What We Talk About
When We Talk About
Unit Testing

@KevlinHenney

keviin@curbralan.com

Write down the problem.
Think real hard.
Write down the solution.

The Feynman Problem-Solving Algorithm

N

000042000210760358600

EXPEDITED PARCEL
COLIS ACCELERES

CANADA POST / POBTES CANADA

From / Exp.: Payer / Facture a.
$retAdd.getFirstName(). toUpperCase() 7307904

SretAdd.g etAddressLme12:toU perCase()
SretAdd.getCity().toUpper asef SretAdd getState() toUpperCase() SretAdd.

SretAdd.getDayPhone()

Method of Payment |
0/ Dest.: Mode de palement.

Payment method

You cannot pay by PayPal for
orders over £0.00. Please select
another payment method.

The update to SMARS was intended
to replace old, unused code
referred to as “Power Peg” —
functionality that Knight hadn’t
used in 8-years.

Doug Seven

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

Why code that had been dead for 8
years was still present in the code

base is a mystery, but that’s not the
point.

Doug Seven

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

In the first 45 minutes the market
was open the Power Peg code
received and processed 212 parent
orders. As a result SMARS sent
millions of child orders into the
market resulting in 4 million
transactions against 154 stocks for
more than 397 million shares.

Doug Seven

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

Knight Capital Group realized a
$460 million loss in 45 minutes.

Doug Seven

http://dougseven.com/2014/04/17/knightmare-a-devops-cautionary-tale/

RUD, noun

= Rapid Unscheduled Disassembly
= Rocket science and amateur rocketry jargon that's acronymous,
euphemistic and explosively self-explanatory

=
]
|

A, A -;«M@!,n;.f;ii’;ill_hj.,f i

Ltitp://en.wikipedia.org/wiki/Cluster (spacecraft)

LS5

Gl -

end LIRE DERIVE;

AL LAE B]
L M DON_32 := TDB.T ENTIER 32S ((1.0/C M LSB DON) *

G_| M INFO DERIVE(T ALG.E_DCNV)
if L M DON_32 > 32767 then

P M DERIVE(T ALG.E DON) := 16#7FFF#;
elsif L_M DON 32 < -32768 then
P_M DERIVE(T_ALG.E_DON) := 16#8000%;
else
P_M DERIVE (T_ALG.E __DON) := UC 168 EN IGNS(
TDB. T ENTIER 16$(L M DON 32)),
end if;

P_M_DERIVE (T_ALG.E_DOE) := UC_16S_EN 16NS (TDB.T ENTIER 16S
1(1.0/C_M_LSB DOE) *
G_M_INFO _DERIVE (T ALG.E_DOE)

L MBV 32 ;= TDB.T_ENTIER 32S ((1.0/C_M LSB BV) *
| G_M_INFO_DERIVE(T ALG.E BV));
if L M BV _32 > 32767 then
P M DERIVE(T ALG.E . BV) = 1647FFF#%;
elsif L M BV _ 32 < -32768 then
P_M_DERIJ“("_ALG E_BV) :=.16#8000%;
else '
P_M DERIVE(T_ALG.E BV) := UC_16S_EN_16NS(TDB.T_ENTIER 16S(L_M
end if;

P_M DERIVE (T_ALG.E_BH) := UC_16S_EN_16NS (TDB.T_ENTIER_16S
((1.0/C_M_LSB_BH) *

G M _INFO DERIVE(T ALG.E BH)))
_M_INFO_ I_ 2

--$finprocedure

-

procedure LIRE_SEUIL (P_M SEUIL : out TDB.T ENTIER 16NS) is

-

Um. What's the name of the word for
things not being the same always. You
know, I'm sure there 1s one. Isn't there?

There's must be a word for it... the thing
that lets you know time is happening. Is
there a word?

Change.
Oh. I was afraid of that.

Neil Gaiman
The Sandman

What experience and
history teach 1is that
nations and governments
have never learned
anything from history.

Georg Wilhelm Friedrich Hegel

Write down the problem.
Think real hard.

Write down the solution.
Check it.

assert

void * bsearch (
const void * key,
const void * base,
size t element count,
size "t element _size,
int compare(const void * lhs, const void * rhs));

void * bsearch (
const void * key,
const void * base,
size t element count,
size "t element _size,
int compare(const void * lhs, const void * rhs))

void * result;

assert (???); // What is the postcondition?
return result;

void * bsearch (
const void * key,
const void * base,
size t element count,
size "t element _size,
int compare(const void * lhs, const void * rhs))

assert (???); // What is the precondition?
void * result;

assert (???); // What is the postcondition?
return result;

#HGoodLuck
WithThat

Test early.
Test often.
Test automatically.

