Value Semantics
It ain’t about the syntax!

John Lakos
Thursday, April 23, 2015

Copyright Notice

© 2014 Bloomberg L.P. Permission is granted to copy, distribute, and display
this material, and to make derivative works and commercial use of it. The
information in this material is provided "AS IS", without warranty of any
kind. Neither Bloomberg nor any employee guarantees the correctness or
completeness of such information. Bloomberg, its employees, and its
affiliated entities and persons shall not be liable, directly or indirectly, in any
way, for any inaccuracies, errors or omissions in such information. Nothing
herein should be interpreted as stating the opinions, policies,
recommendations, or positions of Bloomberg.

Abstract

When people talk about a type as having *value* *semantics*, they are often thinking about its ability
to be passed to (or returned from) a function by value. In order to do that, the C++ language requires
that the type implement a copy constructor, and so people routinely implement copy constructors on
their classes, which begs the question, "Should an object of that type be copyable at all?" If so, what
should be true about the copy? Should it have the same state as the original object? Same
behavior? What does copying an object mean?!

By *value* *type*, most people assume that the type is specifically intended to represent a member of
some set (of values). A value-semantic type, however, is one that strives to approximate an abstract
mathematical type (e.g., integer, character set, complex-number sequence), which comprises
operations as well as values. When we copy an object of a value-semantic type, the new object
might not have the same state, or even the same behavior as the original object; for proper value
semantic types, however, the new object will have the same value.

In this talk, we begin by gaining an intuitive feel for what we mean by *value* by identifying *salient*
attributes, i.e., those that contribute to value, and by contrasting types whose objects naturally
represent values with those that don't. After quickly reviewing the syntactic properties common to
typical value types, we dive into the much deeper issues that value semantics entail. In particular, we
explore the subtle Essential Property of Value, which applies to every *salient* mutating operation on
a value-semantic object, and then profitably apply this property to realize a correct design for each of
a variety of increasingly interesting (value-semantic) classes.

Outline

Introduction and Background

Components, Physical Design, and Class Categories

Understanding Value Semantics (and Syntax)
Most importantly, the Essential Property of Value

Two Important, Instructional Case Studies

Specifically, Regular Expressions and Priority Queues

Conclusion

What must be remembered when designing value types

Outline

Introduction and Background

Components, Physical Design, and Class Categories

Understanding Value Semantics (and Syntax)
Most importantly, the Essential Property of Value

Two Important, Instructional Case Studies

Specifically, Regular Expressions and Priority Queues

Conclusion

What must be remembered when designing value types

1. Introduction and Background

What’s the Problem?

1. Introduction and Background

What’s the Problem?

Large-Scale C++ Software Design:
* |nvolves many subtle logical and physical aspects.

1. Introduction and Background

Logical versus Physical Design

What distinguishes Logical from Physical Design?

physical

1. Introduction and Background

Logical versus Physical Design

What distinguishes Logical from Physical Design?

physical

Logical: Classes and Functions

1. Introduction and Background

Logical versus Physical Design

What distinguishes Logical from Physical Design?

physical

Logical: Classes and Functions
Physical: Files and Libraries

10

1. Introduction and Background

Component: Uniform Physical Structure

A Component Is Physical

// component.t.cpp
#include <component.h>

/] ...

int main(...)
{
/] ...

}
//-- END OF FILE --

component. t.cpp

// component.h

/] ...

//-- END OF FILE -

component

// component.cpp
#include <component.h

/]

//-- END OF FILE -

11

1. Introduction and Background

Component: Uniform Physical Structure

Implementation

// component.t.cpp
#include <component.h>

/] ...

int main(...)

{
/... // component.h component . cpp
/...

}
//-- END OF FILE --

component. t.cpp

//-- END OF FILE - //-- END OF FILE -

component .

1. Introduction and Background

Component: Uniform Physical Structure

// component.t.cpp
#include <component.h>

/] ...

int main(...)
{
/] ...

}
//-- END OF FILE --

component. t.cpp

Header

//-- END OF FILE -

component

// component.cpp
#include <component.h

/]

//-- END OF FILE -

13

1. Introduction and Background

Component: Uniform Physical Structure

// component.t.cpp
#include <component.h>

/] ...
int main(...)
{

/] ...

}
//-- END OF FILE --

component. t.cpp

Test Driver

// component.h

/] ...

//-- END OF FILE -

component

// component.cpp
#include <component.h

/]

//-- END OF FILE -

14

1. Introduction and Background

Component: Uniform Physical Structure

The Fundamental Unit of Design

// component.t.cpp
#include <component.h>

/] ...

int main(...)
{
/] ...

}
//-- END OF FILE --

component. t.cpp

// component.h

/] ...

//-- END OF FILE -

component

// component.cpp
#include <component.h

/]

//-- END OF FILE -

15

1. Introduction and Background

What’s the Problem?

Large-Scale C++ Software Design:

* Requires an ability to isolate and modularize
logical functionality within discrete, fine-grained
physical components.

16

1. Introduction and Background

Logical versus Physical Design

Logical content aggregated into a
Physical hierarchy of components

17

1. Introduction and Background

What’s the Problem?

Large-Scale C++ Software Design:

 Compels the designer to delineate logical behavior
precisely, while managing the physical
dependencies on other subordinate components.

18

1. Introduction and Background

Implied Dependency

(PointList\ { Polygon)
T O

01ntLlst L1n

\\

(Po:l.nt} --------- - Shape)

—> Depends-On

O—— Uses-in-the-Interface O------- Uses in name only
@ ———— Uses-in-the-Implementation — [SA o

1. Introduction and Background

Implied Dependency

(PointList\ ' { Polygon)
O

€ointList_Lir9

Q

O—— Uses-in-the-Interface
@ —— Uses-in-the-Implementation

—> Depends-On

O------- Uses in name only
— Is-A 20

1. Introduction and Background

What’s the Problem?

Large-Scale C++ Software Design:

* Demands a consistent, shared understanding of the
properties of common class categories: Value Types.

21

1. Introduction and Background

The Big Picture

ject- es
1S el Y P/ Takes allocator?

instantiable?
|

no

Type only

meta-
function

2

Has “value™?

bsls::AlignmentUtil

bslmf: : IsFundamental baetzo: :Loader

Value-

Semantic Type

I
2

v

Mechanism

reference
semantic
type

l—>

guard/
proctor

o)

stateless

—2 functor

v

Externalizable?

externalizable,
no allocator

v

]

bdem: : ElemRef container:

associative?

general
VST

X ordered?
X unique?

x|

| bslma: :DestructorProctor

4
:
[|

4

& X indexed?
baetzo: :LocalTimeValidity

bslma: :DeallocatorGuard bdet: :Date

£}
bteso: :InetStreamSocketFactory

64

unconstrained

baet: :LocalDatetime

simply complex T
constrained constrained P
BE| B

baetzo: :LocalTimePeriod

[
bslma: :NewDeleteAllocator

[Ev|

Lbaetzo::LocalTimeDescriptor
yes

[IE3

Referable

=
bsl::less

bteso: :LingerOptions

elements?

64

[alx]

bassvc: :ControlMessageResponse

64
externalization
available from

standard
container
bslx

= 22

packed
container

bdea: :BitArray

1. Introduction and Background

The Big Picture

no [ject- es
'nsst:nbtjiz‘tﬁe? z P/ Takes allocator?
I

Type only

YOU ARE HER :

* externalizable,

2

Has “value™?

