enter the print subroutine
01001 0 0000101011 O 95: 0438 wr(m[43]) Write a space
01001 0 0000101011 O 96: 0438 wr(m[43]) Write a space
10101 0 0001001100 O 97: H76S R=m[76] Multiply « by
11111 0 0001001100 O 98: V76S ABC+=m[76]*RS itself and
11001 0 0001000000 O 99: L64S ABC<<8 re-position
11001 0 0000100000 O 100: L32s ABC<<7 the result
00111 0 0001001101 O 101 U778 m[77]=A Store in location for $2
01100 0 0001001110 O 102 S788 A-=m[78] Subtract the previous value
00101 0 0001001111 O 103: T798 m[79 =A; ABC=0 and store the new Ax
11100 0 0001001101 O 104: A7TS A+=m[77] Update variable holding
00111 0 0001001110 0 105: u78s m[78]=A the previous @
00101 0 0000110000 O 106: T48S m[48]=A; ABC=0 Put =

in 7n.[48] for printing
11100 0 0001010000 0 107; 4808 A+=m [80] Put return jump E110S
00101 0 0001001011 0 108: T75S m[75]=A; ABC=0 into m[75]
00011 0 0000110001 O 109: E495 goto 49 Enter the print subroutine
01001 0 0000101011 O 110: 043s wr(m[43]) Write a space
01001 0 0000101011 O 111 0438 mr (m[43]) ‘Write a space
11100 0 0001001111 O 112: A798 A+=m[79] Get Az
00101 0 0000110000 O 113: T48S m[48]=A; ABC=0 Put it in m.[48] for printing
11100 0 0001010001 O 114: A81S A+=m 81] Put return jump E118S
00101 0 0001001011 O 115: T758 m[75 =A; ABC=0 into m[75
00011 0 0000110001 O 116: E498 goto 49 Enter the print subroutine
11100 0 0000100011 0 117; A358 A+=m [35] Order to place in m [52]
11100 0 0001001100 O 118: A76S A+=m[T76 Get x
01100 0 0001010010 O 119: 8828 A-=m|82 Subtract the end limit (=100)
11011 0 0001010101 O 120: G858 if A<O goto 85 Repeat, if more to do
01001 0 0000101001 O 121: 0418 wr(m[41]) Write figure shift
01101 0 0000000000 O 122: zs Stop Stop the machine

The Green Door

The green door on your left was the Corn Exchange Street entrance to the Mathematical Laboratory where EDSAC was
built. By convention, the brass plaque on this door holds the engraved names of those retired members of the Laboratory
who used the door in its original location.

Links

http://www.dcs.warwick.ac.uk/"edsac/
This links to Martin Campbell-Kelly’s excellent EDSAC simulator and related documents.

http://www.cl.cam.ac.uk/UOCCL/misc/EDSAC99
This links to pages relating to the celebration, held in Cambridge in April 1999, of the 50th anniversary of the
EDSAC 1 Computer.

http://waw.cl.cam.ac.uk/ mr/Edsac.html
This links to a shell based EDSAC simulator that runs on Pentium based Linux systems. It was designed to
be educational having a built-in interactive debugger allowing single step execution, the setting of breakpoints
and convenient inspection and setting of memory and register values. It can be used to explore the execution of
the programs described in this poster. This simulator also appears as a demonstration program in the Cintcode
BCPL system (http://www.cl.cam.ac.uk/ mr/BCPL.html).

http://uww.cl.can.ac.uk/“nr/edsacposter. pdf
This is a PDF version of this poster on two A4 pages.

2AS13TSOALOLS1IAS4RS11ES

1TS2AS8LS1VS3TS12ES5SS2AS

2ILOTS61RSOASOISOTS5PS1PS 6ESOTS2HSOT

6TS64ASPS330S340SQ@S&sS!S

04AS#SQS1PS01PS001PS0001P

S00001PSPSPS48ES321T S6GS13SS52US4AS5

25TS711AS15GS24SS25US4A

S25AS33TS84TSPS43AS55ES43

SS84AS33TS04AS33AS56TS74A S84TS16ES43TS53AS921TS5

3LS46LS67VS67HS340S340S

94ES57TS38AS84TS67US4AS67

AS540S440S921TS140S59ES00 1PS811ESO11ESPSPSPSPSPS

S$2S140858GS28SS

67AS53AS94ES57TS18AS84TS9

7AS340S340S94ES57TS08AS84 TS87US77AS97TS87SS77US2

The corrected tape segments etched on the Tea Room glass panels

http://www.cl.cam.ac.uk/~mr|0/edsacposter.pdf

T44S
E38S
*S
HS
IS
&S
@S
033S
034S
O35S
036S
037S
ZS

“Hi” on the EDSAC / Initial Orders |

31
32
33
34
35
36
37
38
39
40
41
42
43

lshift
H

T
Lf
cr

_start

end

N O O O OOMm®m®LHIT*xXm -

_end+1
_start

lshift
H

I

1f
cr

mark end of program

jump to beginning of program
letter shift

letter H

letter I

LF - line feed character

CR - carriage return character
prepare for printing lettersn
print H

print I

print 1f

print cr

end of program

T44SE38S*SHS1S&S@50335034503550365037S54S

“Count to 10" on the

T62S
E43S
#S
&S
@S
PS
POS
POS
P1S
PS
PS
XS
033S
T36S
A37S
T40S
XS
T36S
A40S
L512S
T41S
041S
A40S
A39S
T40S
A38S
S40S
E48S
034S
035S
ZS

31
32

33 fshift

34 1f

35 cr

36 dummy
37 first
38 last
39 1dncr
40 cur
41 d

42 _start

43

44

45

46

47 _loop
48

49

50

51

52

53

54

55

56

57

58

59

60

61 _end

NOOmwWX»H>»>O-Ar>» X -H>» 40 X T U U UV U U®R HFmM-

_end+1
_start

o

fshift
dummy
first
cur

dummy
cur
27 (11-2)
d

d

cur
incr
cur
last
cur
_Lloop
1f

cr

EDSAC / Initial Orders |

mark end of program

jump to beginning of program
figure shift

LF - line feed character

CR - carriage return character
dummy (used to reset Acc)
first value

last value

increment

current value

d - digit to be printed

nop

prepare for printing digits
reset Acc

load first

store to cur

nop

reset Acc

load current value

Acc << 11, create a digit
store digit to be printed
print digit

load current value

acc += 1

store current value

load last value

last - cur < 0, should we break?
if no, jump to loop

print line feed

print carriage return

stop program

“FizzBuzz” on the EDSAC / Initial Orders |

written in a “primitive” 1949-like style
by Olve Maudal, Monday, April 20,2015

| pretended | was a student, who had won a single chance to run my program
on this precious computer.

The program did actually ran on the very first attempt!

T123S 31 T L_end mark end of program

E60S 32 E L_start jump to the beginning of program

#S 33 _FS # figure shift ‘ ‘ i ’ ’ o o

*S 34 _LS * letter shift

&S 35 _LF & linefeed character

@S 36 _CR Q@ carriage return character

P100S 37 _100 P 100 constant 100

P10S 38 _10 P 10 constant 10

P5S 39 _5 P 5 constant 5

P3sS 40 _3 P 3 constant 3

P1S 41 _1 P1 constant 1

Qs 42 _'1' Q constant figure 1

PS 43 _'0' P constant figure 0

BS 44 _B B constant letter B

FS 45 _F F constant letter F

Is 46 _I I constant letter I

us 47 _U U constant letter U

Zs 48 _Z Z constant letter Z

PS 49 _dummy P used to flush and reset the accumulator

P1S 50 _cnt P1 counter, current number to be considered, will be 1increased

PS 51 _num P number to be printed, negative if counter is mod 3 or mod 5

PS 52 _d P digit to be printed

034s 53 L_next 0 _LS output LS, prepare for printing letters T123S 31 T L—end mark end Of program

0358 54 0 _LF output LF, linefeed]]]

oses o8 o R outout (R carrisge return E6OS 32 E L_start jump to the beginning of program

T49S 56 T _dummy reset Acc . .

A50S 57 A _cnt load Acc with _cnt #S 33 FS # -F-l gu re sh-l ft

A41S 58 A _1 increase Acc - .

T50S 59 T _cnt store Acc into _cnt, reset Acc *S 34 LS * -Lette r Sh-l 'Ft

A50S 60 L_start A _cnt load Acc with _cnt (we know that Acc initially is 0) -

Us1s 61 U _num tentatively set number to be printed 7

O i o) rentativel &S 35 _LF & linefeed character

E62S 63 E L_tryFizz loop until Acc < 0 °

A40S 64 A _3 add 3, restore previous value @S 36 _CR @ Carr1age return CharaCter

S41S 65 S _1 subtract 1, to check if Acc was 0

E73S 66 E L_notFizz jump if Acc was not 0, ie number was not divisable by 3 Ploos 37 loo P loo Constant loo

T51S 67 T _num set _num to negative value, flag that no value should be printed -

034S 68 0 _LS prepare printing letters Plos 38 lo P lo Constant lo

045S 69 0 _F output F -

046S 70 0 _I output I

gres ¢ o i P5S 39 _5 P 5 constant 5

048S 72 0 _7Z output Z

T49S 73 L_notFizz T _dummy reset Acc P3S 40 _3 P 3 ConStant 3

A50S 74 A _cnt load Acc with _cnt

S39S 75 L_Buzz S _5 subtract 5 PlS 41 l P l Constant l

E75S 76 E L_Buzz loop until Acc < © - .

A39S 77 A _5 add 5, restore previous value QS 42 ! l ! Q Constant 'F" gu r’e l

S41S 78 S _1 subtract 1, to check if Acc was 0 -

E86S 79 E L_notBuzz jump if Acc was not 0, ie number was not divisable by 5 1 1 7

T51S 80 T _num set _num to negative value, flag that no value should be printed PS 43 —_ O P ConStant -F-I gu re O

034s 81 0 _LS repare printing letters

oass 82 o6 bt B BS 44 _B B constant letter B

047S 83 o _u output U

oass a4 0z output Z FS 45 _F F constant letter F

048S 85 0.z output Z -

T49S 86 L_notBuzz T _dummy reset Acc IS 46 I I Constant letter I

A51S 87 A _num load _num to check number to be printed -

G53S 88 G L_next goto next qdteration if _num is negative

033S 89 L_printNum O _FS prepare for printing numbers US 47 —U U ConStant -l'etter U

T49S 90 T _dumm reset Acc

asos o1 Alent. load counter ZS 48 _Z Z constant letter Z

S37S 92 S _100 subtract 100, check if we should stop

coss 93 6 Lnotioo jump if not 100 yet PS 49 _dummy P used to flush and reset the accumulator

042S 94 o _'1' output 1 . . .

035 95 oo utput @ P1S 50 _cnt P 1 counter, current number to be considered, will be increased
- outpu

zs 97 z end the program 7 7 7 7

Bres o Lnotioo + cumy end the PS 51 _num P number to be printed, negative if counter is mod 3 or mod 5

T52S 99 T _d reset digit ° ° °

A50S 100 A _cnt load couﬁter PS 52 _d P d-l g-l t to be pr-l nted

S38S 101 L_countles S _10 subtract 10

G109S 102 G L_printloes goto print 10s if Acc < 0

T51S 103 T _num store number

A52S 104 A _d load digit

A41S 105 A1l increase digit

T52S 106 T _d store digit

A51S 107 A _num load number

E101S 108 E L_countl@s loop unconditionally

T49S 109 L_printles T _dummy reset Acc

A52S 110 A _d load digit

S41S 111 S _1 decrease digit by 1

G117S 112 G L_1 if negative (digit was 0), skip printing of tens digits

A41S 113 A _1 restore digit, by increasing with 1

L512S 114 L 27A(11-2) Acc << 11, create a printable figure

T52S 115 T _d save printable figure

052S 116 0 _d print figure / digit

T49S 117 L_1: T _dummy reset Acc

A51S 118 A _num load number

L512S 119 L 27 (11-2) Acc << 11, create a printable figure

T52S 120 T _d save printable figure

052S 121 0 _d print figure / digit

E53S 122 E L_next unconditional jump

XS 123 L_end X

31
32

33 _

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

L_start

L_tryFizz

L_notFizz

L_Buzz

L_notBuzz

L_printNum

L_notle0

L_countlOs

L_printl0s

L_1:

L_end

XmMO-A4r>» 40 -4Ar>»oun>»>—-AmMm>»—A4>»>»r —400n>» 4 4ANO0OO0OCO0OCOHNW»» 40O 400000 --MuLI>>PM0N» {00000 --TMuL>>DM0NC>» 4>»>» 4000 TVTTVTTVTITNCHTT® UTO T T TV IUT®R *x #*mMm-—