Andrew Hunt and David Thomas
The Pragmatic Programmer

From time to time | hear people asking
what value of test coverage (also called
code coverage) they should aim for, or
stating their coverage levels with pride.
Such statements miss the point.

Martin Fowler
http://martinfowler.com/bliki/TestCoverage.html

| expect a high level of coverage.
Sometimes managers require one.
There's a subtle difference.

Brian Marick
http://martinfowler.com/bliki/TestCoverage.html

Goodhart's law, noun

= Once a metric becomes a target, it loses its meaning as
a measure.

= Named after Charles Goodhart, professor of economics
at the LSE and former advisor to the Bank of England,
who in 1975 observed that "Any observed statistical
regularity will tend to collapse once pressure is placed
upon it for control purposes."

% PATTERN

LANGUAGES
OF
PROGRAM DESIGN

Developer Controls Process

Responsibilities of Developers
include understanding
requirements, reviewing the
solution structure and algorithm
with peers, building the
implementation, and unit testing.

A Generative Developrment-Process Fattern Language
James O Coplien

When you write unit tests, TDD-
style or after your development,
you scrutinize, you think, and
often you prevent problems
without even encountering a test
failure.

Michael Feathers

"The Flawed Theory Behind Unit Testing"
http://michaelfeathers.typepad.com/michael_feathers_blog/2008/06/the-flawed-theo.html

Very many people say "TDD"
when they really mean, "l have
good unit tests” ("l have GUTs"?).
Ron Jeffries tried for years to
explain what this was, but we
never got a catch-phrase for it,
and now TDD is being watered
down to mean GUTs.

Alistair Cockburn

"The modern programming professional has GUTs"
http://alistair.cockburn.us/The+modern+programming+professional+has+GUTs

size t ints_to esv(
const int * to_write, size_t how_many,
char * output, size_t length);

size_t ints_to_csv(

const int * to_write, size_t how_many, char * output, size_t length)
{

size_t result = 0;

if(length != 0)

{
if (how_many == 0)
{
output[0] = '\0';
}
else
{
for(size_t which = 0; which != how_many && result != length;
{
result +=
snprintf(
output + result, length - result,
which == 0 ? "%i" : ",%i",
to_write[which]);
}
result = result > length - 1 ? length - 1 : result;
}
}

return result;

++which)

extern "C" size_t ints_to_csv(
const int * to_write, size_t how_many, char * output, size_t length)

{

size_t result = 0;

if(length != 0)

{
output[length - 1] = '\0';
std: :ostrstream buffer(output, length - 1);
for(size_t which = 0; which != how_many; ++which)
buffer << (which == 0 ? "" : ",") << to_write[which];
buffer << std::ends;
result = std::strlen(output);
}

return result;

test —— function

void test_ints_to_csv()

{

size_t written = ints_to_c¢sv(NULL, 0, NULL, O0);
assert(written == 0);

const int input[] = { 42 };

written = ints_to_csv(input, 1, NULL, 0);

assert(written == 0);

char output[3] = "+++";

written = ints_to_csv(NULL, O, output, sizeof output);
assert(written == 0);

assert(output[0] == '\0');

memcpy(output, "+++", sizeof output);

written = ints_to_csv(input, 1, output, sizeof output);
assert(written == 2);

assert(strcmp(output, "42") == 0);

void test_ints_to_csv()

{
// No values from null to null output writes nothing
size_t written = ints_to_csv(NULL, 0, NULL, 0);
assert(written == 0);

// Value to null output writes nothing
const int input[] = { 42 };
written = ints_to_csv(input, 1, NULL, 0);

assert(written == 0);

// No values to sufficient output writes empty

char output[3] = "+++";

written = ints_to_csv(NULL, O, output, sizeof output);
assert(written == 0);

assert(output[0] == '\0');

// Positive value to sufficient output writes value without sign
memcpy(output, "+++", sizeof output);

written = ints_to_csv(input, 1, output, sizeof output);
assert(written == 2);

assert(strcmp(output, "42") == 0);

void test_ints_to_csv()

{

// No values from null to null output writes nothing

{
size_t written = ints_to_csv(NULL, 0, NULL, O0);

assert(written == 0);
}
// Value to null output writes nothing
{
const int input[] = { 42 };
size_t written = ints_to_csv(input, 1, NULL, 0);
assert(written == 0);
}
// No values to sufficient output writes empty
{
char output[3] = "+++";
size_t written = ints_to_csv(NULL, O, output, sizeof output);
assert(written == 0);
assert(output[0] == '\0');
}