Value-
Semantic Type

Externalizable? no allocator
]
Mechanism @@ . 4
reference . . general A
type associative?

X ordered?
X unique?
X indexed? 4

bslma: :DeallocatorGuar:—‘ bdet: :Date baetzo: :LocalTimeValidity

guard/
proctor

| bslma: :DestructorProctor

A bteso: : InetStreamSocketFactory (eSS EiEG) Slmp!y compl_ex pure
64 constrained constrained
baet: :LocalDatetimeT baetzo: :LocalTimePeriod
— bslma: :NewDeleteAllocato:—‘

\;baetzo : :LocalTimeDescriptor
yes

Referable

elements? bteso: :LingerOptions
bsl::less
64 64
bassvc:: ControlMessageResponseT
packed standard
container container

bdea: :BitArray

stateless

—2 functor

externalization
available from
bslx

23

Outline

Introduction and Background

Components, Physical Design, and Class Categories

Understanding Value Semantics (and Syntax)
Most importantly, the Essential Property of Value

Two Important, Instructional Case Studies

Specifically, Regular Expressions and Priority Queues

Conclusion

What must be remembered when designing value types

24

Outline

2. Understanding Value Semantics (and Syntax)
Most importantly, the Essential Property of Value

25

2. Understanding Value Semantics

Purpose of this Talk

Answer some key questions about value:

> W
> W
> W
> W
> W

nat do we mean by value?

ny is the notion of value important?

nich types should be considered value types?
nat do we expect syntactically of a value type?

nat semantics should its operations have?

» How do we design proper value-semantic types?

» When should value-related syntax be omitted?

26

2. Understanding Value Semantics

Value versus Non-Value Types

Getting Started:

27

2. Understanding Value Semantics

Value versus Non-Value Types

Getting Started:
* Not all useful C++ classes are value types.

28

2. Understanding Value Semantics

Value versus Non-Value Types

Getting Started:
* Not all useful C++ classes are value types.
e Still, value types form an important category.

29

2. Understanding Value Semantics

Value versus Non-Value Types

Getting Started:
* Not all useful C++ classes are value types.

e Still, value types form an important category.

* Let’s begin with understanding some basic
properties of value types.

30

2. Understanding Value Semantics

Value versus Non-Value Types

Getting Started:
* Not all useful C++ classes are value types.
e Still, value types form an important category.

e Let’s begin with understanding some basic
properties of value types.

e Then we’ll contrast them with non-value
types, to create a type-category hierarchy.

31

2. Understanding Value Semantics

Value versus Non-Value Types

Getting Started:
* Not all useful C++ classes are value types.
e Still, value types form an important category.

e Let’s begin with understanding some basic
properties of value types.

e Then we’ll contrast them with non-value
types, to create a type-category hierarchy.

e After that, we’ll dig further into the details of
value syntax and semantics.

32

2. Understanding Value Semantics

True Story

Date: Friday Morning, October 5t", 2007
Place: LWG, Kona, Hawaii

Defect: issue #684: Wording of Working Paper

33

2. Understanding Value Semantics

True Story

Date: Friday Morning, October 5t", 2007
Place: LWG, Kona, Hawaii

Defect: issue #684: Wording of Working Paper

What was meant by stating that two

std::match result

objects (§28.10) were “the same” ?

34

2. Understanding Value Semantics

“The Same”

What do we mean by “the same”?

35

2. Understanding Value Semantics

“The Same”

What do we mean by “the same”?

* The two objects are identical?

— same address, same process, same time?

36

2. Understanding Value Semantics

“The Same”

What do we mean by “the same”?

* The two objects are identical?

— same address, same process, same time?

* The two objects are distinct, yet have certain
properties in common.

37

2. Understanding Value Semantics

“The Same”

What do we mean by “the same”?

* The two objects are distinct, yet have certain
properties in common.

(It turned out to be the latter.)

38

2. Understanding Value Semantics

“The Same”

What do we mean by “the same”?

* The two objects are distinct, yet have certain
properties in common.

So the meaning was clear...

39

2. Understanding Value Semantics

“The Same”

What do we mean by “the same”?

* The two objects are distinct, yet have certain
properties in common.

So the meaning was clear... Or was it?

40

2. Understanding Value Semantics

What exactly has to be “the Same”?

The discussion continued...
...some voiced suggestions:

41

2. Understanding Value Semantics

What exactly has to be “the Same”?

The discussion continued...
...some voiced suggestions:

 Whatever the copy constructor preserves.

42

2. Understanding Value Semantics

What exactly has to be “the Same”?

The discussion continued...
...some voiced suggestions:

 Whatever the copy constructor preserves.
* Aslong as the two are “equal”.

43

2.

Understanding Value Semantics

What exactly has to be “the Same”?

The discussion continued...

e Whatever t
* Aslongast
e Aslongast

...some voiced suggestions:

ne Copy constructor preserves.

|Il

ne two are “equa

ney’re “equivalent”.

44

2. Understanding Value Semantics

What exactly has to be “the Same”?

The discussion continued...
...some voiced suggestions:
 Whatever the copy constructor preserves.

|II

* Aslong as the two are “equa

* Aslong as they’re “equivalent”.
* “You know what | mean!!”

45

2. Understanding Value Semantics

What exactly has to be “the Same”?

The discussion continued...
...some voiced suggestions:
 Whatever the copy constructor preserves.

|Il

* Aslong as the two are “equa

* Aslong as they’re “equivalent”.
IH

* “You know what | mean!
Since “purely wording” left solely to the editor!

46

2. Understanding Value Semantics

Not just an “Editorial Issue”?

47

2. Understanding Value Semantics

Not just an “Editorial Issue”?

” What it means for two objects to be

“the same” is an important, pervasive,
and recurring concept in practical

_ software design. Y

48

2. Understanding Value Semantics

Not just an “Editorial Issue”?

 What it means for two objects to be

“the same” is an important, pervasive,
and recurring concept in practical

. software design. Y

Based on the notion of “value”.

49

What do we

mean by value?

2. Understanding Value Semantics

What does a Copy Constructor do?

51

2. Understanding Value Semantics

What does a Copy Constructor do?

After copy construction, the
resulting object is...

52

2. Understanding Value Semantics

What does a Copy Constructor do?

After copy construction, the
resulting object is...

substitutable for the original one
with respect to “some criteria”.

2. Understanding Value Semantics

What does a Copy Constructor do?

After copy construction, the
resulting object is...

substitutable for the original one
with respect to “some criteria”.

What Criteria?

2. Understanding Value Semantics

Same Object?

55

2. Understanding Value Semantics

Same Object?

std: :vector<double> a,

assert (&a == &b);

b(a);

/] 2?7

56

2. Understanding Value Semantics

Same Object?

std: :vector<double> a, b(a);

assert(&a == &b); /) 2?7

assert (0 == b.size());
a.push back(5.0);

assert (1 == b.size()); /] 2?7

57

2. Understanding Value Semantics

Same Object?

std: :vector<double> a, b(a);

M

assert (0 == b.size());
a.push back(5.0);

assert (1 == b.size()); /] 2?7

58

2. Understanding Value Semantics

Same Object?

std: :vector<double> a, b(a);

M

) ;
W 4

N

assert (0 == b.size
a.push bagk(5.0);

Java

.s1ze ()

Il

; // 2?7

assert (

59

2. Understanding Value Semantics

Same Object?

std: :vector<double> a, b(a);

M

assert (0 == b.size());
a.push back(5.0);

60

2. Understanding Value Semantics

Same Object?

std: :ve@hor<double> a D (a) ;
assert (&a = , /] 27

assert (0
a.push ba

61

2. Understanding Value Semantics

Same State?