L_end
L_start

100
10

_LS
_LF
_CR
_dummy
_cnt
_1
_cnt
_cnt
_num
_3
L_tryFizz
3

_1
L_notFizz
_num

_LS

L_notBuzz
_num
_LS

_dummy
_num
L_next
_FS
_dummy
_cnt
_loo
L_notl00
X
Iy
Iy

_dummy

_d

_cnt

_1o
L_printl0s

_num

L_countl0Os
_dummy

mark end of program

jump to the beginning of program

figure shift

letter shift

linefeed character

carriage return character

constant 100

constant 10

constant 5

constant 3

constant 1

constant figure 1

constant figure 0

constant letter B

constant letter F

constant letter I

constant letter U

constant letter Z

used to flush and reset the accumulator
counter, current number to be considered, will be 1increased
number to be printed, negative if counter is mod 3 or mod 5
digit to be printed

output LS, prepare for printing letters
output LF, linefeed

output CR, carriage return

reset Acc

load Acc with _cnt

increase Acc

store Acc into _cnt, reset Acc

load Acc with _cnt (we know that Acc initially is 0)
tentatively set number to be printed
subtract 3

Tloop until Acc < 0

add 3, restore previous value

subtract 1, to check if Acc was 0

jump if Acc was not 0, ie number was not divisable by 3
set _num to negative value, flag that no value should be printed
prepare printing letters

output F

output I

output Z

output Z

reset Acc

load Acc with _cnt

subtract 5

loop until Acc < 0

add 5, restore previous value

subtract 1, to check if Acc was 0

jump if Acc was not 0, ie number was not divisable by 5
set _num to negative value, flag that no value should be printed
prepare printing letters

output B

output U

output Z

output Z

reset Acc

load _num to check number to be printed
goto next qdteration if _num is negative
prepare for printing numbers

reset Acc

load counter

subtract 100, check if we should stop
jump if not 100 yet

output 1

output 0

output 0

end the program

reset Acc

reset digit

load counter

subtract 10

goto print 10s if Acc < 0

store number

load digit

increase digit

store digit

load number

loop unconditionally

reset Acc

load digit

decrease digit by 1

if negative (digit was 0), skip printing of tens digits
restore digit, by increasing with 1

Acc << 11, create a printable figure
save printable figure

print figure / digit

reset Acc

load number

Acc << 11, create a printable figure
save printable figure

print figure / digit

unconditional jump

“FizzBuzz” on the EDSAC / Initial Orders |

034S
035S
036S
T49S
A50S
A41S
T50S
A50S
U51S
S40S
E62S
A40S
S41S
E73S
T51S
034S
045S
046S
048S
048S

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

L_next

L_start

L_tryFizz

Oo0oOo0oo0oOo0oO -"4ImMmwun>>»mMmununcr 4>»r>r»r 400O0

_LS
_LF
_CR
_dummy
_cnt

_cnt
_cnt
_num

L_tryFizz

L_notFizz
_num
_LS

1

3

3

F

I
VA
VA

output LS, prepare for printing letters

output LF, linefeed

output CR, carriage return

reset Acc

load Acc with _cnt

increase Acc

store Acc into _cnt, reset Acc

load Acc with _cnt (we know that Acc initially is 0)
tentatively set number to be printed

subtract 3

loop until Acc < 0

add 3, restore previous value

subtract 1, to check if Acc was 0

jump if Acc was not 0, ie number was not divisable by 3
set _num to negative value, flag that no value should be printed
prepare printing letters

output F

output I

output Z

output Z

31

32

33 _FS
34 _LS
35 _LF
36 _CR
37 _100
38 _10
39 _5
40 _3
41 _1
42 _'1'
43 _'o’
44 _B
45 _F
46 _I
47 _U
48 _Z
49 _dummy
50 _cnt
51 _num
52 _d
53 L_next
54

55

56

57

58

59

60 L_start
61

62 L_tryFizz

73 L_notFizz

75 L_Buzz

86 L_notBuzz

89 L_printNum

98 L_notle0

101 L_countl@s

107

108

109 L_printloes
110

111

112

113

114

115

116

117 L_1:
118

119

120

121

122

123 L_end

XmMO-—Ar>» 40 4Ar>»oun>»>—-AmMm>»—A4>»>»r—400n>»4—4ANO0OO0CO0OOHMNW»» 40O 400000 --MuLIEPMON» 4000001 MuLI>DM0NC>» 4>»>» 4000 TVTUTTUTINCHTT® UTO T T TV IUT®R *x #*mMm—

L_end
L_start

100
10

_LS
_LF
_CR
_dummy
_cnt
_1
_cnt
_cnt
_num
_3
L_tryFizz
3

_1
L_notFizz
_num

_LS

L_notBuzz
_num
_LS
_B

u
_Z
_Z
_dummy
_num
L_next
_FS
_dummy
_cnt
_loo
L_notl00

X

Iy

Iy

_dummy

_d

_cnt

_1o
L_printl0s
_num

L_countl0Os
_dummy

mark end of program

jump to the beginning of program
figure shift

letter shift

linefeed character

carriage return character
constant 100

constant 10

constant 5

constant 3

constant 1

constant figure 1

constant figure 0

constant letter B

constant letter F

constant letter I

constant letter U

constant letter Z

used to flush and reset the accumulator

counter, current number to be considered, will be 1increased
number to be printed, negative if counter is mod 3 or mod 5

digit to be printed

output LS, prepare for printing letters

output LF, linefeed

output CR, carriage return

reset Acc

load Acc with _cnt

increase Acc

store Acc into _cnt, reset Acc

load Acc with _cnt (we know that Acc initially is 0)
tentatively set number to be printed

subtract 3

Tloop until Acc < 0

add 3, restore previous value

subtract 1, to check if Acc was 0

jump if Acc was not 0, ie number was not divisable by 3

set _num to negative value, flag that no value should be printed

prepare printing letters

output F

output I

output Z

output Z

reset Acc

load Acc with _cnt

subtract 5

loop until Acc < 0

add 5, restore previous value
subtract 1, to check if Acc was 0
jump if Acc was not 0, ie number was not divisable by 5

set _num to negative value, flag that no value should be printed

prepare printing letters

output B

output U

output Z

output Z

reset Acc

load _num to check number to be printed
goto next qdteration if _num is negative
prepare for printing numbers

reset Acc

load counter

subtract 100, check if we should stop
jump if not 100 yet

output 1

output 0

output ©

end the program

reset Acc

reset digit

load counter

subtract 10

goto print 10s if Acc < 0

store number

load digit

increase digit

store digit

load number

loop unconditionally

reset Acc

load digit

decrease digit by 1

if negative (digit was 0), skip printing of tens digits
restore digit, by increasing with 1
Acc << 11, create a printable figure
save printable figure

print figure / digit

reset Acc

load number

Acc << 11, create a printable figure
save printable figure

print figure / digit

unconditional jump

“FizzBuzz” on the EDSAC / Initial Orders |

T49S
A50S
S39S
E75S
A39S
S41S
E86S
T51S
034S
044S
047S
048S
048S
T49S
A51S
G53S
033S
T49S
A50S
S37S
G98S
042S
043S
043S
ZS

73 L_notFizz
74

75 L_Buzz

76

77

78

79

80

81

82

83

84

85

86 L_notBuzz
87

88

89 L_printNum
90

91

92

93

94

95

96

97

NOOOOMmWw>»»r 1060 >r»r 100000 1mMmum=>E=mMmm >

_dummy
_cnt

_5

L_Buzz

_5
L_notBuzz
_nhum

_LS

_dummy
_num
L_next
_FS
_dummy
_cnt
_100
L_notl0O0

1]_l

1 ()|

1 ()|

reset Acc

load Acc with _cnt

subtract 5

loop until Acc < 0

add 5, restore previous value

subtract 1, to check if Acc was 0

jump if Acc was not 0, ie number was not divisable by 5
set _num to negative value, flag that no value should be printed
prepare printing letters

output B

output U

output Z

output Z

reset Acc

load _num to check number to be printed
goto next iteration if _num 1is negative
prepare for printing numbers

reset Acc

load counter

subtract 100, check if we should stop
jump if not 100 yet

output 1

output 0

output 0

end the program

31

32

33 _FS
34 _LS
35 _LF
36 _CR
37 _100
38 _10
39 _5
40 _3
41 _1
42 _'1'
43 _'o’
44 _B
45 _F
46 _I
47 _U
48 _Z
49 _dummy
50 _cnt
51 _num
52 _d
53 L_next
54

55

56

57

58

59

60 L_start
61

62 L_tryFizz

73 L_notFizz

75 L_Buzz

86 L_notBuzz

89 L_printNum

98 L_notle0

101 L_countl@s

107

108

109 L_printloes
110

111

112

113

114

115

116

117 L_1:
118

119

120

121

122

123 L_end

XmMO-Ar>» 40 -4Ar>»oun>»>—-AmMm>»—A4>»>»r —400n>»r44ANO0OO0CO0OOHMNW»» 406> 400000 --MOLI>PMWNMI» 400000 --TMuI>DM0NC>» 4>»>» 4000 TVTTUVTTVTINCHTT® UTO T T TV IUT®R *x #*mM-—

L_end
L_start

100
10

_LS
_LF
_CR
_dummy
_cnt
_1
_cnt
_cnt
_num
_3
L_tryFizz
3

_1
L_notFizz
_num

_LS

L_notBuzz
_num
_LS
_B

u
_Z
_Z
_dummy
_num
L_next
_FS
_dummy
_cnt
_loo
L_notl00

X

Iy

Iy

_dummy

_d

_cnt

_1o
L_printl0s
_num

L_countl0Os
_dummy

mark end of program

jump to the beginning of program
figure shift

letter shift

linefeed character

carriage return character
constant 100

constant 10

constant 5

constant 3

constant 1

constant figure 1

constant figure 0

constant letter B

constant letter F

constant letter I

constant letter U

constant letter Z

used to flush and reset the accumulator

counter, current number to be considered, will be 1increased
number to be printed, negative if counter is mod 3 or mod 5

digit to be printed

output LS, prepare for printing letters
output LF, linefeed

output CR, carriage return

reset Acc

load Acc with _cnt

increase Acc

store Acc into _cnt, reset Acc

load Acc with _cnt (we know that Acc initially is 0)

tentatively set number to be printed
subtract 3

Tloop until Acc < 0

add 3, restore previous value
subtract 1, to check if Acc was 0

jump if Acc was not 0, ie number was not divisable by 3
value should be printed

set _num to negative value, flag that no
prepare printing letters

output F

output I

output Z

output Z

reset Acc

load Acc with _cnt

subtract 5

loop until Acc < 0

add 5, restore previous value
subtract 1, to check if Acc was 0

jump if Acc was not 0, ie number was not divisable by 5
set _num to negative value, flag that no value should be printed

prepare printing letters
output B

output U

output Z

output Z

reset Acc

load _num to check number to be printed
goto next qdteration if _num is negative
prepare for printing numbers
reset Acc

load counter

subtract 100, check if we should stop
jump if not 100 yet

output 1

output 0

output ©

end the program

reset Acc

reset digit

load counter

subtract 10

goto print 10s if Acc < 0
store number

load digit

increase digit

store digit

load number

loop unconditionally

reset Acc

load digit

decrease digit by 1

if negative (digit was 0), skip printing of tens digits

restore digit, by increasing with 1
Acc << 11, create a printable figure
save printable figure

print figure / digit

reset Acc

load number

Acc << 11, create a printable figure
save printable figure

print figure / digit

unconditional jump

“FizzBuzz” on the EDSAC / Initial Orders |

T49S
T52S
A50S
S38S
G109S
T51S
A52S
A41S
T52S
A51S
E101S
T49S
A52S
S41S
G117S
A41S
L512S
T52S
052S
T49S
A51S
L512S
T52S
052S
E53S
XS

98 L_notl0O0
99
100

101 L_countlOs

102
103
104
105
106
107
108

109 L_printl0Os

110

111

112

113

114

115

116

117 L_1:
118

119

120

121

122

123 L_end

X MO -dr» 40 4dr>»>oaunun>» -4 m>»4>»>» 40 u0nxrx» -4

_dummy
d

_cnt

_10
L_printl0s
_num

_num
L_countl@s
_dummy

2A(11-2)
d

d

_dummy

_num

27A(11-2)
d

d

L_next

reset Acc

reset digit
load counter
subtract 10

goto print 10s if Acc < 0O

store number
load digit

increase digit

store digit
load number

loop unconditionally

reset Acc
load digit

decrease digit by 1

if negative (digit was 0), skip printing of tens digits
restore digit, by increasing with 1

Acc << 11, create a printable figure

save printable figure

print figure / digit

reset Acc
load number

Acc << 11, create a printable figure
save printable figure

print figure / digit

unconditional jump

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
8S048ST49SA515G53S0335T49S5A5055375G9850425043S
043SZST49ST525A50SS38SG10O9ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA415L5125T5250525T49S5A5
1SL512S5T525052SE535XS

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
8S048ST49SA515G53S0335T49S5A5055375G9850425043S
043SZST49ST525A50SS38SG10O9ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA415L5125T5250525T49S5A5
1SL512S5T525052SE535XS

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

There is a small bug in the program. Did you notice!