// Positive value to sufficient output writes value without sign

{
const int input[] = { 42 };

char output[3] = "+++";
size_t written = ints_to_csv(input, 1, output, sizeof output);
assert(written == 2);

assert(strecmp(output, "42") == 0);

void No_values_from_null_to_null_output_writes_nothing()

{
size_t written = ints_to_csv(NULL, 0, NULL, 0);
assert(written == 0);

}

void Value_to_null_output_writes_nothing()

{
const int input[] = { 42 };
size_t written = ints_to_csv(input, 1, NULL, 0);
assert(written == 0);

}

void No_values_to_sufficient_output_writes_empty()

{
char output[3] = "+++";
size_t written = ints_to_csv(NULL, 0, output, sizeof output);
assert(written == 0);
assert(output[0] == "\0');

}

void Positive_value_to_sufficient_output_writes_value_without_sign()
{
const int input[] = { 42 };
char output[3] = "+++";
size_t written = ints_to_csv(input, 1, output, sizeof output);
assert(written == 2);
assert(strcmp(output, "42") == 0);
}
void Negative_value_to_sufficient_output_writes_value_with_sign()
{
const int input[] = { -42 };
char output[4] = "++++";
size_t written = ints_to_csv(input, 1, output, sizeof output);

assert(written == 3);
assert(strecmp(output, "-42") == 0);
}
void Value_to_insufficient_output_writes_truncated_value()
{
const int input[] = { 42 };
char output[2] = "++";
size_t written = ints_to_csv(input, 1, output, sizeof output);
assert(written == 1);
assert(strcmp(output, "4") == 0);
}
void Multiple_values_to_sufficient_output_writes_comma_separated_values ()
{
const int input[] = { 42, -273, 0, 7 };
char output[12] = "++++++++++++";
size_t written = ints_to_csv(input, 4, output, sizeof output);
assert(written == 11);
assert(strcmp(output, "42,-273,0,7") == 0);
}
void Multiple_values_to_insufficient_output_writes_truncated_value_sequence()
{
const int input[] = { 42, -273, 0, 7 };
char output[9] = "+++++++++";
size_t written = ints_to_csv(input, 4, output, sizeof output);
assert(written == 8);
assert(strcmp(output, "42,-273,") == 0);

void No_values_from_null_to_null output_writes_nothing()

test \

test —— function

test —

size_ t

ints_to_csv(

const int * to_write, size_t how_many,
char * output, size_ t length);

< Value to

% Positive
» Negative
% Value to
» Multiple

< Multiple

% No values from null to null output writes nothing

null output writes nothing

** No values to sufficient output writes empty

value to sufficient output writes value without sign
value to sufficient output writes value with sign
insufficient output writes truncated value

values to sufficient output writes comma separated values

values to insufficient output writes truncated value sequence

Tests that are not written with their
role as specifications in mind can
be very confusing to read. The
difficulty in understanding what
they are testing can greatly
reduce the velocity at which a
codebase can be changed.

Nat Pryce and Steve Freeman
"Are Your Tests Really Driving Your Development?"

LOGIC

An introductory course
W. H. Newton-Smith

LOGIC B Propositions

An introductory course

K. Newton-Sinith B are vehicles

B for stating
how things are
or might be.

L‘GI‘ | Thus only indicative

Anintroductory course ; sentences which it
W H. Newton-Smith

makes sense to think
of as being true or as
being false are
capable of expressing
propositions.

public static bool IsLeapYear(int vyear) ...

YearsNotDivisibleByA4...
YearsDivisibleBy4ButNotBy100...
YearsDivisibleBy100ButNotBy400...

YearsDivisibleBy400...

Years_not_divisible_by_ 4 _...
Years_divisible_by_4_but_not_by_100_...
Years_divisible_by_100_but_not_by_400_...

Years_divisible_by_400_...

Years_not_divisible_by_4_should_not_be_leap_years
Years_divisible_by_4_but_not_by_100_should_be_leap_years
Years_divisible_by_100_but_not_by_400_should_not_be_leap_years

Years_divisible_by_400_should_be_leap_years

Make definite assertions. Avoid tame,
colourless, hesitating, noncommittal
language.

Note [...] that when a sentence is made
stronger, it usually becomes shorter. Thus
brevity is a by-product of vigour.