62

2. Understanding Value Semantics

Same State?

class String {
char *d array p; // dynamic

int d capacity;

int d length;
public:

String () ;

String(const String& original) ;
/..

}

63

2. Understanding Value Semantics

Same State?

class St¥%

char *d@@array p;
int d

k.. e

int d lend

g {
dynamic

What happens if this

public: address Is copied?

String (
Stri

/..

onst String&@®riginal) ;

by

64

2. Understanding Value Semantics

Same Behavior?

65

2. Understanding Value Semantics

Same Behavior?

If we apply the same sequence of operations to both
objects, the observable behavior will be the same:

66

2. Understanding Value Semantics

Same Behavior?

If we apply the same sequence of operations to both
objects, the observable behavior will be the same:

volid f (bool Xx)
{
std: :vector<int> a;

a.reserve (65530) ; // 1s capacity copied?
std: :vector<int> b (a); assert(a == b)

67

{

2. Understanding Value Semantics

Same Behavior?

If we apply the same sequence of operations to both
objects, the observable behavior will be the same:

volid f (bool Xx)

std: :vector<int> a;
a.reserve (65530) ;
std::vector<int> b (a);

a.reserve (65530) ;
b.reserve (65530) ;

//

//
//

1s capaclty copied?
assert(a == b)

no reallocation!
memory allocation?

68

2. Understanding Value Semantics

Same Behavior?

ations to both
be the same:

e same sequence of gg
orvable behavio

If we apply
objects, the ®

volid f (bool x)

{
std: :vector<int> a,;

a.reserve (65530) ;
std: :vector<int> b

// 1s capacity copied?
assert(a == b)

80 reallocation!
gory allocation?

a.reserve (6553¢g
b.reserve (65

; /] N
); b.push back(5);

a.push bgz so not empty

std: : or<int>& r = x ? a : b;
if 0] == &a[0]) { std::cout << "He
= { std::cout << "Goodk

;o)
"; }

69

2. Understanding Value Semantics

Same What?

70

2. Understanding Value Semantics

Same What?

What should be “the same”
after copy construction?

71

2. Understanding Value Semantics

Same What?

What should be “the same”
after copy construction?

(It better be easy to understand.)

72

2. Understanding Value Semantics

Same What?

What should be “the same”
after copy construction?

(It better be easy to understand.)

The two objects should
represent the same value!

73

2. Understanding Value Semantics

What do we mean by “value”?

74

2. Understanding Value Semantics

What do we mean by “value”?

»

75

2. Understanding Value Semantics

Mathematical Types

76

2. Understanding Value Semantics

Mathematical Types

A mathematical type consists of
* A set of globally unique values

— Each one describable independently of any
particular representation.

77

2. Understanding Value Semantics

Mathematical Types

A mathematical type consists of
* A set of globally unique values

— Each one describable independently of any
particular representation.

— For example, the decimal integer 5:
5 5 S,101 (binarvy), five,

78

2. Understanding Value Semantics

Mathematical Types

A mathematical type consists of
* A set of globally unique values

— Each one describable independently of any
particular representation.

— For example, the decimal integer 5:
5 5 S,101 (binarvy), five,
* A set of operations on those values
— For example: +, -, x (3 + 2)

79

2. Understanding Value Semantics

Mathematical Types

A mathematical type consists of

* A set of globally unique values

— Each one describable independently of any
particular representation.

— For example, the decimal integer 5:
5,5 %,101 (binary), five, it

* Aset of operations on those values‘ Operations
will
— For example: +, -, x (3 +2) become

important

shortly!

2. Understanding Value Semantics

C++ Type

81

2. Understanding Value Semantics

C++ Type

* A C++ type may represent (an approximation
to) an abstract mathematical type:

82

2. Understanding Value Semantics

C++ Type

A C++ type may represent (an approximation
to) an abstract mathematical type:

— For example: The C++ type int represents (an
approximation to) the mathematical type integer.

83

2. Understanding Value Semantics

C++ Type

A C++ type may represent (an approximation
to) an abstract mathematical type:

— For example: The C++ type int represents (an
approximation to) the mathematical type integer.

* An object of such a C++ type represents one of
(a subset of) the globally unique values in the
set of that abstract mathematical type.

84

2. Understanding Value Semantics

C++ Type

A C++type may represent (an approximation
to) an abstract mathematical type:

— For example: The C++ type int represents (an
approximation to) the mathematical type integer.

* An object of such a C++ type represents one of
(a subset of) the globally unique values in the
set of that abstract mathematical type.

 The C++ object is just another representation
of that globally unigue, abstract value, e.g., 5.

85

2. Understanding Value Semantics

So, what do we mean by “value”?

class Date {
short d year;
char d month;
char d day;

public:

/]

int year() ;
int month () ;
int day() ;

by

2. Understanding Value Semantics

So, what do we mean by “value”?

class Date {
short d year;
char d month;
char d day;

public:

/]

int year() ;
int month () ;
int day() ;

by

88

2. Understanding Value Semantics

So, what do we mean by “value”?

class Date {
short d year;
char d month;
char d day;

public:

/]

int year() ;
int month () ;
int day() ;

by

@

89

2. Understanding Value Semantics

So, what do we mean by “value”?

class Date {
short d year;
char d month;
char d day;

public:

/]
int year () const;
int month () const;
int day() const;

by

2. Understanding Value Semantics

So, what do we mean by “value”?

class Date {
short d year;
char d month;
char d day;

public:

/]

int year() ;
int month () ;
int day() ;

by

class Date {
int d serial;

public:

// ..

int year() ;
int month () ;
int day () ;

I g

91

2. Understanding Value Semantics

So, what do we mean by “value”?

class Date {

hort d yeg+”
cha month;
ar d_ :

public:

int year() ;
int month () ;
int day() ;

class Date {

int erial;

int year() ;
int month () ;
int day () ;

I g

92

2. Understanding Value Semantics

So, what do we mean by “value”?

Salient Attributes

int vyear();
int month () ;

int davy();

93

2. Understanding Value Semantics

So, what do we mean by “value”?

Salient Attributes

The documented set of (observable)
named attributes of a type T that

must respectively “have” (refer to)

the same value in order for two
instances of T to “have” (refer to) the

same value.

94

2. Understanding Value Semantics

So, what do we mean by “value”?

class Time {
char d hour;
char d minute;
char d second;
short d millisec;
public:
// ..
int hour() ;
int minute() ;
int second() ;
int millisecond() ;

};

class Time {
int d mSeconds;

public:
// ..
int hour () ;
int minute() ;
int second() ;
int millisecond() ;

¥

95

2. Understanding Value Semantics

So, what do we mean by “value”?

class Time {
Internal Representation

class Time {
Internal Representation

int hour() ;
int minute () ;
int second() ;
int millisecond() ;

int hour () ;
int minute () ;
int second() ;
int millisecond() ;

96

2. Understanding Value Semantics

So, what do we mean by “value”?

QUESTION:
What would be the simplest

overarching mathematical type
for which std: : string and

(const char *)are both
approximations?

2. Understanding Value Semantics

So, what do we mean by “value”?