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
85S048ST49SA515G53S0335T49S5A5055375G9850425043S
0435Z5T49ST525A50SS38SG109ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA415L5125T5250525T49S5A5
1SL512S5T525052SE535XS

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
85S048ST49SA515G53S0335T49S5A5055375G9850425043S
0435Z5T49ST525A50SS38SG109ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA41S5L5125T5250525T49S5A5

15L5125T5250525E535X5 Here is a quick and dirty fix!

seGammERETTT

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
85S048ST49SA515G53S0335T49SA505S37SA415G9852504
350435T49ST525A50SS385G109ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA415L5125T5250525T49S5A5
1SL512S5T525052SE535XS

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
85S048ST49SA515G53S0335T49S5A505S37SA415G9852504
3S043S5T49ST525A50SS385SG109ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA415L5125T5250525T49S5A5
1SL512S5T525052SE535XS

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

“FizzBuzz” on the EDSAC / Initial Orders |

T123SE6OSH#S*S&SE@SP1OOSP1OSP5SP3SP1SQSPSBSFSISU
SZSPSP1SPSPS034S03550365T49SA50S5A41ST50SA505U5
1SS40SE62SA40SS41SE73ST1T515034504550465048S048S
T49SA50SS39SET75SA395S541SE865T51503450445047504
85S048ST49SA515G53S0335T49S5A505S37SA415G9852504
3S043S5T49ST525A50SS385SG109ST51S5A525A41ST52S5A51
SE101ST49SA525541S5G117SA415L5125T5250525T49S5A5

1SL512ST52S5052SE53SXS
E@Qﬂ

Try this program on NISHIO Hirokazu’s EDSAC Simulator
http://nhiro.org/learn_language/repos/EDSAC-on-browser/index.html

Speedcoding, John Backus, 1953 on the IBM 701

IBM 701 operator's console IBM 701 processor frame

http://en.wikipedia.org/wiki/IBM_701

Backus later did work on the IBM 704

.“ﬂ Y oh! »l; :
"”“"*’"t«nmnhi
e

http://en.wikipedia.org/wiki/IBM_704

Fortran (appeared 1957, designed by John Backus)

The initial release of FORTRAN for the IBM 704 contained 32 statements, including:

« DIMENSION and EQUIVALENCE statements
« Assignment statements

« Three-way arithmetic IF statement, which passed control to one of three locations in the program depending on whether the l i‘ t
result of the arithmetic statement was negative, zero, or positive Or r a;n

« IF statements for checking exceptions (ACCUMULATOR OVERFLOW, QUOTIENT OVERFLOW, and DIVIDE CHECK); and
IF statements for manipulating sense switches and sense lights

« GOTO , computed GOTO, ASSIGN , and assigned GOTO

« DO loops

« Formatted /O: FORMAT , READ , READ INPUT TAPE, WRITE, WRITE OUTPUT TAPE, PRINT, and PUNCH

« Unformatted I/O: READ TAPE, READ DRUM, WRITE TAPE,and WRITE DRUM

« Other I/O: END FILE, REWIND , and BACKSPACE . .
+ PAUSE, STOP,and CONTINUE The Fortran Automatic Coding System for the

« FREQUENCY statement (for providing optimization hints to the compiler). IBM 704 (15 October 1956), the first
Programmer's Reference Manual for Fortran

FORTRAN Il [edit]

IBM's FORTRAN Il appeared in 1958. The main enhancement was to support procedural programming by allowing user-written
subroutines and functions which returned values, with parameters passed by reference. The COMMON statement provided a way
for subroutines to access common (or global) variables. Six new statements were introduced:

« SUBROUTINE, FUNCTION, and END
« CALL and RETURN
« COMMON

anOan

000

AREA OF A TRIANGLE WITH A STANDARD SQUARE ROOT FUNCTION
INPUT - CARD READER UNIT 5, INTEGER INPUT
OUTPUT - LINE PRINTER UNIT 6, REAL OUTPUT
INPUT ERROR DISPLAY ERROR OUTPUT CODE 1 IN JOB CONTROL LISTING
READ INPUT TAPE 5, 501, IA, IB, IC
501 FORMAT (3I5)
IA, IB, AND IC MAY NOT BE NEGATIVE
FURTHERMORE, THE SUM OF TWO SIDES OF A TRIANGLE
IS GREATER THAN THE THIRD SIDE, SO WE CHECK FOR THAT, TOO
IF (IA) 777, 7717, 701
701 IF (IB) 777, 777, 702
702 IF (IC) 777, 777, 103
703 IF (IA+IB-IC) 777,777,704
704 IF (IA+IC-IB) 777,777,705
705 IF (IB+IC-IA) 777,777,799
777 STOP 1
USING HERON'S FORMULA WE CALCULATE THE
AREA OF THE TRIANGLE
799 S = FLOATF (IA + IB + IC) / 2.0
AREA = SQRT(S * (S - FLOATF(IA)) * (S - FLOATF(IB)) *
+ (S - FLOATF(IC)))
WRITE OUTPUT TAPE 6, 601, IA, IB, IC, AREA
601 FORMAT (4H A= ,I5,5H B= ,I5,5H C= ,I5,8H AREA= ,F10.2,
+ 13H SQUARE UNITS)
STOP
END

Simple FORTRAN Il program

http://en.wikipedia.org/wiki/Fortran

AL (aka Algol 58) (designed by
Friedrich L. Bauer, Hermann Bottenbruch, Heinz Rutishauser, Klaus Samelson,
John Backus, Charles Katz, Alan Perlis, Joseph Henry VWegstein

procedure Simps (F(), a, b, delta, V);
comment a, b are the min and max, resp. of the points def. interval of integ. F() is the function to
integrated.

delta is the permissible difference between two successive Simpson sums V is greater than
the maximum absolute value of F on a, b;

begin
Simps: Ibar: =VX(b—a)
n :=1
h :=(b-a)/2
J :=h X(F(a)+F())
J1: S :=0;
for k :=1(1)n
S :=S4+F(@a+4+2xk-1) xh)
I :=J4+4XhXS
if (delta < abs (I—Ibar)) '
begin Ibar: =1
J = (I+J)/4
n :=2Xn:h:=h/2
goto Jl end
Simps := [/3
refturn
integer (k, n)
end Simps

http://en.wikipedia.org/wiki/ALGOL_58
http://www.softwarepreservation.org/projects/ALGOL/report/Algol58_preliminary_report CACM.pdf/

Cambridge

http://i.telegraph.co.uk/multimedia/archive/02012/oxbridge-1_2012609b.jpg

EDSAC 2 users in 1960

http://en.wikipedia.org/wiki/EDSAC_2

A scaled down version of Atlas (called Titan / Atlas2) was ordered
in 1961, delivered to Cambridge in 1963, but not usable until early 1964

“How BCPL evolved from CPL”, Martin Richards

http://en.wikipedia.org/wiki/Titan_(computer)

a programming language was needed!

Many existing programming languages was concidered, but....

ALGOL 60 was just “a language, not a programming system”

procedure Absmax(a) Size:(n, m) Result:(y) Subscripts:(i, k);
value n, m; array a; integer n, m, i, k; real y;
comment The absolute greatest element of the matrix a, of size n by m,
is transferred to y, and the subscripts of this element to i and k;
begin
integer p, q;
y 2= 0; 1 :=k = 1;
for p := 1 step 1 until n do
for g := 1 step 1 until m do
if abs(a[p, g]) > y then
begin y := abs(a[p, q]);
1 :=p; k :=¢q
end
end Absmax

Algol 60 was criticized as not enabling efficient compilation, call by name being cited as a main
cause.A second area of concern was the side effects of procedures necessitating a strict left-to-
right rule for the evaluation of expressions.

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)
wikipedia on Algol 60

ALGOL 60 was just “a language, not a programming system” £ "

procedure Absmax(a) Size:(n, m) Result:(y) Subscripts:(i, k);
value n, m; array a; integer n, m, i, k; real y;
comment The absolute greatest element of the matrix a, of size n by m,
is transferred to y, and the subscripts of this element to i and k;
begin
integer p, q;
y 2= 0; 1 :=k = 1;
for p := 1 step 1 until n do
for g := 1 step 1 until m do
if abs(a[p, g]) > y then
begin y := abs(a[p, q]);
1 :=p; k :=¢q
end
end Absmax

Algol 60 was criticized as not enabling efficient compilation, call by name being cited as a main
cause.A second area of concern was the side effects of procedures necessitating a strict left-to-
right rule for the evaluation of expressions.

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)
wikipedia on Algol 60

Fortran IV was too tied up to IBM 709/7090

(1N

10

THE
FOR
DIM
FUN

FOR
DO

CON
STO
END

TPK ALGORITHM
TRAN IV STYLE
ENSION A(11l)

(T) '= SQRT (ABS:(T)) “+ 9.)*T*%3
READ (5,1) A

MAT (SF10.2)

103 =732y 11

I = Tlomood

Y = FUN(A(I+1))

IF (400.0-Y) 4,
WRITE (6,5)
FORMAT (I10,

GO TO 10

g, O
I
10H TOO LARGE)

WRITE(6,9) I, Y

FORMAT (I10,
TINUE
P

FlZ. 6)

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

http://www.fortran.bcs.org/2005/fortran/imgl0.jpg

Example of Atlas Autocode (designed by Tony Brooker and Derrick Morris)

begin

real a, b, ¢, Sx, Sy, Sxx, Sxy, Syy, nextx, nexty
integer n

read (nextx)

SX = 0; Sy = 0; Sxx = 0; Sxy = 0; Syy = 0

n =20

read (nexty) ; n=n + 1

SX = SX + nextx; Sy = Sy + nexty

SXx = SxXX + nextx? ; Syy = Syy + nexty?

SXy = SXy + nextx*nexty

read (nextx) ; ->1 unless nextx = 999 999

a = (n*Sxy - Sx*Sy)/(n*Sxx - Sx2)

b = (Sy - a*Sx)/n

c = Syy - 2(a*Sxy + b*Sy) + a2*Sxx - 2a*b*Sx + n*b?2
newline

print fl(a,3) ; space ; print f£f1(b,3) ; space ; print fl(c,3)
read (nextx) ; ->2 unless nextx = 999 999

stop
end of program

“the use of compiler-compiler technology frightened us™

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)
http://history.dcs.ed.ac.uk/archive/docs/atlasautocode.html

But, hey....

In the early 1960's, it was common to think "we are building a new
computer, so we need a new programming language."

(David Hartley, in 2013 article)

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

CPL

Cambridge Programming Language

CPL

CPL

Corbridee P oo
Cambridge Plus London

CPL

Cambridge Plus Ltondon

CPL

Corbridee P oo
Cambridge Plus Ltondon

Combined Programming Language

CPL

Corbridee P o)

Cambridge Plus Ltondon
Combined Programming Language

(Cristophers’ Programming Language)

"anything not explicity allowed should be forbidden ... nothing should be left
undefined, as occurs in ALGOL 60"

"It was envisagd that [the language] would be sufficiently general and
versatile to dispense with machine-code programming as far as possible"

‘.‘A

.

"anything not explicity allowed should be forbidden ... nothing should be left
undefined, as occurs in ALGOL 60"

"It was envisagd that [the language] would be sufficiently general and
versatile to dispense with machine-code programming as far as possible"

Advanced were made in understanding the evaluation of expressions
sO as to recognize not just the value of data but also its location.
Taking terminology related to the assighment statement, we
developed the concept of left-hand and right-hand values ... this
enabled an assighment statement to have the generalized form

<expression> := <expression>

the first being evaluated in left-hand mode to reveal a location and

the second in right-hand mode to obtain a value to be assigned to
that location.

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Advanced were made in understanding the evaluation of expressions
sO as to recognize not just the value of data but also its location.
Taking terminology related to the assighment statement, we
developed the concept of left-hand and right-hand values ... this
enabled an assighment statement to have the generalized form

<expression> := <expression>

the first being evaluated in left-hand mode to reveal a location and

the second in right-hand mode to obtain a value to be assigned to
that location.