William Strunk and E B White
The Elements of Style

Kevlin Henney W Follow
@KevlinHenney

Test names should reflect outcome not aspiration:
doesn't make sense to see "X should give Y" as a

result; on passing, result is "X gives Y"
2:22 PM - 27 Jun 2013

16 RETWEETS 7 FAVORITES 3 %

Years_not_divisible_by_4_are_not_leap_years
Years_divisible_by_4 _but_not_by_100_are_leap_years
Years_divisible_by_100_but_not_by_400_are_not_leap_years

Years_divisible_by_400_are_leap_years

Years_not_divisible_by_4_are_not_leap_years
Years_divisible_by_4_but_not_by_100_are_leap_years
Years_divisible_by_100_but_not_by_400_are_not_leap_years

Years_divisible_by_400_are_leap_years

Years_not_divisible_by_4_are_not_leap_years
Years_divisible_by_4_but_not_by_100_are_leap_years
Years_divisible_by_100_but_not_by_400_are_not_leap_years

Years_divisible_by_400_are_leap_years

£ test case should
be Just that: it
should correspond
to a single case.

namespace Leap year spec

{
[TestFixture]

public class A year is a leap year

{
[Test] public void If it is divisible by 4 but not by 100(...) .
[Test] public void If 1t is d1v1s1b1e by ~400(...) .

}
[TestFixture]
public class A year is not a leap year
{
[Test] public void If it is not divisible by 4(...) .
[Test] public void If 1t is d1v1s1b1e _by 100 “but not by 400(...) .
}

Leap year spec

A year is a leap year
If it is divisible by 4 but not by 100
If 1t is d1v1s1b1e by 400

A year is not a leap year

If it is not divisible by 4
If it is divisible by 100 but not by 400

namespace Leap_year_ spec

{
[TestFixture]

public class A year is a leap year

{
[Test] public void If it is divisible by 4 but not by 100(...) .
[Test] public void If 1t is d1v1s1b1e by 400(...) .

}
[TestFixture]
public class A year is not a leap year
{
[Test] public void If it is not divisible by 4(...) .
[Test] public void If 1t is d1v1s1b1e _by_ 100 “but not by 400(...) .
}

namespace Leap year spec

{
[TestFixture]

public class A year_ is_a leap_year
{
[Test]
public void If it is divisible by 4 but not by 100 (
[Values (2012, 1984, 4)] int year)

{

Assert.IsTrue(IsLeapYear(year));
}
[Test]

public void If it is divisible by 400(
[Range (400, 2400, 400)] int year)

{
Assert.IsTrue(IsLeapYear(year));

}
}
[TestFixture]
public class A year is not a leap year
{

[Test] public void If it is not divisible by 4(...) .

[Test] public void If 1t is d1v1s1b1e _by 100 “but not by 400(...) .
}

namespace Leap year spec

{
[TestFixture]

public class A year is a leap year

{
[Test]

public void If it is divisible by 4 but not by 100(
[Values (2012, 1984, 4)] int year)

{

Assert.IsTrue(IsLeapYear(year));
}
[Test]

public void If it is divisible by 400(
[Range (400, 2400, 400)] int year)

{
Assert.IsTrue(IsLeapYear(year));

}
}
[TestFixture]
public class A year is not a leap year
{

[Test] public void If it _is not divisible by 4(...) .

[Test] public void If 1t is d1v1s1b1e _by_ 100 but not by 400(...) .
}

namespace Leap year speg

{
[TestFixture]

public class A

{
[Test]

public voic

namespace Leap year spec

{
[TestFixture]
public class A year is either _a leap year or not
{
[Test]
public void IsLeapYear is correct([Range(1l, 10000)] int year)
{

Assert.AreEqual (
year % 4 == 0 && year % 100 != 0 || year % 400 == 0,
IsLeapYear(year));

namespace Leap year spec

{
[TestFixture]
public class A year is either _a leap year or not
{
[Test]
public void IsLeapYear is correct([Range(1l, 10000)] int year)
{
Assert.AreEqual (LeapYearExpectation(year), IsLeapYear(year));
}
public static bool LeapYearExpectation(int year)
{
return year % 4 == 0 8% year % 100 != 0 || year % 400 == 0;
}

public static bool IsLeapYear(int year)

{
}

return year % 4 == 0 8% year % 100 != 0 || year % 400

All happy families are alike;
each unhappy family is
unhappy in its own way.