QUESTION:
So if they both represent the

character sequence “Fred” do
they represent the same value?

This is important!

2. Understanding Value Semantics

So, what do we mean by “value”?

QUESTION:
What about integers and

integers mod 57?

2. Understanding Value Semantics

So, what do we mean by “value”?

An “interpretation” of a subset of instance state.

100

2. Understanding Value Semantics

So, what do we mean by “value”?

An “interpretation” of a subset of instance state.

e The values of the Salient Attributes, and not
the instance state used to represent them,
comprise what we call the value of an object.

101

2. Understanding Value Semantics

So, what do we mean by “value”?

An “interpretation” of a subset of instance state.

* The values of the , and not
the instance state used to represent them,
comprise what we call the value of an object.

* This definition may be recursive in that a
documented Salient Attribute of a type T may
itself be of type U having its own Salient

Attributes.

102

2. Understanding Value Semantics

So, what do we mean by “value”?

class Point {
short int d x;
short 1nt d y;
public:
[/ ..
int x();
int y ()’
by

103

2. Understanding Value Semantics

So, what do we mean by “value”?

class Point {

Internal Representation

104

2. Understanding Value Semantics

So, what do we mean by “value”?

class Point {

Internal Representation

class Box {
Point d topLeft;

Point d botRight;

public:
[/ ..

Point origin() ;
int length() ;
int width() ;

105

2. Understanding Value Semantics

So, what do we mean by “value”?

class Point {

Internal Representation

class Box {

Internal Representation

public:

Point origin() ;
int length() ;
int width() ;

106

2. Understanding Value Semantics

So, what do we mean by “value”?

class Point {

Internal Representation

class Box {

Internal Representation

public:

origin() ;
int length();
int width{() ;

107

2. Understanding Value Semantics

What are “Salient Attributes”?

108

2. Understanding Value Semantics

What are “Salient Attributes”?

class wvector {
T *d array p;
size type d capacity;

size type d size;
/] ...

public:
vector () ;

vector (const vector<T>& oriqg);
/...

};

109

2. Understanding Value Semantics

What are “Salient Attributes”?

Consider std: :vector<int>:

What are its salient attributes?

110

2. Understanding Value Semantics

What are “Salient Attributes”?

Consider std: :vector<int>:

What are its salient attributes?

1. The number of elements: size ().

111

2. Understanding Value Semantics

What are “Salient Attributes”?

Consider std: :vector<int>:

What are its salient attributes?

1. The number of elements: size ().

2. The values of the respective elements.

112

2. Understanding Value Semantics

What are “Salient Attributes”?

Consider std: :vector<int>:

What are its salient attributes?

1. The number of elements: size ().

2. The values of the respective elements.
3. What about capacity()?

113

2. Understanding Value Semantics

What are “Salient Attributes”?

Consider std: :vector<int>:

What are its salient attributes?

1. The number of elements: size ().

2. The values of the respective elements.
3. What aboutecapaeity ()?

How is the client supposed to know for sure?

114

2. Understanding Value Semantics

What are “Salient Attributes”?

Salient Attributes:

115

2. Understanding Value Semantics

What are “Salient Attributes”?

Salient Attributes:
1. Are a part of logical design.

116

2. Understanding Value Semantics

What are “Salient Attributes”?

Salient Attributes:
1. Are a part of logical design.
2. Should be “natural” & “intuitive”.

117

2. Understanding Value Semantics

What are “Salient Attributes”?

Salient Attributes:
1. Are a part of logical design.
2. Should be “natural” & “intuitive”

3. Must be documented explicitly!

sSOONY 17

Why is value

important?

2. Understanding Value Semantics

Why are unique values important?

120

2. Understanding Value Semantics

Why are unique values important?

O
%@®% IPC “Yipy,
4 ™

Inter-Process

Communication
N Y

2. Understanding Value Semantics

Why are unigue values important?

Abstract date Type C++ Date Class

122

2. Understanding Value Semantics

Why are unigue values important?

Abstract date Type C++ Date Class

Has an infinite set of
valid date values.

123

2. Understanding Value Semantics

Why are unique values important?

Abstract date Type

Has an infinite set of

valid date values.

1000000 B.C. 1069-07-16
1959-03-08
1941-12-07
99999-12-31 1917-12-10
2008-04-03
TIRRAUE, 1919-02-05
1999-12-31
2001-09-11

1000000 A.D.

1776-07-04

Globally Unique Values

C++ Date Class

124

2. Understanding Value Semantics

Why are unique values important?

Abstract date Type C++ Date Class

Has an infinite set of Each instance refers to
valid date values. one of (a subset of)

these abstract values.

1000000 B.C. ORTE

1959-03-08
1941-12-07
99999-12-31 1917-12-10
2008-04-03

1999-12-31

2001-09-11
1000000 A.D.
1776-07-04

Globally Unique Values

125

2. Understanding Value Semantics

Why are unique values important?

Abstract date Type C++ Date Class

Has an infinite set of Each instance refers to
valid date values. one of (a subset of)

these abstract values.

1000000 B.C. ORTE

1959-03-08

1941-12-07 -
99999-12-31 1917-12-10
2008-04-03 -
O
1999-12-31
2001-09-11 O
1000000 A.D.
1776-07-04 - O C ++

Globally Unique Values

126

2. Understanding Value Semantics

Why are unique values important?

Abstract date Type C++ Date Class
Has an infinite set of Each instance refers to
valid date values. one of (a subset of)

.. these abstract values.
S o R

2001-09-11
1000000 A.D. \
1776-07-04 - C ++

Globally Unique Values

2. Understanding Value Semantics

Why are unigue values important?

1000000 B.C. 1969_07_16\
1959-03-08 \
1941-12-07

99999-12-31 1917-12-10 \
2008-04-03 O
1994-08-14 NG / =

1999-12-31

2001-09-11 =
1000000 A.D. \
1776-07-04 - C ++

Globally Unique Values

2. Understanding Value Semantics

Why are unique values important?

1000000 B.C. 1969_07_16\
1959-03-08 \
1941-12-07

-12- 1917-12-10
99999-12-31)

2008-04-03
1994-08-14 1919-02-05 /

1999-12-31

2001-09-11 \o
1000000 A.D.
1776-07-04 ‘ + +

Globally Unique Values

2. Understanding Value Semantics

Why are unique values important?

1000000 B.C. 1969_07_16\
1959-03-08 \
1941-12-07

99999-12-31 1917-12-10
2008-04-03 (-
o 1919-02-05 /

1999-12-31

2001-09-11 / \o
1000000 A.D.
1776-07-0@ CH++

Globally Unique Values

2. Understanding Value Semantics

Why are unique values important?

1000000 B.C.

1969-07-16
1959-03-08
1941-12-07
99999-12-31 1917-12-10—3\
2008-04-03
1994-08-14 1919-02-05{ m
1999-12-31

2001-09-11

//230
1000000 A.D. P
1776-07-047\3 C++

Globally Unique Values

2. Understanding Value Semantics

Why are unique values important?

1000000 B.C. A

1959-03-08
1941-12-07

99999-12-31 1917-12-10—3\
2008-04-03
1994-08-14 1919-02-05{ m

1999-12-31

2001-09-11

//ZQO
1000000 A.D. P
1776-07-047\3 C++

Globally Unique Values

2. Understanding Value Semantics

Why are unique values important?