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

CPL as described in 1963

The main features of CPL

By D. W. Barron, J. N. Buxton, D. F. Hartley, E. Nixon and C. Strachey

The paper provides an informal account of CPL, a new programming language currently being
implemented for the Titan at Cambridge and the Atlas at London University. CPL is based on,
and contains the concepts of, ALGOL 60. In addition there are extended data descriptions,
command and expression structures, provision for manipulating non-numerical objects, and
comprehensive input-output facilities. However, CPL is not just another proposal for the
extension of ALGOL 60, but has been designed from first principles and has a logically coherent
structure.

http://comijnl.oxfordjournals.org/content/6/2/1 34.full.pdf+html

Example of CPL from 1963

function Euler [function Fct, real Eps; integer 7im]= result of
§1 dec §1.1 real Mn, Ds, Sum
integer i, ¢
index n=0
m = Array [real, (0, 15)] §1.1
i, t, m[0] := 0,0, Fct[0]

Sum := m|0]/2
§1.2i =i+ 1
Mn = Fct[i]

for Kk = step 0, 1, n do
m(k], Mn := Mn, (Mn + m[k])/2
test Mod[Mn) < Mod[m[n]] A n < 15
then do Ds, n, m[n-+-1] := Mn/2, n+4+1, Mn
ordo Ds := Mn
Sum = Sum -+ Ds
t := (Mod[Ds] < Eps) >t + 1,0§..2
repeat while 1t < Tim
result := Sum §1.

http://www.math.bas.bg/~bantchev/place/cpl/features.pdf

Martin Richards started as a research student in 1963

AS IVIL 1At WOTITC 1nnucnccd Dy unmsopncer s wacas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovations found in Algol 60 that were Known to be difficult to
implement efhiciently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of longjmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Martin Richards started as a research student in 1963

AS IVIL 1At WOTITC 1nnucnccd Dy unmsopncer s wacas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovations found in Algol 60 that were Known to be difficult to
implement efhiciently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of longjmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Martin Richards started as a research student in 1963

AS IVIL 1At WOTITC 1nnucnccd Dy unmsopncer s wacas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovations found in Algol 60 that were Known to be difficult to
implement efhiciently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of longjmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Martin Richards started as a research student in 1963

AS IVIL 1At WOTITC 1nnucnccd Dy unmsopncer s wacas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovations found in Algol 60 that were Known to be difficult to
implement efhiciently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of longjmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Martin Richards started as a research student in 1963

AS IVIL 1At WOTITC 1nnucnccd Dy unmsopncer s wacas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovations found in Algol 60 that were Known to be difficult to
implement efhiciently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of longjmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Martin Richards started as a research student in 1963

AS IVIL 1At WOTITC 1nnucnccd Dy unmsopncer s wacas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovations found in Algol 60 that were Known to be difficult to
implement efhiciently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of longjmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Martin Richards started as a research student in 1963

AS IVIL 1At WOTITC 1nnucnccd Dy unmsopncer s wacas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovations found in Algol 60 that were Known to be difficult to
implement efhiciently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of longjmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Martin Richards started as a research student in 1963

AS IVIL 1At WOTITC 1nnucnccd Dy unmsopncer s wacas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovations found in Algol 60 that were Known to be difficult to
implement efhiciently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of longjmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Martin Richards started as a research student in 1963

AS IVIL 1At WOTITC 1nnucnccd Dy unmsopncer s wacas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovations found in Algol 60 that were Known to be difficult to
implement efhiciently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label vanables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of longjmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Martin Richards started as a research student in 1963

AS IVIL 1At WOTITC 1nnucnccd Dy unmsopncer s wacas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovations found in Algol 60 that were Known to be difficult to
implement efhiciently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of longjmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Martin Richards started as a research student in 1963

AS IVIL 1At WOTITC 1nnucnccd Dy unmsopncer s wacas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovations found in Algol 60 that were known to be difficult to
implement efhiciently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of long jmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.,

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Martin Richards started as a research student in 1963

AS IVIL 1At WOTITC 1nnucnccd Dy unmsopncer s wacas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovations found in Algol 60 that were known to be difficult to
implement efhiciently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of long jmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.,

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Martin Richards started as a research student in 1963

AS IVIL 1At WOTITC 1nnucnccd Dy unmsopncer s wacas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovations found in Algol 60 that were known to be difficult to
implement efficiently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of long jmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection,

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Martin Richards started as a research student in 1963

AS IVIL 1At WOTITC 1nnucnccd Dy unmsopncer s wacas.

My role in the CPL project was to help with the implementation of the Cambridge
CPL compiler. The task was daunting because we were working with a new language that
included many of the mnovations found in Algol 60 that were known to be difficult to
implement efficiently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of long jmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

eciLsion

" : ookt it pr
Martin Richards started as doubte flostina Pt ¥

suWOTE for complex numbers
AS IVIL TIat WOIC mnucnccd oy wnmswopncer s Pctjmortpkic C}Pero&ors |
My role in the CPL project was to help | c . functions (eka, coercion) Cambridge
CPL compiler. The task was daunting becaus — ___,res and lamda calewt®® apoygge that
included many of the innovations found in . __wee—srac-were Kiiown (o be difficult to
implement efficiently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of long jmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later
in the project the language provided structures, unions and pointers, together with runtime
garbage collection.

763

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

eciLsion

" : ookt it pr
Martin Richards started as doubte flostina Pt ¥

suWOTE for complex numbers

AS IVIL TIat WOIC mnucnccd oy wnmswopncer s Poi_jmortphic aperakars |
My role in the CPL project was to help | c . functions (eka, coercion) Cambridge
CPL compiler. The task was daunting becaus — ___,res and lamda calewt®® apoygge that
included many of the innovations found in . __peee—sracwere Kiown 1o be difficult to
implement efficiently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of long jmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.

763

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

eciLsion

" : ookt it pr
Martin Richards started as doubte flostina Pt ¥

suWOTE for complex numbers

AS IVIL TIat WOIC mnucnccd oy wnmswopncer s Poi_jmortphic aperakars |
My role in the CPL project was to help | c . functions (eka, coercion) Cambridge
CPL compiler. The task was daunting becaus — ___,res and lamda calewt®® apoygge that
included many of the innovations found in . __peee—sracwere Kiown 1o be difficult to
implement efficiently. But CPL was larger. It had more datatypes, and it was one of the
first languages to adopt a scheme whereby the types of vanables could be deduced without
the user having to explicitly declare them. In addition to call-by-value and call-by-name,
it had call-by-reference. It had two Kinds of procedures: fixed and free, distinguished by
whether their free vanables were effectively called by value or by reference. It also allowed
label variables and the passing of labels as arguments combined with a goto statement that
not only allowed jumps out of procedures (analogous to the use of long jmp in C), but also
jumps to labels in inner blocks causing the intervening declarations to be obeyed. Later

in the project the language provided structures, unions and pointers, together with runtime
garbage collection.

763

"Christopher Strachey and the Cambridge CPL Compiler", Martin Richards

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

CPL was once compared to the invention of a pill that could
cure every type of ill.

http://s3.amazonaws.com/rapgenius/Blg-Pill.jpg

From David Hartley's article "CPL: Failed Venture or Noble Ancestor?" (2013)

Writing a compiler for CPL was too difficult.

Writing a compiler for CPL was too difficult.

Cambridge never succeeded writing a working CPL compiler.

Writing a compiler for CPL was too difficult.
Cambridge never succeeded writing a working CPL compiler.

Development on CPL ended December |966.

Inspired by his work on CPL, Martin Richards wanted to create a language:

Inspired by his work on CPL, Martin Richards wanted to create a language:

® that was simple to compile
® with direct mapping to machine code
® that assumes the programmer know what he is doing

Inspired by his work on CPL, Martin Richards wanted to create a language:

® that was simple to compile
® with direct mapping to machine code
® that assumes the programmer know what he is doing

"The philosophy of BCPL is not one of the tyrant who thinks he knows

best and lay down the law on what is and what is not allowed,

rather, BCPL acts more as a servant offering his services to the

best of his ability without complaint, even when confronted with

apparent nonsense.The programmer is always assumed to know what he

is doing and is not hemmed in by petty restrictions.” (The BCPL book, 1979)

Inspired by his work on CPL, Martin Richards wanted to create a language:

“.‘/\

® that was simple to compile C

® with direct mapping to machine code
® that assumes the programmer know what he is doing

"The philosophy of BCPL is not one of the tyrant who thinks he knows

best and lay down the law on what is and what is not allowed,

rather, BCPL acts more as a servant offering his services to the

best of his ability without complaint, even when confronted with

apparent nonsense.The programmer is always assumed to know what he

is doing and is not hemmed in by petty restrictions.” (The BCPL book, 1979)

Inspired by his work on CPL, Martin Richards wanted to create a language:

’")'L/‘ (s
< "a"'" il PN
/ S = N
"»' \\ 3
-»‘\ 3 \

® that was simple to compile L)
® with direct mapping to machine code
® that assumes the programmer know what he is doing

"The philosophy of BCPL is not one of the tyrant who thinks he knows

best and lay down the law on what is and what is not allowed,

rather, BCPL acts more as a servant offering his services to the

best of his ability without complaint, even when confronted with

apparent nonsense.The programmer is always assumed to know what he

is doing and is not hemmed in by petty restrictions.” (The BCPL book, 1979)

The BCPL Reference

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

Yemorandum-¥-352
July 21, 1967.

To: Projeot MAC Participants

From: Martin Richards

Subject: The BCPL Roference Marual
ABSTRACT

BCPL is a simple recursive programaing language
designed for compiler writing and system prograzmingt it
was dorived from true CPL (Combined Programeing Language)
by removing those features of the full language which make
compilation diffieult namely, the type and mode matbhing
rules and the weriety of definition structures with thelr

associated scope rulos.

(This is a copy of the original document)

Manual, Martin Richards, July 1967

BCPL is a simple recursive programming language
designed for compiler writing and system programming: it
was derived from true CPL (Combined Programming Language)
by removing those features of the full language which make
conpilation difficult namely, the type and mode mathhing

rules and the variety of definition structures with their
associated scope rules.

The BCPL Reference Manual, Martin Richards, July 1967

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

BCPL is a simple recursive programming language
designed for compiler writing and system programming: it
was derived from true CPL (Combined Programming Language)
:m :mM:T:mmwm by r?moving those features of the full language which make
.- A T compilation difficult namely, the type and mode mathhing

‘ rules and the variety of definition structures with their
ABSTRACT associated scope rules.

BCPL is a simple recursive propramaing language
designed for compiler sriting and system prograzmingt it
was dorived from true CPL (Combined Programeing Language)
by removing those features of the full language which make
compilation diffieult namely, the type and mode matbhing
rules and the weriety of definition structures with thelr

Project MAC

Yemorandum-¥-352
July 21, 1967.

Subject: The BCPL Roference Marual

associated scope rulos.

(This is a copy of the original document)

1.0 Ipueduction 1.

BCPL 43 the heert of e 3L Conpdling Systes; 1t 43 »
languags which looks uuch 1iks trué 7% [1) wut is, in fest, & vory
siople lanusge which L3 easy o cecrdle into effioiomt codo. The
pals S feronces botwecn BCIL and CIT ares

(1) A afplified syntax.

(2) A1 2ata ftcs Save Rwlus which aro bit patterms of
the anwe length and the tyDe of an Rwslue depends only
em the gentext of 1ts uso =3 not om the declamation of
the dats iton, This siaplifics the sonpdler and improves
the objoct code efficicaey st 23 & rosult there is mo
type choeking.
(3) BOPL mas n cenifest i o4 genstant facility.

(2) Dunotions and rentinos @y coly mve free varisbles which
are tanifest nawd ecsstazts or whoso Lyalues are nanifest
conatents (f.0., ctgueu fusotions or routines, latels

or global varisbles).

(5) The usor rmy manipulate veth L and Rvalues explicitlye
(§) There is & sehos for sopsrete ooopilation of segoents
of O 200 K.
2.0 DTl Svatax

The ayntactis potation used in this conual 48 basically =y
with thoe followisg extensionas .
(1) The synbels T, D and C aro used a8 shorthazd for
coxpression> clefintitions =nd warnnd>e

(2) The wPtalinguistio brackets 1ot and "> pay e nested and
s wsed to group together pore than oae conatituent
sopecene (vidoh may oentain altermatives)s An intoger
sabsoript oay e attached %o Uw -atalinguistio breckot
"5' and usoed to specify ropotition; Af it ia the

Wﬁdﬂm.mw-ﬁawoiyhmyd.t
mtnt&mornwumh

2. Mapdmarc Syntex
The hardware syntax is the syntax of an sotusl inplocentation

BCPL is the heert of tihie BCPL Comniling Systen;
& 2

it is a

1 m
’

The

(1) A sinplifiead syntax.