Leo Tolstoy
Anna Karenina

proposition isbn_spec[] =

{

"Test validation", []

{
CATCH(1sbn("97805968094857"), isbn::malformed);
CATCH(1sbn("978059680948"), isbn::malformed);
CATCH(1sbn("97805968=9485"), isbn::malformed);
CATCH(1sbn("9780596809486"), isbn::malformed);

}r

}i

struct proposition

{
std: :string name;
std: : function<void()> run;
}i
struct failure
{
const char * expression;
int line;
}i

template<typename Propositions>
void test(const Propositions & to_test)

{
for(auto & test : to_test)
{
try
{
std::cout << test.name << std::flush;
test.run();
std::cout << "\n";
}
catch(failure & caught)
{
std::cout << " failed:\n " << caught.expression << "\n at line " << caught.line << "\n";
}
}
}

#define ASSERT(condition) void((condition) ? 0 : throw failure({ "ASSERT(" #condition ")", _ LINE__ }))

#define CATCH(expression, exception) \
try \
{\
(expression); \
throw failure({ "CATCH(" #expression ", " #exception ")", _ LINE__ }); \
N
catch (exception &) \
{\
A
catch (...) \
{\
throw failure({ "CATCH(" #expression ", " #exception ")", _ LINE__ }); \
}

proposition isbn_spec[] =

{

"Test validation", []

{
CATCH(1sbn("97805968094857"), isbn::malformed);
CATCH(1sbn("978059680948"), isbn::malformed);
CATCH(1sbn("97805968=9485"), isbn::malformed);
CATCH(1sbn("9780596809486"), isbn::malformed);

}r

}i

proposition isbn_spec[] =

{

"Test validation", []

{
CATCH(isbn("97805968094857"), isbn::malformed);
CATCH(isbn("978059680948"), isbn::malformed);
CATCH(1sbn("97805968=9485"), isbn::malformed);
CATCH(1sbn("9780596809486"), isbn::malformed);

}r

}i

proposition isbn_spec[] =

{

"Test validation works'", []

{
CATCH(isbn("97805968094857"), isbn::malformed);
CATCH(isbn("978059680948"), isbn::malformed);
CATCH(1sbn("97805968=9485"), isbn::malformed);
CATCH(1sbn("9780596809486"), isbn::malformed);

}r

}i

proposition isbn_spec[] =

{

"Test validation works", []

{
CATCH(1sbn("97805968094857"), isbn::malformed);
CATCH(1sbn("978059680948"), isbn::malformed);
CATCH(1sbn("97805968=9485"), isbn::malformed);
CATCH(1sbn("9780596809486"), isbn::malformed);

}r

}i

proposition isbn_spec[] =

{

}i

"ISBNs with more than 13 digits are malformed", []

{
CATCH(1sbn("97805968094857"), isbn::malformed);

}r
"ISBNs with fewer than 13 digits are malformed", []

{
CATCH(1sbn("978059680948"), isbn::malformed);

}

"ISBNs with non-digits are malformed", []

{
CATCH(isbn("97805968=9485"), isbn::malformed);

}r
"ISBNs with an incorrect check digit are malformed",
{

CATCH(1isbn("9780596809486"), isbn::malformed);
}

L]

ISBNs

ISBNs

ISBNs

ISBNs

with more than 13 digits are malformed

with fewer than 13 digits are malformed

with non-digits are malformed

with an incorrect check digit are malformed

Validation is not
a behaviour; the
consequence of
validation is.

test —— method
test —— method
test —— method

public class RecentlyUsedList
{

public RecentlyUsedList() ...
public int Count

{

}
public string this[int index]

{

}
public void Add(string newlItem) ...

get...

get...

void TestAde

istTests

test

T~

test —— method

=<

test —— method

test ¥ method
v

test

namespace RecentlyUsedList spec

{

[TestFixture]
public class A new Tist

{

}

[TestFixture]
public class An_empty list

{

[Test] public void Is empty() ...

[Test] public void Retains_a single addition() .
[Test] public void Retains _unique _ add1t1ons in_ stack _order() .

}

[TestFixture]
public class A non empty list

{

[Test] public void Is unchanged when head item is readded() ...

[Test] public void Moves non head item to head when it is readded() ...

}

[TestFixture]
public class Any list rejects

{
[Test] public void Addition of null items() ...

[Test] public void Indexing past_its end() ...
[Test] public void Negative indexing() ...