Java -

Tee

1000000 B. C 1969 07-16
1959-03-08 AT
99999-12-31 1917-12-1

2008-04-03
1994-08-14 1919-02-@7{%
1999-12-31 / /
2001-09-11 \o
1000000 A.D.
1776-07- (+ +

Globally Unique Values

133

2. Understanding Value Semantics

Why are unigue values important?

(Not just an academic exercise.)

134

2. Understanding Value Semantics

Why are unigue values important?

When we communicate a value
outside of a running process,
we know that everyone is
referring to “the same” value.

135

Which types
are naturally

value types?

2. Understanding Value Semantics

Does state always imply a “value”?

137

2. Understanding Value Semantics

Does state always imply a “value”?

Flashli .
fQ(10 Object

138

2. Understanding Value Semantics

Does state always imply a “value”?

139

2. Understanding Value Semantics

Does state always imply a “value”?

What is its state?

140

2. Understanding Value Semantics

Does state always imply a “value”?

What is its state? OFF

141

2. Understanding Value Semantics

Does state always imply a “value”?

Flashli .
tﬁ(10 Object

What is its state?

142

2. Understanding Value Semantics

Does state always imply a “value”?

Flashli .
tﬁ(10 Object

What is its state? ON

143

2. Understanding Value Semantics

Does state always imply a “value”?

Flashlight 1
tﬁ(10 Object

What is its state? ON
What is its value?

144

2. Understanding Value Semantics

Does state always imply a “value”?

Flash; .
f\‘(19h Object

What is its state? ON
What is its value? <

145

2. Understanding Value Semantics

Does state always imply a “value”?

Flash; .
f\‘(19h Object

What is its state? ON
What is its value? AL

146

2. Understanding Value Semantics

Does state always imply a “value”?

What is its state? ON
What is its value? false ?

147

2. Understanding Value Semantics

Does state always imply a “value”?

Flashli .
fQ(10 Object

What is its state? ON
What is its value? £.5. Q0O °?

148

2. Understanding Value Semantics

Does state always imply a “value”?

Flashlight Object

What is its state? ON
What is its value? $5 OO s

Cheap at half

the prlce|

149

2. Understanding Value Semantics

Does state always imply a “value”?

What is its state? ON
What is its value? <

Any notion of “value”
here would be artificial!

150

2. Understanding Value Semantics

Does state always imply a “value”?

Not every stateful object has an obvious value.

151

2. Understanding Value Semantics

Does state always imply a “value”?

Not every stateful object has an obvious value.

 TCP/IP Socket

Thread Pool
Condition Variable
Mutex Lock
Reader/Writer Lock
Scoped Guard

152

2. Understanding Value Semantics

Does state always imply a “value”?

Not every stateful object has an obvious value.
 TCP/IP Socket

* Thread Pool - ©
* Condition Variable
 Mutex Lock

* Reader/Writer Lock
e Scoped Guard

What would
copy construction

even mean here?
< /

e

153

2. Understanding Value Semantics

Does state always imply a “value”?

Not every stateful object has an obvious value.
 TCP/IP Socket

* Thread Pool ©= ©
* Condition Variable

* Mutex Lock
 Reader/Writer Lock
e Scoped Guard- © ()

What would
copy construction

even mean here?
< /

e

We could invent
some notion of value,
but to what end??

~

=

154

2. Understanding Value Semantics

Does state always imply a “value”?

Not every stateful object has an obvious value.

TCP/IP Socket
Thread Pool
Condition Variable
Mutex Lock
Reader/Writer Lock
Scoped Guard

 Base64 En(De)coder
e Expression Evaluator
* Language Parser

* Event Logger

* Object Persistor

* Widget Factory

155

2. Understanding Value Semantics

Does state always imply a “value”?

QUESTION:
Suppose we have a thread-safe

queue used for inter-task
communication: Is it a value
type?

156

2. Understanding Value Semantics

Does state always imply a “value”?

This class is a rare
and subtle

QUESTION: < middie ground.
Suppose we have a thread-safe

gueue used for inter-task
communication: Is it a value
type? Should this object type
support value-semantic syntax?

157

2. Understanding Value Semantics
Does state always imply a “value”?

We refer to stateful
objects that do not
‘represent a value
as “Mechanisms”.

YOU A

E HERE ===

2. Understanding Value Semantics

no Is object- yes

.

Type only

The Big Picture

Takes allocator?

instantiable?

v

Mechanism

l—>

o)

b 2

stateless

reference
semantic
type

guard/
proctor

functor

bdem lemRef

bslma::DeallocatorGuar:W

| bslma: :DestructorProctor

I
2

Has “value™?

Value-
Semantic Type

I
2

v

Externalizable?

externalizable,
no allocator

v

container: g?se_lr_al
associative?

X ordered?

X unique?

X indexed?

bdet: :Date

4
:
4

baetzo: :LocalTimeValidity

bteso: :InetStreamSocketFact

om;w

64

bslma::NewDeleteAllocato:W

bsl::less

64

unconstrained

simply
constrained

complex TS
constrained P

baet::LocalDatetim:T

baetzo: :LocalTimePeriod

Lbaetzo::LocalTimeDescriptor
yes

Referable
elements?

bteso: :LingerOptions

64

bassvc:: ControlMessageResponseT

packed
container

bdea: :BitArray

standard
container

externalization
available from
bslx

159

2. Understanding Value Semantics

Categorizing Object Types

160

2. Understanding Value Semantics

Categorizing Object Types

The first question: “Does it have state?”

161

2. Understanding Value Semantics

Categorizing Object Types

The first question: “Does it have state?”

Gtatele& Object ; ; Stateful Object>

162

2. Understanding Value Semantics

Categorizing Object Types

The first question: “Does it have state?”

Gtatele& Object Stateful Object>

IsConvertible<U,D

163

2. Understanding Value Semantics

Categorizing Object Types

The first question: “Does it have state?”

struct DateUtil {

// This 'struct' provides a namespace for a
// suite of pure functions that operate on
// 'Date' objects.

@ static Date lastDateInMonth (const Date& value);
// Return the last date in the same month

// as the specified date 'value'. Note
// that the particular day of the month
// of 'value' is ignored.

Gtatele& Object

164

2. Understanding Value Semantics

Categorizing Object Types

The first question: “Does it have state?”

struct DateUtil {
// This 'struct'
// suite of pure
// 'Date' object

@ static Date last
// Return th

// as the sp

// that the ¢
< Stateless Object >

// of 'value
/Y

}

165

2. Understanding Value Semantics

The Big Picture

no [ject- es
'nsst:nbtjizgfeo z P/ Takes allocator?
I

2

Has “value™?

protocol @

bsls::AlignmentUtil bslmf: : IsFundamental baetzo: :Loader

Value-
Semantic Type

I
2

v externalizable,
Externalizable? no allocator
]
Mechanism ..‘

4
I~
reference . . general A
AI E I semantic — contz?ur)er. VST @
type associative?
X ordered?
X unique?
4

X indexed?

bslma: 'DeallocatorGuar:—‘ bdet: :Date baetzo: :LocalTimeValidity
guard/ 28
Recey ~~ bslma: :DestructorProcto:—‘

A bteso: : InetStreamSocketFactory (eSS EiEG) Slmp!y compl_ex pure
64 constrained constrained
baet: :LocalDatetimeT baetzo: :LocalTimePeriod
— bslma: :NewDeleteAllocato:—‘
baetzo: :LocalTimeDescriptor
yes
Referable
> stateless

functor

elements? bteso: :LingerOptions
bsl::less
64 64
bassvc:: ControlMessageResponseT
packed standard
container container

bdea: :BitArray

externalization
available from
bslx

166

2. Understanding Value Semantics

Categorizing Object Types

The second question: “Does it have value?”