2) Al 2
(2) 411 data itcis have Rvalues which are bit patterns of

(3)
()

(5)
(6)

the r. >
oy et and fhe Ny of an Avsles depdodn Sal
xt of its use and not on the declaration zf

th
e data iten. This sinplifies the compiler and inproves

the object code effi
type checking. cicncy but as a rosult there is no

BCPL has a nanifest rauecd constant facility.

constants (i.c., expl
o #lobal valiaélegg,icit functions or routines, labels

Th r
e user rey manisulate bYoth L and Rvalues explicitly

T
here is a schcne for sevarate coapilation of segnents

: of a Proralle

1.0 Ipueduction 1.

BCPL 43 the heert of e 3L Conpdling Systen; 1% 13 &
languags which looks uuch 1iks trué 7% [1) wut is, in fest, & vory
siople lanusge which 13 easy o cecrdle into effioiomt codo. The
pals S feronces botwecn BCIL And CI% ares

(1) A sfplifind symiax.

(2) A1 2ata ftcs Save Rwlus which aro bit patterms of
the s length and the tyDe of an Rwslue depends only
em the gentext of 1ts uso =3 not om the declamation of
the dats dton, This sinplifics b gonpdler and inproves
the objoct code efficicaey st 23 & rosult there is mo
type choeking.
(3) BCPL has a cenifest 1= oA genstant facility.

(2) DPunotions and reutincs @y coly mve free varisbles which
are tanifest nawd ecsstants or whoso Lyalues are nanifest
conatents (f.0., n?ueu fusotions or routines, latels

“n)e

(5) The usor rmy manipulate veth L and Rvalues explicitlye
(§) There is & sehos for soperate ocoopilation of segoeatd
of O 200 K.
2.0 DFL Syntax

The ayntactis potation used in this conual 48 basically By
with thoe followisg extensionas .
(1) T™he syubels I, D and C aro used as shorthasd for

coxpression> clefintitions =nd warnnd>.

Wudﬂs&cn.thm\mwwovyhmuﬁn
mtnt&mornwumh

2. Mapdmarc Syntex
The hardware syntax is the syntax of an aotusl irglocentstion

B - ..
. CPL is the heert of thic BCPL Comniling Systen; it is
& v ‘ ’ a
nguage which looke uuch like true CPL [1] but is, in fact, a
, 4 very

sinple larnymuage whicl
: aryuage which 15 easy to connile into efficient cod
nain differences between BCPL and CPIL are: o

The

(1) A sinnlified syntax.

2) Al o
(2) 411 data itcis have Rvalues which are bit patterns of

(3)
()

(5)
(6)

the r. »
on trsxz to&ngb? and the tyre of an Rvalue depends onl
xt of its use and not on the declaration gf

th
e data iten. This sinplifies the compiler and inproves

the object code effi
type checking. cicnecy but as a rosult there is no

:@L has o nenifest ma.ed constant facility.
‘un 9
ctions and reutines mey only have freec variables which

ar
¢ nanifest naicd constants or whosc Lvalues are nanifest

constants (i.c. 1
or zlobal variaélgzg.icit functions or routines, labels

Th v
e user rey manisulate bYoth L and Rvalues explicitly

Th
ere is a schcne for sevarate coapilation of segnments

of a progran.

1.0 Igtroduction 1.

BCPL 43 the heert of e 30FL Conpdling Systes; 1t 43 »
languags which looks wuech 1iks trub L [1) wut Ls, in fest, & vory
siople larsusge which 43 sasy %0 secrdls into efficiont codo. The
pals A1 feroncea botsecn BCIL and CF% ared

(1) A afplified syntax.

(2) A1\ data L1208 tave Rvnluos which are bit patterss of
the avw length and the tyoe of aa Rvslve depends only

em the gentext of 1ts uso sd not om the declaration of
the dats dton. This sinplifics b gonpdler and inproves
the objoct code efficicaey st 23 & rosult there is mo
type choeking.

(3) BOPL mas n cenifest i oA genstant facility.

(2) Punotions and reutincs @y coly mve free varisbles shich
are tanifest nawd ecsstants or whoso Lyalues are nanifest
conatents (f.0., n:?ltelt fusotions or routines,
or glebal vardsbles)e

(5) The usor rey manipulate veth L and Rvalues explicitlye

(€) There is & sehos for sopsrete ocoopilation of segoenta
of o 20 re

2.0 Dol Swatax
The ayntactis notaticm used in this canusl i3 basically 2O
with thoe followisng extensiona: .
(1) e symbels T, D and C aro used a8 shorthasd for
coxpression> clefinition> =ad armnd>.

(2) The rPtalinguistic prackets '<' and '>' vay e neated and
s wsed to group together pore than oae conatituent

Womlm.mmwwosyhmmn
mtn&marltwumt.

2.1 Napduare Syntex
The hardware syntax ia the syntax of an aotusl irglocentstion

B - 4.
1 CPL is the heert of the BCPL Comniling Systen; it is
. , | & b] a
nguage which looke uuch like true CPL [1] but is, in fact, a very
’

sinnle nnage w
larymage which i3 easy to comnile into efficicnt cod
nain differences between BCPL and CPL are: o

The

(1) A sinplified syntax.

2) A
(2) A1) data itcis have Rvalues which are bit patterns of

(3)
()

(5)
(6)

th v, »

onetg: 1203.1::,_,211 and the tyne of an Rvalue depends onl

il ; of its usc and not on the declaration gf
le This sinplifies the compiler and inproves

the object code effi
type checking. oienoy but as a rosult Shere is no

BCPL has a nanifest rauecd constant facility.

Functions and routi
inncs mey only have free ve
are nanifest naicd constants or whosc Lmlzz:iigngt

constants (i.c. 11
06 Skl Sty | TRRANG, CF ANRNN;: LR

;‘he user rey manisulate Yoth L and Rvalues explicitly
h .
ere is a schcne for sevarate coapilation of segnments

p Of a Pm;'s'ram.

1.0 Igtreduotion 1.

BCPL 43 the heert of e 30FL Conpdling Systes; 1t 43 »
languags which looks wuech 1iks trub 7% [1) wut is, in fest, & vory
siople lansuage whish 13 sasy %o cecydle dnto af flofont code. The
pals A1 feroncea botsecn BCIL and CF% ared

(1) A sinplifind syntax.

the objoct code efficicaey st 23 & rosult there is mo
tyme choeking.
(3) BOPL mas n cenifest i oA genstant facility.

(2) Punotions and reutincs @y caly mve froe varisbles which
are tanifest nawd ecsstants or whoso Lyalues are nanifest
constents (1.0., a;?ueu fusetions or routines,
or glebal vardsbles)e

(5) The usor rey manipulate veth L and Rvalues explicitly.
(§) There is & sehos for soperate ocoopilation of segoeatd
of O PO retie
2.0 [Pl Swmtax
The ayntactis potation used in this conual 48 basically =y
with thoe followisg extensionas .
(1) The synbels T, D and C aro used a8 shorthazd for
coxpression> clefintitions =nd warnnd>e

(2) The rPtalinguistic prackets '<' and '>' vay e neated and
s wsed to group together pore than oae conatituent

be repeated st least n sirwa; Af the intoger 1s followed
Uyodnm.thmunmwosyh repoated at
mtn&mnnmums-
2.1 Napduare Syntex
The hardware syntax ia the syntax of an aotusl irglocentstion

B - .o
. CPL is the heert of the BCPL Comniling Systen; it is
, | &] a
nguage which looke uwuch like true CPL [1] but is, in fact, a ve
’ ry

sinple nage w
larymage which i3 easy to comnile into efficicnt cod
nain differences between BCPL and CPL are: o

The

(1) A sinplificd syntax.

2) to
(2) A1) data itcis have Rvalues which are bit patterns of

(3)
()

(5)
(6)

th v >

onet;: 1203;::;:11 and the tyne of an Rvalue depends onl

iyt o%dits use and not on the declaration ﬁf
le 8 sinplifies the compiler and inmproves

the object code effi
C
type checking. *en0y but a3 a rosult Shere is no

BCPL has a nanifest rauecd constant facility.

ctions and reutines mey only have freec variables which

a
re nanifest naicd constants or whosc Lvalues are nanifest

constants (i.c. 11
o slobel vax'i.at;l:.:g, cit functions or routines, labels

Th r
The user rey nmaninsulate Loth L and Rvalues explicitly.
ere is a schcne for sevarate coapilation of segnments

'of a nro:rafie

1.7 Igtreduotion 1.

ECPL 43 the heert of e 30FL Conpdling Systes; 1t 43 »
languags vhich looke wueh 1ike tree 7% [1) wut is, in fest, & vory
sinple laruage which 13 sasy %o cecydle dnto af flofont code. The
pals A4S feronces botsecn BCIL and CI ares

(1) A sinplifind syntax.

tyme choeking.

(3) BPL hs o oenifest = o4 genstant facility.

(¢) Punotions and reutincs @iy ealy Mwe froo varisbles which
are tanifest nawd ecsstants or whoso Lyalues are nanifest
conatents (f.0., ciueu fusetions or routines,
or glebal vardsbles)e

(5) The usor rey manipulate veth L and Rvalues explicitly.
(€) There is & sehos for sopsrete ocoopilation of segoeats
of O PO retie
2.0 DFL Smtax

The ayntactis notaticm used in this canusl 18 basisally BO
with thoe followisg extensionas .
(1) e symbels T, D and C aro used a8 shorthasd for

coxpression> clefintitions =nd warnnd>.

be repeated st least n sirwa; Af the intoger 1s followed
Uysnt-m.thmunuenmosyh repoated at
mtn&marnmyums-
2.1 Napduare Syntex
The hardware syntax ia the syntax of an aotusl irglocentstion

B - .0
. CPL is the heert of thie BCPL Comniling Systen; it is a
', Y ’
nguage which looke uwuch like true CPL [1] but is, in fact, a ve
’ ry

sinple nage w
larymage which i35 easy to comnile into efficicent cod
nain differences between BCPL and CPL are: o

The

(1) A sinplificd syntax.

2) 4 to
(2) A1) data itcis have Rvalues which are bit patterns of

(3)
(«)

(5)
(6)

th v >
onet;: 1?03;:&,:11 and the tyne of an Rvalue depends onl
c oxt of its use and not on the declaration ﬁf

th
e data iton. This sinplifies the compiler and inproves

the object code effi
tyre ohadking. cicnecy but as a rosult there is no

BCPL has a nanifest rauecd constant facility.

ctions and reutines mey only have freec variables which

a
re nanifest naicd constants or whosc Lvalues are nanifest

constants (i.c. 1i
o elobat vaxiaélm. cit functions or routines, labels

Th v
e user rey maninulate Loth L and Rvalues explicitly.

Th
ere is a schcne for secparate coapilation of segnents

'of a nroiratie

1.0 Iatreduotion

ECPL 43 the heert of e 3071 Conpdling Systes; 1t 43 »
languags vhich looke wueh 1ike tree 7% [1) wut is, in fest, & vory
sinple laruage which 13 sasy %o cecydle dnto af flofont code. The
pals A1 feroncea botsecn BCIL and CI ares

(1) A afplified syntax.

(2) A1 ata itos tave Rwaluas which aro bit patterms of
the s length and the tyDe of an Rvalue depends only
e tho gentext of its uso d not om the declamation of
the dats dton. This siaplifics the sonpdler and improves
the object codo officdcney Put 23 & rosult there is me
tyme choeking.

(3) BOPL mas n cenifest i oA genstant facility.

(¢) DPunotions and reutinos @y caly mve froe varisbles which
are tanifest nawd ecsstants or uhoso Lvalues aro nanifest
conatents (f.0., .t?u“ fusetions or routines,
or global vardshlen).

(5) The usor rey manipulate veth L and Rvalues explicitly.

(é) ‘hununumtofwr-nhomh\m«mu
of O Jro ratie

2.0 DFL Smtax

The ayntactis notaticm used in this canusl 18 basisally BO
with thoe followisng extensiona: .

(1) e symbels T, D and C aro used a8 shorthasd for

coxpression> clefintitions =nd warnnd>e

(2) The vPtalinguistic brackets 1ot and '>' pay e nested and
s wsed to group together pore than oae conatituent
soqecene (wvidoh oy oentain altermatives)s An intoger
shsoript oay e attached %o e -atalinguistio breckot
and used to spacify ropetition; Af it ia the
i n, then the sogtnst within the bwokets st

iyt

nteger

be repeated st least n sirwa; Af the intoger 1s followed
by & cdmus .thmunuqumosyhmu‘nt
roat n thoos or 1t pay be absent.