RecentlyUsedList_spec

A new Tist

Is empty

An_empty list

Retains_a single addition
Retains unique_additions_in_stack order

A non empty list

Is unchanged when head item is readded
Moves non head item to head when it is readded

Any Tist rejects

Addition_of null items
Indexing past_its_end
Negative indexing

ElkED
i i o
QEiimd

Pk d

Collective Wisdom
from the Experts

Programmer

O’REILLY" Edited by Kevlin Henney

So who should you be writing the tests
for? For the person trying to
understand your code.

Good tests act as documentation for
the code they are testing. They
describe how the code works. For each
usage scenario, the test(s):

= Describe the context, starting point,
or preconditions that must be
satisfied

= |[lustrate how the software is
invoked

= Describe the expected results or
postconditions to be verified

Different usage scenarios will have
slightly different versions of each of
these.

Gerard Meszaros
"Write Tests for People”

[TestFixture]
public class An_empty list
{
[Test]
public void Retains _a single addition(
[Values("Oxford", "Bristol", "London")] string addend)

{
var items = new RecentlyUsedList(); // Given...
items.Add (addend) ; // When...
Assert.AreEqual (1, items.Count); // Then...
Assert.AreEqual (addend, 1ist[0]);

}

One of the things that Osherove warns
against is multiple asserts in unit tests.

Owen Pellegrin
http.//www.owenpellegrin.com/blog/testing/how-do-you-solve-multiple-asserts/

Proper unit tests should fail for exactly
one reason, that’s why you should be
using one assert per unit test.

http://rauchy.net/oapt/

string[] itinerary = ...;

string[] expected =

{
};

Assert.AreEqual (expected, itinerary);

"London", "Bristol", "Oslo"

Assert.DoesNotThrow(() =>

{
string[] itinerary = ...;
string[] expected = ...;

Assert.IsNotNull (itinerary) ;
Assert.AreEqual (3, itinerary.Length) ;
Assert.AreEqual ("London", itinerary[0]);
Assert.AreEqual ("Bristol", itinerary[1l]);
Assert.AreEqual ("Oslo", itinerary([2]);

}) s

Kevlin Henney ¥ Follow
@KevlinHenney

If you're using a mocking framework, any test with
more than one expectation is a test with more than
one assertion.

5:07 PM - 26 Feb 2014

19 RETWEETS 5 FAVORITES - 11 %

new Expectations()

11

I3,

@Test (expected=...)
public void ... ()
{

}

def ... ()

expect:

My guideline is usually that you test
one logical concept per test. You can
have multiple asserts on the same
object. They will usually be the same
concept being tested.

Roy Osherove
http://www.owenpellegrin.com/blog/testing/how-do-you-solve-multiple-asserts/

o=
L

RLRLERANR \
\\\\\\\\\ \\\\‘\'

One of the most foundational
principles of good design is:

Gather together those things |
that change for the same AN
reason, and separate those
things that change for
different reasons.

This principle is often known
as the single responsibility
principle, or SRP. In short, it
says that a subsystem, module,
class, or even a function,pr ¥ test
should not have more than one
reason to change.

Kevlin Henney &

(@) REILLY FE SA up

+SAU—+ Tt)\ —
EH X R

tests
tests —— class

tests ¥ class
/

tests

A test is not a unit test if:

= |t talks to the database

" |t communicates across the network

= |t touches the file system

" |t can't run at the same time as any of your other unit tests

= You have to do special things to your environment (such as
editing config files) to run it.

Tests that do these things aren't bad. Often they are worth
writing, and they can be written in a unit test harness.
However, it is important to be able to separate them from true
unit tests so that we can keep a set of tests that we can run fast
whenever we make our changes.

Michael Feathers

"A Set of Unit Testing Rules"
http://www.artima.com/weblogs/viewpost.jsp?thread=126923

A unit test is a test of
behaviour whose success
or failure is wholly
determined by the
correctness of the test
and the correctness of
the unit under test.

Kevlin Henney

http://www. theregister. co.uk/2007/07/28/what_are_your_units/

Necessarily not unit
testable, such as
interactions with
external dependencies

Unit testable in theory,
but not unit testable in
practice

Unit testable in practice

Mutable

Unshared mutable Shared mutable

data needs no data needs

synchronisation synchronisation
Unshared Shared

Unshared immutable Shared immutable

data needs no data needs no

synchronisation synchronisation

Immutable

Mutable

Unshared mutable
data needs no
synchronisation

Unshared Shared
Unshared immutable Shared immutable
data needs no data needs no
synchronisation synchronisation

Immutable

The real value of tests is
not that they detect bugs
in the code but that they
detect inadequacies in the
methods, concentration, and
skills of those who design
and produce the code.

C A R Hoare