Gtatelei Object ; ; Stateful Object>

167

2. Understanding Value Semantics

Categorizing Object Types

The second question: “Does it have value?”

@echanis% ?Iue Tpr

Gtatele& Object ; ; Stateful Object>

168

2. Understanding Value Semantics

Categorizing Object Types

The second question: “Does it have value?”

Yes

$

@echanis% ?Iue Tpr

Gtatelei Object ; ; Stateful Object>

169

2. Understanding Value Semantics

Categorizing Object Types

The second question: “Does it have value?”

NO

$

@echanis% ?Iue Tpr

Gtatele& Object ; i Stateful Object>

170

2. Understanding Value Semantics

Top-Level Categorizations
> tart here

iact- es
no Is object y 7/ Takes allocator?

instantiable?
|

Type only 2

no A yes

Has “value”?

| |

Value-

I— Mechanism Semantic Type ¢
2 |
v 2
\ 4

N

171

2. Understanding Value Semantics

Top-Level Categorizations

2= Siart here

A es
no Is object y 7/ Takes allocator?

instantiable?

Type only

N

— Meimsm Yes -

Has “value”?

no A yes

Value-
Semantic Type

o

l
2

v

172

2. Understanding Value Semantics

Top-Level Categorizations
> tart here

iact- es
no Is object y 7/ Takes allocator?

instantiable?
|

Type only 2

no A yes

Has “value”?

2 ‘
l 2
. Value- ' I
|_ Mechanism « N O Semantic Type
2 |

v 2
v

173

2. Understanding Value Semantics

g Picture

The Bi

Type only

meta-
function

Is object-

instantiable? 4

yes o

Takes allocator?

bsls::AlignmentUtil

bslmf: : IsFundamental

baetzo: :Loader

v

Mechanism

|
2

Has “value™?

Value-
Semantic Type

|
2

v

Externalizable?

externalizable,
no allocator

]
4

reference
semantic
type

l—>

guard/
proctor

o)

stateless
functor

b 2

=
bdem: :ElemRef

[E3)

bslma: :DeallocatorGuard

*

container: gf/”;.lr_a'
associative?

X ordered?

X unique?

X indexed? =

| bslma: :DestructorProctor

53]

bteso: :InetStreamSocketFactory

64

[
bslma: :NewDeleteAllocator

=
bsl::less

64

packed
container

bdea: :BitArray

Referable
elements?

bdet: :Date

v

enumeration

IS

baetzo: :LocalTimeValidi

sl
ty

unconstrained

simply
constrained
BE|

complex
constrained

baet: :LocalDatetime

baetzo: :LocalTimePeriod

[Ev|

Lbaetzo::LocalTimeDescriptor
yes

bteso: :LingerOptions

[IE3

64

standard
container

bslx

]

bassvc: :ControlMessageResponse

[alx]

externalization
available from

174

2. Understanding Value Semantics

The Big Picture

no Is object- yes -
>

instantiable?

Takes allocator?

Type only 2
meta- protocol @ o Has “value”?
function

bslmf: : IsFundamental

bsls::AlignmentUtil

baetzo: :Loe

Value-
Semantic Type

2

v

Mechanism [®@ .

reference
semantic

type

container:
associative?
X ordered?
X unique?

X indexed?

l—>

bslma::DeallocatorGuar:W

guard/

proctor bslma: :DestructorProctor

— bteso: :InetStreamSocketFactory

— bslma: :NewDeleteAllocator

baetzo: :LocalTimeDescriptor

Referable
elements?

packed standard
container container
bdea: :BitArray

stateless bteso: :LingerOptions

functor

b 2

bassvc: :ControlMessageResponse

externalization
available from
bslx

175

2. Understanding Value Semantics

The Big Picture

QUESTION:
What does it mean for two
abstract types to compare equal?

2. Understanding Value Semantics

The Big Picture

QUESTION:
Ahat does it mean tortwe
: pes to compare-egual?

177

2. Understanding Value Semantics

The Big Picture

QUESTION:
Athat does it mean fortwe
abstre pes to compare-equal?

Data members are for:

“Variation in Vajue”

—Tom Cargill (c. 1992)

What syntax
should value

types have?

2. Understanding Value Semantics

Value-Semantic Properties

A value-semantic type T defines the following:

180

2. Understanding Value Semantics

Value-Semantic Properties

A value-semantic type T defines the following:
 Default construction: Ta,b; assert(a == b);

181

2. Understanding Value Semantics

Value-Semantic Properties

A value-semantic type T defines

Typically, but
not necessarily
(e.g., int)

 Default construction: Ta,b;

~N

lng:

assert(a == b);

182

2. Understanding Value Semantics

Value-Semantic Properties

Typically, but
not necessarily

A value-semantic type T defined ;. int)

~N

lng:

 Default construction: Ta,b; assert(a == b);

T

Is true

However “zero” initialization
assert (T () == T());

183

2. Understanding Value Semantics

Value-Semantic Properties

A value-semantic type T defines the following:
* Default construction: Ta, b; assert(a == b);
* Copy construction: Ta, b(a); assert(a==Db);

184

2. Understanding Value Semantics

Value-Semantic Properties

A value-semantic type T defines the following:
 Default construction: Ta,b; assert(a == b);

* Copy construction: Ta, b(a); assert(a==Db);

* Destruction: (Release all resources.)

185

2. Understanding Value Semantics

Value-Semantic Properties

A value-semantic type T defines the following:
 Default construction: Ta,b; assert(a == b);
* Copy construction: T a, b(a); assert(a==b);
* Destruction: (Release all resources.)

* Copy assignment: a=b; assert(a == b);

186

2. Understanding Value Semantics

Value-Semantic Properties

A value-semantic type T defines the following:

* Default construction: Ta, b; assert(a == b);

* Copy construction: Ta, b(a); assert(a==Db);

* Destruction: (Release all resources.)

* Copy assighment: a = b; assert(a == b);

 Swap (if well-formed): Ta(a), b(B8); swap(a, b);
assert(6 == a);
assert(a == b);

187

2. Understanding Value Semantics

Value-Semantic Properties

A value-semantic type T defines the following:
* Default construction: T.a«bk:

et assert(a ==
* Swap (if weII-formed): T a(a), b(6); swap(a, b);
assert(6 == a);

assert(a == b);

188

2. Understanding Value Semantics

Value-Semantic Properties

operator== (T, T) describes what’s called
an equivalence relation:
1. a== (reflexive)
2. a==b & b== (symmetric)
3. a==b&&b==c>a== (transitive)

189

2. Understanding Value Semantics

Value-Semantic Properties

operator== (T, T) describes what’s called
an equivalence relation:

1. a== (reflexive)
2. a==b & b== (symmetric)
3. a==b&&b==c>a== (transitive)

> !(a==b) @a'!'=bhb

190

2. Understanding Value Semantics

Value-Semantic Properties

operator== (T, T) describes what’s called
an equivalence relation:

1. a== (reflexive)
2. a==b & b== (symmetric)
3. a==b&&b==c>a== (transitive)

> !(a==b) @a!=bhb

» a==d (compiles) <& d == a (compiles)
(Note that d is not of the same type as a.)