The hardware syntax ia the syntax of an aotusl inplocent.tion

B - -o
. CPL is the heert of the BCPL Comniling Systen; it is
3 Y ’
nguage which looke uuch like true CPL [1] but is, in fact, a
’

sinple aLe W
larymage which i35 easy to comnile into efficicent cod
nain differences between BCPL and CPL are: o

The

(1) A sinmlified syntax.

2) to
(2) A1) data itcis have Rvalues which are bit patterns of

(3)
(«)

(5)
(6)

the r. »
oy smptand e N oF 80 Swsles depdadn ol
xt of its use and not on the declaration ﬁf

the d
ata iten. This sinplifies the compiler and inproves

the object code effi
c
type chocking. IR DGE A% 8 TomLt There & 10

BCPL has a nanifest rauecd constant facility.

Functions and routi
inns mey only have fre
are nanifest naicd constants or whosc valt‘;::i::ée:az?fzht
v s

constants (i.c. 1 P
or global variat’)lm .iOit tions or routines, labels

Th r
e user rey maninsulate Loth L and Rvalues explicitly

Th
ere is a schcne for secparate coapilation of segnents

~of a prozran.

Lucky and humble fans meet Martin Richards, the inventor of BCPL

»‘.‘.

MATHEMATICAL L ABORATORY

Computer Laboratory, Cambridge, December 2014

So what is the link between BCPL and B and C?

From an interview with Ken Thompson in 1989

Interviewer: Did you develop B?

Thompson: | did B.
Interviewer: As a subset of BCPL?

Thompson: It wasn't a subset. It was almost exactly the same.

Thompson: It was the same language as BCPL, it looked
completely different, syntactically it was, you
know, a redo. The semantics was exactly the same
as BCPL.And in fact the syntax of it was, if you
looked at, you didn't look too close, you would
say it was C. Because in fact it was C, without

types.

http://www.princeton.edu/~hos/mike/transcripts/thompson.htm

Fr '
om the HOPL article by Dennis Ritchie in 1993

The Development of the C Language* Th
Dennis M Ritchie e C ro ram 1
Bell Labs/Lucent Technologies P g m ’ng Iangu age Was devised in th e

Murray Hill, NJ 07974 USA

early 19 -
o y 1970s as a system implementation language

ABSTRACT

structure; created on 3 tiny machine as & 100l 10 improve 8 MERge pmgramming environment, it

for the nascen]
[)
The C programming language was devised in the carly 1970s as 2 system implcmcnmlion language t Un ’ X O e ra t ’
for the nascent Unix operating system. Derived from the typeless language BCPL, it evolved a type n g sys t e m D e .
. rived fr
has become ODE of the dominant languages of today. This paper studics its evolution. f m

Wit the typeless language BCPL, it evolved a type

NOTE: *Copyright 1993 Association for Computing Machinery, Inc. This electronic reprint made S tru Ctu re : Cre at !

available by the author as @ Courtesy. For further publication rights contact ACM or the author) J e O n a t ’ .

This article was prtscnwd at Second History of Programming Languages conference, Cambridge. n y m a C h ’ n

Mass., April, 1993. e das da t 00 I

It was then collected in the conference proceedings: History of Programming Languages-11 ed O

S—— " improve a m .
e e i eager programming environment, it has
9

This paper is about the development of the C programming language, the influences on it, and the b e CO m e O n e O th 1

conditions under which it was created. For the sake of brevity, 1 omit full descriptions of C itsclf, its e O m ’ n a n t

parent B [Johnson 73] and its grandparent BCPL [Richards 79), and instead concentrate on characteristic a n u a e

clements of cach language and how they evolved S O to a y
°

Thi
[
C came into being in the ycars 1969-1973, in parallcl with the carly development of the Unix operating ’S P aP e r s tu d 1 .
system; the most creative period occurred dunng 1972. Another spaic of changes peaked between 1977 ’ e s ’ ts e VO I
and 1979, when portability of the Unix systcm Was being demonstrated. In the middle of this second u I O n
period, the first widely available description of the language appearcd: The C Programming Language, d
often called the *white book’ or ‘K&R' [Kemighan 78). Finally, in the middle 1980s, the language was

officially standardized by the ANSI X3J11 committee, which made further changes. Until the carly

1980s, although compilers existed for 2 vanety of machine architectures and operating systems, the

language was almost exclusively associated with U nix; More recently, its use has spread much more

widely, and today it is aMONE the languages mOst commonly used throughout the computer industry. e 0o o

History: the setting

The late 1960s were @ turbulent era for computer Systems research at Bell Telephone Lsboratories

SIS e BCPL, B -
‘Wﬂmmﬁmmm‘ﬁwm s dét | [a nd C differ syntacti cal Iy in many
ails, but broadly they are similar.

Users’ Reference to B, Ken Thompson, January 1972

COVER SHEET FOR TECHNICAL MGMORANDUM

TITLE- Users’ keference to B MM=72-1271
CASE CHARGED~ 39199 PDATE~- Jamary T 1972
FALAMNS CALE~ 3919% - M AUTHOR= K._Tnolpﬁon
Ext 2394
Filinge SUBJ ECTS= Compilers
Languages
yoP -~ 11

ARSTRACT

p L8 A computer janguage intended for recuraive, pnuruy non=
numeric applications typified by system programaing. B has A

small, unrestrictive syntax that A8 easy wo compile. pucause ot
whe unususl f rvedon of expression and & gich set of Operators, B

programs are often quite compact,

Text - 27 pages
References

numeric
applications typified by system programmi
ng.

p .

programs are often quite compact

TITLE- Users’ keference to B MM=72-12711

CASE CHARGED= 39199 DATE- Jamuary 7, 1972

FILLIMG CABE~ 319y - N AUTHOR= X._Thompaca
Ext 2394

Filinge SUBJ ECTS- Compilers
Languages
poP -~ 11

ARSTRACT

ntended for recuraive, pnuruy non=
B has A

s 18 A& computer janguage 1

numeric applications typified by system programming.
small, unrestrictive syntax that A8 easy wo compile. pucause ot
the unususl treedon of expression and & gich set of Operators, b

programs are often quite compact,

Yhie manual contains & concise definition of the LAnguUAge, pample

programs, and instructions for using the pOP-11 version of B.

Text =~ 27 pages
References

B is a computer 1
anguage intended f
Or recursive,
primarily non-

numeric application
s typified by s
ystem programmin
g. B has a

the unusual fre
edom of expression and a rich set of o
perators, B

programs are often quite compact

The BCPL Reference Manual, Martin Richards, July 1967 Users’ Reference to B, Ken Thompson, January 1972

BELL YELEPMONE
Lasomaromig
R T b 4

COov
ER SHEET FoRr TECHNICAL MEMORANDUM

TITLE- Users” keference to B

MM=72-1271w¢

CAsk CHANGED - 39199

FILIM casg- 39199 - 44 PATE- Jaruary 7, 1972

MASSACHUSETTS INSTITUTE OF TRCHNOLOGY
. AUTHOR ~ K._Thom "
Project MAC ¥ilis sugecrs- Compilers Ext 239: a
e
- 11
¥emorandus-¥-352
\ July 21, 1967.
ARSTRACT

|N~Il¢ Oppl£c0 ons ‘Y’l‘ W Yy ng
(31 ed L L o B ha N
i st Pf@f. i
. L]

F s::t u‘: PﬂNCi‘I
i
v . r
i .

To:
: Martin Richards
Froa Marmal ©® Unisusl freedon of *xpress .
The BCPL Roference Nanu on and & g1
Subject: Programs are often quire Campace i Operators, »

ABSTRACT

recursive programsing language

it
designed for compiler writing and system programmings :
was dorived from true cPL (Conmbined Programeing Language
those features of the full langusge which make

BCFL is a simple

by removing
compilation diffisult namely, the type and mode mtahix:
rules and the veriety of definition structures with thelr
Text - 27
Rere,-e,,c“wsoa

associated scope rulos.

(This is a copy of the original document)

excerpt from the BCPL reference manual (Richards, 1967), page 6

an RVALUZE 18 2 binary bit pattern of a rixed length (vhich is
inplenentation depondent), it is usuallv the size of a conputer word.
Rvalues nay be used to represent a variety of different kinds of
objects such as intezers, truth wvalves, vectors or functions. - The

actual kind of obj:et represaonted is called the TYPR of the Rvalue.

excerpt from the B reference manual (Thompson, 1972), page 6

An rvalue is a binary bit pattern of a fixed length. On the
PDP-11 it is8 16 bits. ObJjects are rvalues of different kinds

such as integers, labels, vectors and functions. The actual kind

Of object represented is called the type of the rvalue.

excerpt from the BCPL reference manual (Richards, 1967), page 6

4 BCPL expression can be evaluated to yield an Rvalue but its
type rezains underined until the Rvalue is used in some definitive
context and it is then asswied to renresent an object of the required
typce Tor excmple, in the following function application

(B*[1i] » 7, ¢) [1, 2[i]]
the expression " (B*[i] » £, g) is ovaluated to yield an Rvalue which

excerpt from the B reference manual (Thompson, 1972), page 6
A B expression can be evaluated to yield an rvalue, but its type

is undefined until the rvalue is used ih some context., It is

then assumed to represent an object of the required type. For

example, in the following function call
(b?f:g (1]) (1,x>1)

The expression (b?f:g[i]) is evaluated ﬁo vield an rvalue which

excerpt from the BCPL reference manual (Richards, 1967), page 6

Sn LV.LUE is a bit nattern representin; o storage location
containing an Rvalue. 4An Lvalue is the sanc size as an Rvalue and is
a type in BCPl.. There is one context vhere an Rvalue is interpreted as
an Evalue and that is as the operand of the onadic operater rv. rFor

exanple, in the expressi.n
rv i)

the expression £[i] is evaluated to ~ield an Rvaluc which is then

excerpt from the B reference manual (Thompson, 1972), page 6

An lvalue is a bit pattern representing a storage location con-
taining an rvalue, An lvalue is a type in B. The unary operator
* can be used‘to interpret an rvalue as an lvalue. Thus

*x

evaluates the expression x to yield an rvalue, which is then

The C Reference Manual, Dennis Ritchie, Jan 1974 (aka C74)

@ Bell Laboratories Cover Sheet for Technical Memorandum

The !

Lot cowramed hevew is for the use of emplovers of Bell L

aborataries and 1 not for publication. (See GEI 13.%0)

Titte- € Reference Manual Date- January 15, 1974

™ 7412731

Other Keywords. Compiler
Languages

Author Location E viension Charging Case- 39199
N.M. Ritchie MH 2C-517 3770 Filing Case- 39199-11

ABSTRACT

C is a new computer languuge designed for both non-numernical and numerical applicatons
The fundamental typss of objects with which it deals are characiers, integess. and single- ard
double-precision numbers, but the language also provides multidimeasional arrays, struciures
containing Jata of mixed 1ype, and poiniers 10 data of all types

C is based on an earlier language B. from whi~h it differs mainly in the introduction of the no-
tions of 1ypes and of structures. This paper is a reference manual for the original implementa-
tion of C on the Digital Equipment Cerporation poP-11/45 under the UNIM ume-sharing s)s-
jem. The language is also available on the nts 6000 and 18M S/370.

. —

Cis ° ' '
= ¥ :u:::mggmrt:zer Ianrgu;ge designed for both non-numerical and numerical applications
' al types of objects with which it deals are char: ' i .
e 3 are ¢ aracters, integers, and single- and
coma.n.prec‘;? on rnumbers. but the Ia'nguage also provides multidimeasional arrays st%uc(ures
ining data of mixed 1ype, and poiniers 1o data of all types. ’ |

go:sb:?e‘c\i'pc:; ::dcz;li:lrr languagefh. from whi~h it differs mainly in the introduction of the no
: \ uctures. is paper is a reference manual for the original i :
S o e Doitsl Ea . al for the original implementa-
igit pment Cerporation PDP-11/45 under the UNIX 1 i '
tem. The language is also available on the His 6000 and 18M S/370 B s

Interesting fact:

Interesting fact:

The C74 reference manual does not mention BCPL at all.

Interesting fact:

The C74 reference manual does not mention BCPL at all.
It does not even mention the B reference manual by Ken Thompson.

Interesting fact:

The C74 reference manual does not mention BCPL at all.
It does not even mention the B reference manual by Ken Thompson.

REFERENCES

1. Johnson, S. C., and Kefnighan, B. W. “The Programming Language B.” Comp. Sci. Tech. Rep.
#8., Bell Laboratories, 1972.

2. Ritchie. D. M., and Thompson, K. L. *“The UNIx Time-sharing System.” C. ACM 7, 17, July, 1974,
pp. 365-375.

Peterson, T. G., and Lesk, M. E. “A User’s Guice to the C Language on the IBM 370.” Internal
Memorandum, Bell Laboratories, 1974.