191

2. Understanding Value Semantics

Value-Semantic Properties

operator== (T, called

an equivalenceg What am |

1. a==a tal kmg exive)

2. a==b< I about? mmetric)
3. a==b&& b= (transitive)

> l(a==)<=>a!=’

»> a==d (compiles) <& d == a (compiles)
(Note that d is not of the same type as a.)

192

2. Understanding Value Semantics

Value-Semantic Properties
Member operator==

class T {
...

public:
I

bool operator==(const T& rhs) const;
...

J

193

2. Understanding Value Semantics

Value-Semantic Properties
Member operator==

class T { class D {
... ...
public: public:
... ...
bool operator==(const T& rhs) const; operator const T&() const;
... ...
% I3

194

2. Understanding Value Semantics

Value-Semantic Properties
Member operator==

class T { class D {
... ...
public: public:
... ...
operator () const;
... ...
% I3

void f(const T& a, const D& d)

{
if (Y/)

195

2. Understanding Value Semantics

Value-Semantic Properties
Member operator==

class T {
pltj)ol)cl‘ c%onst T& rhs) const;

class D {
...

public:
I

operator () const;
...

3

void f(const T& a, const D& d)
{

if@==d){/*...*)
if (0 ==a){/*...*)
}

196

2. Understanding Value Semantics

Value-Semantic Properties
Free operator==

class T { class D {
... ...
public: public:
... ...
) operator () const;
/... ...
bool operator==(const T& |hs,); I3

void f(const T& a, const D& d)

{
if (@ ==d){/ ... "

197

2. Understanding Value Semantics

Value-Semantic Properties

1@ operator==

class T { class D {
... ...
ublic: ublic:
e (proper) P
5 operator const T&() const;
/. ...
bool operator==(const T& lhs, const T& rhs); h

void f(const T& a, const D& d)
{

if@==d){/*...*)
if (0 ==a){/...*)
}

198

2. Understanding Value Semantics

Value-Semantic Properties

class Str{
...

public:

Str(const char *other);
...

199

2. Understanding Value Semantics

Value-Semantic Properties

class Str{
...

public:

Str(const char *other);
...

...

J

...
bool operator==(const Str& |hs, const Str& rhs);

200

Value-Semantic Properties

2. Understanding Value Semantics

class Str{
...

public:

Str(const char *other);

...

...

J

...

bool operator==(const Str& |hs, const Str& rhs);

bool operator==

, const Str& rhs);

201

2. Understanding Value Semantics

Value-Semantic Properties

class Str{ Member Operator==

...
public:

Str(const char *other);
...

bool operator==) const;
...

I3

...

bool operator==(const Str& |hs, const Str& rhs);
bool operator==(const char *Ihs, const Str& rhs);

202

2. Understanding Value Semantics

Value-Semantic Properties

class Str{
...

public:

Str(const char *other);
...

bool operator==(const char *rhs) const;
...

...
bool operator== :);
bool operator==(const char *lhs,)i

Member Operator==

class Foo {
...

public:
I

operator
...

J

() const;

203

2. Understanding Value Semantics

Value-Semantic Properties

class Str{ Member Operator==

...
public:

Str(const char *other);
...

class Foo {
...

public:
I

operator const Str&() const;

bool operator==) const;) I
... ’
I3
...
bool operator==(const Str& |hs, const Str& rhs);
bool operator== , const Str& rhs);
class Bar {
...
public:
I

operator () const;
...

3

204

2. Understanding Value Semantics

Value-Semantic Properties

class Str { Member Operator== class Foo {
... ...
public: public:
Str(const char *other); e
... operator () const;
bool operator==(const char *rhs) const;) G
... ’
j
bool operator==(const Str& lhs, const Str& rhs);
bool operator== ,);
void f(const Foo& foo, const Bar& bar) class Bar {
{
blic:
if (har ==foo){/F .4y ||
operator () const;
...
I3

205

2. Understanding Value Semantics

Value-Semantic Properties

class Str { Member Operator== class Foo {
... ...
public: ‘ public:
* ...
Str(const char *other); e operator) const:
bool operator= ‘ ‘) const;) e
bool operator , const Str& rhs);
bool operator::(const char *Ihs, const Str& rhs);
void f(const Foo& foo, const Bar& bar) class Bar {
{
: public:
If (bar ==foo) {/*... ™/}
} * * operator () const;
If (foo == R WA BN

206

2. Understanding Value Semantics

Value-Semantic Properties

cIa//ss Str { Free Operator== cla//ss Foo {
public: public:
Str(const char *other); Ve
... operator () const;
. ...
}//’... h
bool operator==(const Str& Ihs,);
bool operator== :);
bool operator==(const Str& |hs, const char *rhs);
void f(const Foo& foo, const Bar& bar) class Bar {
{ ... -
i o * * public:
if (Dor ==foo){/*...*}
operator () const;
...
I3

207

2. Understanding Value Semantics

Value-Semantic Properties

class Str { re Operator:: class Foo {
... ...
public: public:
*
/%Fr(const char “other) (p 'O p e r) 9perator () const;
}//’... I3
bool operator==(, const Str& rhs);
bool operator==(const char *lhs, const Str& rhs);
bool operator==(:);
void f(const Foo& foo, const Bar& bar) class Bar {
{
: public:
If (bar ==foo) {/*... ™/}
_ " « operator () const;
if (foo ==ban){/r...*} | |, "

208

2. Understanding Value Semantics

Value-Semantic Properties

The operator==should ALWAYS @

209

2. Understanding Value Semantics

Value-Semantic Properties

The operator== should ALWAYS be

Same for most™ binary operators with const parameters:

*Except for operators such as operator [] that return a reference instead of a value, and operator ().

210

2. Understanding Value Semantics

Value-Semantic Properties

The operator== should ALWAYS be

Same for most™ binary operators with const parameters:

vV == I= (equality)

*Except for operators such as operator [] that return a reference instead of a value, and operator ().

211

2. Understanding Value Semantics

Value-Semantic Properties

The operator== should ALWAYS be

Same for most™ binary operators with const parameters:

)
o< o <=> = (relational)

*Except for operators such as operator [] that return a reference instead of a value, and operator ().

212

2. Understanding Value Semantics

Value-Semantic Properties

The operator== should ALWAYS be

Same for most™ binary operators with const parameters:

)
v o+ - x / % (arithmetic)

*Except for operators such as operator [] that return a reference instead of a value, and operator ().

213

2. Understanding Value Semantics

Value-Semantic Properties

The operator== should ALWAYS be

Same for most™ binary operators with const parameters:

v | & * << >> (logical)

*Except for operators such as operator [] that return a reference instead of a value, and operator ().

214

2. Understanding Value Semantics

Value-Semantic Properties

The operator== should ALWAYS be free!
But not operator@=

215

2. Understanding Value Semantics

Value-Semantic Properties

The operator== should ALWAYS be free!
But not operator@=

X += -= *= /= %= (assignment)

216

2. Understanding Value Semantics

Value-Semantic Properties

The operator== should ALWAYS be free!
But not operator@=

X += -= *= /= %= (assignment)
X |= &= *= <<= >>= (assignment)

217

What semantics
should value-type

operations have?

2. Understanding Value Semantics

Where is “Value” Defined?

219

2. Understanding Value Semantics

Where is “Value” Defined?

The salient attributes of a type T are the

documented set of named attributes whose
respective values for a given instance of T ...