4. Thompso.-, K. L, and Ritchie, D. M. uMX Programmer’s Manual. Bell Laboratories, 1372.

Lesk, M. E., and Barres, B. A. “The Gcos C Library.” Internal memorancum, Bell Laboratories,
1974.

6. Kernighan, B. W. *“Programming in C— A Tutorial.” Unpublished internal memorandum, Bell La-
boratories, 1974.

13

}M

“Good artists copy. Great artists steal.”

Picasso!?

good_research_Llabs(knowledge k) ;
great_research_labs(knowledge && k) ;

/* Bell Labs? x/

BCPL

* Designed by Martin Richards, appeared in 1966, typeless (everything is a word)

* Influenced by Fortran and Algol

* Intended for writing compilers for other languages

e Simplified version of CPL by "removing those features of the full language which make
compilation difficult”

GET "LIBHDR"

GLOBAL $ (

COUNT: 200
ALL: 201

$)

LET TRY(LD, ROW, RD) BE
TEST ROW = ALL THEN

COUNT := COUNT + 1
ELSE $(
LET POSS = ALL & ~(LD | ROW | RD)
UNTIL POSS = 0 DO $(
LET P = POSS & -POSS
POSS := POSS - P
TRY(LD + P << 1, ROW + P, RD + P >> 1)
$)
$)
LET START() = VALOF $(
ALL := 1
FOR I = 1 TO 12 DO $(
COUNT := 0
TRY (0, 0, 0)
WRITEF ("%I2-QUEENS PROBLEM HAS %I5 SOLUTIONS*N", I, COUNT)
ALL := 2 * ALL + 1
$)
RESULTIS 0

PDP-7

(18-bit computer, introduced 1965)

THIS IS A SAMPLE PROGRAM

GO,

LOOP,

START GO

LAS

SPA !CMA
JMP GO

DAC #CNTSET
LAC (1

DAC #BIT
CLL.

LAC CNTSET
DAC CNT
LAC BIT
1ISZ #*CNT
JMP -]
RAL

DAC BIT
LAS

SMA

JMP LOOP
JMP GO

B

Designed by Ken Thompson, appeared in ~1969, typeless (everything is a word)
"BCPL squeezed into 8K words of memory and filtered through Thompson's brain"

/* The following program will calculate the constant e-2 to about
4000 decimal digits, and print it 50 characters to the line in
groups of 5 characters. */

main() {
extrn putchar, n, v;
auto i, ¢, col, a;

i = col = 0;
while(i<n)
v[iit++] = 1;
while(col<2*n)
a = nt+l ;
c =1=0;
while (i<n) {
c =+ v[i] *10;
v[i++] = c%a;
c =/ a--;

{

}

putchar(c+'0"');
if(! (++col%h))

putchar(col%50?' ': '*n');
}
putchar('*n*n');
}
v[2000];

n 2000;

B

Designed by Ken Thompson, appeared in ~1969, typeless (everything is a word)
"BCPL squeezed into 8K words of memory and filtered through Thompson's brain"

/* The following program will calculate the constant e-2 to about .
4000 decimal digits, and print it 50 characters to the line in 'I'f:
groups of 5 characters. */

main() { e-l.se

extrn putchar, n, v;

auto i, ¢, col, a; et

wh1le
i = col = 0; °
while(i<n)
V[i++] = 1; SW-I tCh
)

while(col<2*n) {
a = nt+l ;
Y case
while (i<n) {
c =+ v[i] *10;
v[i+t+] = c%a;
c =/ a-—;

}

putchar(c+'0"');
if(! (++col%h))

putchar(col%50?' ': '*n');
}
putchar('*n*n');
}
v[2000];

n 2000;

B

Designed by Ken Thompson, appeared in ~1969, typeless (everything is a word)
"BCPL squeezed into 8K words of memory and filtered through Thompson's brain"

/* The following program will calculate the constant e-2 to about .
4000 decimal digits, and print it 50 characters to the line in 'I'f:
groups of 5 characters. */

main() { e-l.se

extrn putchar, n, v;

auto i, c, col, a; Wh_i -Le

i =col = 0; o
while(i<n)

V[i++] = 1; SW-I tCh
while(col<2*n) ({

a = n+l ;

c =1=0; Case

while (i<n) {

c =+ v[i] *10;

S goto
return

}

putchar(c+'0"');
if(! (++col%h))

putchar(col%50?' ': '*n');
}
putchar('*n*n');
}
v[2000];

n 2000;

B

Designed by Ken Thompson, appeared in ~1969, typeless (everything is a word)
"BCPL squeezed into 8K words of memory and filtered through Thompson's brain"

/* The following program will calculate the constant e-2 to about .
4000 decimal digits, and print it 50 characters to the line in 'I'f:
groups of 5 characters. */

main() { e-l.se

extrn putchar, n, v;

auto i, c, col, a; Wh_i -Le

i = col = 0;

while(i<n) .
V[i++] = 1; SW-I tCh

while(col<2*n) {
a = n+l ;
i case
while (i<n) {
c =+ v[i] *10;

S goto
return

}

putchar(c+'0"');
if(! (++col%h))
putchar(col%50?' ': '*n');

]g})utchar('*n*n'); aUtO
extrn

}

v[2000];
n 2000;

PDP-1 |

* | 6-bit computer
*introduced 1970
eorthogonal instruction set
*byte-oriented

Early C

* Designed by Dennis Ritchie and Ken Thompson

e Developed during 1969-1972 in parallel with Unix

* Developed because of the PDP-11,a |6-bit, byte-oriented machine

e C introduced more types: integer types, characters and floating point types

* A key design principle was to make C amenable to translation by simple compilers

e Storage limitations often demanded a one-pass technique in which output was generated as soon
as possible.

* While C had been ported to other architectures, until about 1977 Unix itself had only been
running on DEC architectures.

e The PCC (Portable C Compiler, Stephen C. Johnson) was an important reference implementation

eIt was not until 1977-1979 that the portability of Unix was demonstrated

e very productive time 1977-1979 for C as Unix was ported to new platforms

http://en.wikipedia.org/wiki/Stephen_C._Johnson

The seminal book "The C Programming Language” (1978) acted for a long time as the

only formal definition of the language.

K&R C

/* C78 example, K&R C */

mystrcpy(s,t)
char *s;

char *t;

{

int i;

for (i = 0; (*s++ = *t++) 1= '\0';

.
14

return(i);

}

main()

{
char strl[10];
char str2[] = "Hello, C78!";
int len = mystrcpy(strl, str2);
int i;

for (i = 0; i < len; i+t++)
putchar(strl[i]);
exit(0);

i++)

Standardization of C started in 1983

Many people don't realize how unusual the C standardization effort, especially the original ANSI C work, was in its
insistence on standardizing only tested features. Most language standard committees spend much of their time
inventing new features, often with little consideration of how they might be implemented. Indeed, the few ANSI C
features that were invented from scratch — e.g., the notorious “trigraphs” —were the most disliked and least successful
features of C89.

-- Henry Spencer

http://www.fags.org/docs/artu/c_evolution.html

Standardization of C started in 1983

Many people don't realize how unusual the C standardization effort, especially the original ANSI C work, was in its
insistence on standardizing only tested features. Most language standard committees spend much of their time
inventing new features, often with little consideration of how they might be implemented. Indeed, the few ANSI C
features that were invented from scratch — e.g., the notorious “trigraphs” —were the most disliked and least successful
features of C89.

-- Henry Spencer

http://www.fags.org/docs/artu/c_evolution.html

Standardization of C

Dennis Ritchie not involved(except for the “noalias must go” article)
Committee met four times a year, from 83 til publication

All meetings in the US (due to political issues between ANSI and ISO)

The committee avoided inventing features

All features had to be demonstrated by one or more existing compilers
Hot topic: value preserving vs unsigned preserving (value preserving won)
The idea of text files vs binary files (due to Microsofts CR/NL vs Unix NL)
The standard was delayed about 2 years due to a US protest

Private conversation with Tom Plum,April 2015

ANSI C/ C89/ C90

Soon after it was all ISO/IEC

1. INTRODUCTION
1.1 PURPOSE

This Standard specifies the fora and establishes the intcrpretation
of programs written in the C programming language./l/

1.2 scorg
This Standard Specifies:
* the Fépresentation of C Programs;
* the syntax and Constraints of the ¢ lanquage;
* the semantjic rules for 1nterpret1ng C Pregrams;
* Lthe representation of input data to pe Processed by C Programs;
* the representation of output data Produced by ¢ Programs;

* the réstrictions and limits imposegd by a conforming lnplementatlon of C,

This Standargd does not Specify:

* the mechanism Oy which ¢ Programs are transformed for use by a
data—processing Systenm;

* the mechanism by which ¢ Programs are invoked for use by a
data—processing Systenm;

* the mechanism by which input data are transformed for use by a ¢ Program;

* the mechanism by which Output data are transformed after being
Produced by a ¢ Progranm;

* the size or complexity of a Program ang its data that will exceed

the Capacity of any specific data-processing System or the Capacity of
8 particular Processor;

*
/* C89 example, ANSI C */

#include <stdio.h>

har *t)
int mystrcpy(char *s, const c
1

{

int 1i;
f (1 = 0; (*s++ = *t++) 1= '\0';
or =
; .
return 1;
}
int main(void)
{ .
trl[10]; ",
Char S 2] — "Hellol C89! ’ .
char str2]| str2);

ize t len = mystrcpy(strl,
S —

i i; :

?lie?i = 0; i < len; it+)

o ’ oL
putchar(strl[i]);

return 0;

i++)

ISO/IEC 9899/AMD |:1995, aka “C95”

® Add more extensive support for international character sets (mostly done by Japan)
® Corrected some details

Private conversation with David Keaton, April 2015

C99

C99 added a lot of stuff to C89, perhaps too much. Especially a lot of features for scientific
computing was added, but also a few things that made life easier for programmers.

// C99 example, ISO/IEC 9899:1999

/
éﬂﬁﬁmgnoNAL #include <stdio.h>
c
9899 size t mystrcpy(char *restrict s, const char *restrict t)
- {
- size t 1i;
1 = 0 (*s++ = *t++ 1= " i+
L‘N’QMph ”“\C 4
i return i;
}
int main(void)
{
char strl[10];
char str2[] = "Hello, C99!";
size t len = mystrcpy(strl, str2);
for (size t i = 0; 1 < len; i++)

putchar(strl[i]);

Cll

The main focus:

- security, eg Anneks K (the bounds checking library, contributed by Microsoft)
- support for multicore systems (threads from WG4, memory model from WG21)

The most interesting features:

* Type-generic expressions using the _Generic keyword.
* Multi-threading support

* Improved Unicode support
* Removal of the gets() function
* Bounds-checking interfaces

* Anonymous structures and unions
* Static assertions

* Misc library improvements

i , , . Programming
Information technology Y

languages — C

Dcvclopcd by

Where IT all begins

American National Standard

Made a few C99 features optional.

WG| 4 meeting at Lysaker, April 2015

Next version of C - C2x!

Currently working on defect reports
There are some nasty/interesting differences between CI| | and C++1 |

|IEEE 754 floating point standard updated in 2008
CPLEX - C parallel language extentions (started after CI 1)

Private conversation with David Keaton, April 2015

K&R C

/* C78 example, K&R C */

mystrcpy(s,t)

char *s;

char *t;

{
int i;
for (i = 0; (*s++ = *t++) 1= '\0';
return(i);

}

main()

{
char strl[10];
char str2[] = "Hello, C78!";
int len = mystrcpy(strl, str2);
int i;
for (1 = 0; 1 < len; i++)

putchar(strl[i]);

exit(0);

}

i++)

C89/C90

/* C89 example, ANSI C */
#include <stdio.h>

int mystrcpy(char *s, const char *t)

{

int i;

for (i = 0; (*s++ = *t++) 1= '\0';

return 1i;

}

int main(void)

{
char strl[10];
char str2[] = "Hello, C89!";
size t len = mystrcpy(strl,
size t 1i;
for (1 = 0; i < len;

putchar(strl[i]);

return 0;

str2);

i++)

i++)

C99

// C99 example, ISO/IEC 9899:1999
#include <stdio.h>

size t mystrcpy(char *restrict s,
const char *restrict t)

{
size t 1i;
for (i = 0; (*s++ = *t++) 1= '\0';
return 1i;

}

int main(void)

{
char strl[10];
char str2[] = "Hello, C99!";
size t len = mystrcpy(strl, str2);
for (size t i = 0; i < len; i++)

putchar(strl[i]);
}

Evolution of Keywords in C (1972-2011)

auto
extrn

B (1972)

goto
return

if

else
while
switch
case

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

from B to C (1972-1974)

auto
extrn

goto
return

if

else
while
switch
case

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

from B to C (1972-1974)

int auto goto if

char extrn return else
float while
double switch

struct case

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

Int
char
float
double

struct

from B to C (1972-1974)

auto
extrn
static
register

goto
return

if

else
while
switch
case

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

Int
char
float
double

struct

from B to C (1972-1974)

auto
extrn
static
register

goto
return
break
continue

if

else
while
switch
case

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

Int
char
float

double
Struct

from B to C (1972-1974)

auto
extrn
static
register

goto
return
break
continue

if

else
while
switch
case
default

do
for

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

Int
char
float

double
Struct

from B to C (1972-1974)

auto
extrn
static
register

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof
entry

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

Int
char
float

double
Struct

from B to C (1972-1974)

auto

register

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof
entry

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

Farly C (1974)

int auto goto if sizeof
char extern return else entry
float static break while
double register continue switch
struct case

default

do

for

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

from Early C to K&R C (1974-1978)

int auto goto if sizeof
char extern return else entry
float static break while
double register continue switch
struct case

default

do

for

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

from Early C to K&R C (1974-1978)

Int

char
float
double
struct
short
long
union
unsigned

auto
extern
static
register

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof
entry

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

from Early C to K&R C (1974-1978)

Int

char
float
double
struct
short
long
union
unsigned

auto
extern
static
register

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof
entry
typedef

http://cm.bell-labs.com/cm/cs/who/dmr/kbman.pdf

Int

char
float
double
struct
short
long
union
unsighed

auto
extern
static
register

K&R C (1978)

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof
entry
typedef

K&R

from K&R C to ANSI C (1978-1989)

Int

char
float
double
struct
short
long
union
unsighed

auto
extern
static
register

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof
entry
typedef

from K&R C to ANSI C (1978-1989)

Int
char
float
double
struct
short
long
union
unsighed
sighed
enum
void

auto
extern
static
register

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof
entry
typedef

from K&R C to ANSI C (1978-1989)

Int
char
float
double
struct
short
long
union
unsighed
sighed
enum
void

auto
extern
static
register
volatile
const

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof
entry
typedef

from K&R C to ANSI C (1978-1989)

Int
char
float
double
struct
short
long
union
unsighed
sighed
enum
void

auto
extern
static
register
volatile
const

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof

typedef

from K&R C to ANSI C (1978-1989)

Int
char
float
double
struct
short
long
union
unsigned
sighed
enum
void

auto
extern
static
register
volatile
const

goto
return
break
continue

The entry keyw

entry points in
by some compli

to a function.Th
lers but was never standardi

if sizeof

else
while
switch
case
default

do
for

typedef

ord came from PL/I and allowed multiple

e keyword was implemented
zed.

(stackoverflow.com/ questions/254395)

Int
char
float
double
struct
short
long
union
unsighed
signed
enum
void

auto
extern
static
register
volatile
const

ANSI C (1989)

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof
typedef

Int
char
float
double
struct
short
long
union
unsighed
sighed
enum
void

from ANSI C to C99 (1989-1999)

auto
extern
static
register
volatile
const

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof
typedef

_Bool
_Complex
_Imaginary
Int

char

float
double
struct
short

long
union
unsighed
sighed
enum
void

from ANSI C to C99 (1989-1999)

auto
extern
static
register
volatile
const

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof
typedef

_Bool
_Complex
_Imaginary
Int

char

float
double
struct
short

long
union
unsighed
sighed
enum
void

from ANSI C to C99 (1989-1999)

auto goto
extern return
static break
register continue
volatile

const

restrict

inline

if

else
while
switch
case
default

do
for

sizeof
typedef

_Bool

__Complex
_Imaginary

Int
char
float
double
struct
short
long
union
unsigned
sighed
enum
void

auto
extern
static
register
volatile
const
restrict
inline

C99

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof
typedef

_Bool
__Complex
_Imaginary
Int

char

float
double
struct
short
long
union
unsigned
sighed
enum
void

from C99 to C11 (1999-2011)

auto goto
extern return
static break
register continue
volatile

const

restrict

inline

if

else
while
switch
case
default

do
for

sizeof
typedef

_Bool

__Complex
_Imaginary

Int
char
float
double
struct
short
long
union
unsigned
sighed
enum
void

from C99 to C11 (1999-2011)

auto
extern
static
register
volatile
const
restrict
inline
_Alignas
Atomic

:Th read local

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof
typedef

_Bool

__Complex
_Imaginary

Int
char
float
double
struct
short
long
union
unsigned
sighed
enum
void

from C99 to C11 (1999-2011)

auto
extern
static
register
volatile
const
restrict
inline
_Alignas
Atomic

:Th read local

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof

typedef

- Noreturn

~ Static assert
_Alignof

~ Generic

_Bool

__Complex
_Imaginary

Int
char
float
double
struct
short
long
union
unsigned
sighed
enum
void

auto
extern
static
register
volatile
const
restrict
inline
_Alignas
__Atomic

_Thread local

Cll

goto
return
break
continue

if

else
while
switch
case
default

do
for

sizeof

typedef

- Noreturn

~ Static_assert
_Alignof

~ Generic

CIl_Standard

The spirit of C

trust the programmer
* et them do what needs to be done
* the programmer is in charge not the compiler

keep the language small and simple
* small amount of code — small amount of assembler
* provide only one way to do an operation
* new inventions are not entertained

make it fast, even if its not portable
e target efficient code generation
* int preference, int promotion rules
* sequence points, maximum leeway to compiler

rich expression support

* lots of operators
* expressions combine into larger expressions

http://www.open-std.org/jtc|/sc22/wg | 4/www/C99RationaleV5.10.pdf

/ 7 ol / / - o — // /_
) / _ : \/

. & < e -' — /,/ /—
/' - / / // / I/ / s

At Bell Labs. Back In 1969. Ken Thompson wanted to play. He found a
little used PDP-7. Ended up writing a nearly complete operating
system from scratch. In pure assembler of course. In about 4 weeks!
Dennis Ritchie soon joined the effort.While porting Unix to a
PDP-11 they invented C, heavily inspired by Martin Richards’ portable
systems programming language BCPL. In 1972 Unix was rewritten in
C, and later ported to many other machines aided by Steve Johnsons
Portable C Compiler. C gained popularity outside the realm of
PDP-11 and Unix. Initially the K&R was the definitive reference until
the language was standardized by ANSI and ISO in 1989/1990 and
thereafter updated in 1999 and 201 1.

History and Spirit of C++
Olve Maudal

To get a deep understanding of C++, it is useful to know the history of this wonderful programming language. It is perhaps even more important to appreciate
the driving forces, motivation and the spirit that has shaped this languages into what we have today.

We assume you know the history and spirit of C.VWe will now include Simula, Algol 68,Ada, ML, Clu into the equation.VWe will discuss the motivation for
creating C++, and with live coding we will demonstrate by example how it has evolved from the rather primitive “C with Classes” into a supermodern and
capable programming language as we now have with C++11/14 and soon with C++17.

A lightning talk at ACCU 2015, April 23, Bristol, UK

/ 7 ol / / - o — // /_
) / _ : \/

Before C++

with approximately the words of Bjarne Stroustrup himself as copied from
"The Design and Evolution of C++", Bjarne Stroustrup, 1994

| was working on my PhD thesis

Bjarne

Cambridge Computing, The first 75 years, Haroon Ahmed, 2013

http://computersweden.idg.se/polopoly_fs/1.346563!imageManager/132621961 | .jpg

in the Computing Laboratory at

in the Computing Laboratory at University of Cambridge.

| was working on a simulator to study alternatives for the organization of

system software for distributed systems.
The initial version of this simulator was written in Simula

Begin

Class Glyph;

Virtual: Procedure print Is Procedure print;

Begin
End;

Glyph Class Char (c);
Character c¢;
Begin
Procedure print;
OutChar(c);
End;

Glyph Class Line (elements);

Ref (Glyph) Array elements;

Begin
Procedure print;
Begin
Integer i;

For i:= 1 Step 1 Until UpperBound (elements, 1) Do

elements (i).print;

OutImage;
End;
End;

Ref (Glyph) rg;
Ref (Glyph) Array rgs (1

! Main program;
rgs (1):- New Char
rgs (2):- New Char
rgs (3):- New Char
rgae (4):~ New Char
rqg:- New Line (rgs);
rg.print;

D oo >

—— —, —,
et et
. wE N N

End;

: 4);

http://en.wikipedia.org/wiki/Simula

and ran on the IBM 360/165 mainframe.

System/370 model 165

https://www-03.ibm.com/ibm/history/exhibits/mainframe/mainframe_PP3165.html

The concepts of Simula and object orientation became increasingly helpful as
the size of the program increased. Unfortunately, the implementation of Simula
did not scale the same way.

Eventually, | had to rewrite the simulator in ? and run it on the
experimental CAP computer.

- CAP COMPUTER
‘i'

Eventually, | had to rewrite the simulator in BCPL and run it on the
experimental CAP computer.

- CAP COMPUTER
‘i'

The experience of coding and debugging the simulator in BCPL was horrible.
BCPL makes C look like a very high-level language and provides absolutely no
type checking or run-time support.

http://theleafsnation.com/201 1/2/7/phil-kessels-frustrated-you-would-be-too

The experience of coding and debugging the simulator in BCPL was horrible.
BCPL makes C look like a very high-level language and provides absolutely no
type checking or run-time support.

http://theleafsnation.com/201 1/2/7/phil-kessels-frustrated-you-would-be-too

Upon leaving Cambridge, | swore never again to attack a problem with
tools as unsuitable as those | had suffered while designing and

implementing the simulator.

A good tool should:
® have support for program organization, eg classes, concurrency,

strong type checking
® produce programs that run as fast as the BCPL programs
® support separately compiled units into a program
® allow for highly portable implementations

After finishing my PhD Thesis in Cambridge | got a job at

After finishing my PhD Thesis in Cambridge | got a job at Bell Labs.

Where | learned C properly from people like Stu Feldman, Steve Johnson, Brian
Kernighan, and Dennis Ritchie.

Developing the initial version of C++ (pre-1985)

® Simula gave classes

® Simula gave classes
® Algol68 gave operator overloading and references

® Simula gave classes
® Algol68 gave operator overloading and references
® Algol68 also gave the ability to declare variables anywhere in a block

Simula gave classes

Algol68 gave operator overloading and references

Algol68 also gave the ability to declare variables anywhere in a block
The only direct influence from BCPL was

Simula gave classes

Algol68 gave operator overloading and references

Algol68 also gave the ability to declare variables anywhere in a block
The only direct influence from BCPL was // comments

Development of C++ (post-1985)

ML (Robin Milner, 1973) influenced exceptions

fun factorial n = let
fun fac (0, acc) = acc
| fac (n, acc) = fac (n - 1, n * acc)
in
if (n < 0) then raise Fail "negative argument”
else fac (n, 1)
end

CLU (Barbara Liskov, 1974) also influenced exception

sum_stream = proc (s: stream) returns (int) signals (overflow,
unrepresentable_integer(string),
bad_format(string))
sum: int := 0
num: string
while true do
X skip over spaces between values; sum is valid, num is meaningless
¢: char := stream$getc(s)
whilec = '’ do
¢ := stream$getc(s)
end
% read a value; num accumulates new number, sum becomes previous sum
num := "
while c ~= '’ do
num := string$append(num, ¢
C := stream$getc(s)
end
except when end_of _file: end
% restore sum to validity
sum := sum + s2i(num)
end
except when end_of _file: return{sum)
when unrepresentable_integer: signal unrepresentable_integer(inum)
when bad_format, invalid_character (s): signal bad_format(num)
when overflow: signal overflow
end
end sum_stream

http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-225.pdf

Ada (Jean Ichbiah++, 1980) influenced templates, namespaces and exceptions

with Ada.Text IO;
package body Example is

1 : Number := Number 'First;
procedure Print and Increment (j: in out Number) is

function Next (k: in Number) return Number is
begin

return k + 1;
end Next;

begin
Ada.Text IO.Put Line "The total is: " & Number'Image(j));
j := Next (3);

end Print and Increment;

begin
while i1 < Number'Last loop
Print and Increment (i);
end loop;
end Example;

80's
C with classes, C++/CFront, ARM

C++ was improved and became standardized
90's
X3J16, C++arm,WG21|, C++98,STL

Ouch... Template Metaprogramming

C++03,TRI, Boost and other external libraries

While the language itself saw some minor improvements after C++98, Boost and other external
libraries acted like laboratories for experimenting with potential new C++ features. Resulting in...

C++11/C++14

With the latest version C++ feels like a new language

The future of C++?