220

2. Understanding Value Semantics

Where is “Value” Defined?

The salient attributes of a type T are the

documented set of named attributes whose
respective values for a given instance of T

1. Derive from the physical state of only that
instance of T'.

221

2. Understanding Value Semantics

Where is “Value” Defined?

The salient attributes of a type T are the

documented set of named attributes whose
respective values for a given instance of T

1. Derive from the physical state of only that
instance of T.

2. Must respectively “have” (refer to) the same
value in order for two instances of T to have

(refer to) the same value as a whole.

222

2. Understanding Value Semantics

Where is “Value” Defined?

salient attributes

2. Must respectively “have” (refer to)
value in order for two instances of T to have

(refer to) value as a whole.

223

2. Understanding Value Semantics

Where is “Value” Defined?

salient attributes

2. Must respectively “have” (refer to)
value in order for two instances of T to have

(refer to) value as a whole.

224

2. Understanding Value Semantics

Where is “Value” Defined?

* By def., all salient attributes must be

225

2. Understanding Value Semantics

Where is “Value” Defined?

* By def., all salient attributes must be

e What about “non-salient” attributes?
— E.g., capacity ()

226

2. Understanding Value Semantics

Where is “Value” Defined?

* By def., all salient attributes must be

e What about “non-salient” attributes?
— E.g.,, capacity ()

* Non-salient attributes may or may not be

L_\e';faas

227

2. Understanding Value Semantics

Where is “Value” Defined?

* By def., all salient attributes must be

e What about “non-salient” attributes?
— E.g.,, capacity ()
* Non-salient attributes may or may not be

 Hence, we cannot infer from the implementation of
a which attributes are “salient.”

228

2. Understanding Value Semantics

Where is “Value” Defined?
Copy Constructor?

By def., all salient attributes must be

What about “non-salient” attributes?
— E.g., capacity ()

Non-salient attributes may or may not be

Hence, we cannot infer from the implementation of
a Copy Constructor which attributes are “salient.”

Cannot tell us if two objects have the same value!

229

2. Understanding Value Semantics

Where is “Value” Defined?

salient attributes

2. Must respectively “have” (refer to)
value in order for two instances of T to “have”

(refer to) value as a whole.

230

2. Understanding Value Semantics

Where is “Value” Defined?

salient attributes

2. Must respectively compare equal
in order for two instances of T to

compare equal as a whole.

231

2. Understanding Value Semantics

Where is “Value” Defined?
operator==

salient attributes

2. Must respectively compare equal in order for
two instances of T to compare equal as a whole.

232

2. Understanding Value Semantics

Where is “Value” Defined?
operator==

The associated, homogeneous (free) operator==
foratype T

233

2. Understanding Value Semantics

Where is “Value” Defined?
operator==

The associated, homogeneous (free) operator==

foratype T ‘“‘P|ementation
1. Provides an operational definition of what it means

for two objects of type T to have “the same” value.

234

2. Understanding Value Semantics

Where is “Value” Defined?
operator==

The associated, homogeneous (free) operator==

foratype T]mp]@m@ﬂi@iﬂ on
1. Provides an operational definition of what it means
for two objects of type T to have “the same” value.

2. Defines the salient attributes of T as those

attributes whose respective values must
compare equal in order for two instances of T to

compare equal. Interface/Contract

235

2. Understanding Value Semantics

Value-Semantic Properties

Value-semantic objects share many properties.

236

2. Understanding Value Semantics

Value-Semantic Properties

Value-semantic objects share many properties.

e Each of these properties is objectively
verifiable, irrespective of the intended
application domain.

237

2. Understanding Value Semantics

Value-Semantic Properties

Value-semantic objects share many properties.

* Each of these properties is objectively
verifiable, irrespective of the intended
application domain.

* Most are (or should be) intuitive.

238

2. Understanding Value Semantics

What should be copied?

Should attributes that are orthogonal to value

be copied?

Orthogonal

NMOS

01001001

Orthogonal

CMOS

11110011

239

2. Understanding Value Semantics

What should be copied?

Should attributes that are orthogonal to value
be copied?

NMOS CMOS

/ \

(: 01001001 :) 11110011

—

240

2. Understanding Value Semantics

What should be copied?

Should attributes that are orthogonal to value
be copied?

NMOS CMOS

/ \

<: 01001001 :)

—

11110011

241

2. Understanding Value Semantics

What should be copied?

Should attributes that are orthogonal to value
be copied?

NMOS m CMOS

01001001 11110011

242

2. Understanding Value Semantics

What should be copied?

Should attributes that are orthogonal to value
be copied?

NMOS m CMOS

/ \

<: 01001001 :) 11110011

—

243

2. Understanding Value Semantics

What should be copied?

Should attributes that are orthogonal to value

be copied?

assignment

CMOS

11110011

244

2. Understanding Value Semantics

What should be copied?

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

As It turns out...

Choosing salient attributes

appropriately will affect our
ability to test thoroughly.

246

2. Understanding Value Semantics

Value-Semantic Properties

If T is a value-semantic type,
a, b, and c are objects of type T, and
d is an object of some other type D, then

247

2. Understanding Value Semantics

Value-Semantic Properties

If T is a value-semantic type,
a, b, and c are objects of type T, and
d is an object of some other type D, then

» a==b < aand b have the same value
(assuming an associated operator== exists).

248

2. Understanding Value Semantics

Value-Semantic Properties

If T is a value-semantic type,
a, b, and c are objects of type T, and
d is an object of some other type D, then

> a==b < e value
@uming an associated operator== exists).

249

2. Understanding Value Semantics

Value-Semantic Properties

If T is a value-semantic type,
a, b, and c are objects of type T, and
d is an object of some other type D, then

> a==b < e value
@uming an associated operator== exists).

250

2. Understanding Value Semantics

Value-Semantic Properties

If T is a value-semantic type,
a, b, and c are objects of type T, and
d is an object of some other type D, then

> a==b < e value
@uming an associated operator== exists).
- |
| (\ (\ ‘ l-) : SIS ~ 1)

251

2. Understanding Value Semantics

Value-Semantic Properties

If T is a value-semantic type,
a, b, and c are objects of type T, and
d is an object of some other type D, then

» a==b < aand b have the same value
(assuming an associated operator== exists).

» The value of a is independent of any external
object or state; any change to a must be
accomplished via a’s (public) interface.

252

2. Understanding Value Semantics

Value-Semantic Properties

Suppose a “value-semantic” object refers to
another autonomous object in memory:

253

2. Understanding Value Semantics

Value-Semantic Properties

Suppose a “value-semantic” object refers to
another autonomous object in memory:
class ElemPtr {
Record *d record p;
int d elementIndex;
public:
// ..

by

254

2. Understanding Value Semantics

Value-Semantic Properties

Suppose a “value-semantic” object refers to
another autonomous object in memory:
class ElemPtr {
Record *d record p;
int d elementIndex;
public:
// ..

by

255

2. Understanding Value Semantics

Value-Semantic Properties

Suppose a “value-semantic” object refers to
another autonomous object in memory:

class ElemPtr {
Record *d record p;
int d elementlIndex;
public:
/] ..
b i

256

2. Understanding Value Semantics

Value-Semantic Properties

Ox74al1254c
3
ElemPtr

Process Memory

2. Understanding Value Semantics

Value-Semantic Properties

0x74a1254c
3
ElemPtr

Process NMemory

2. Understanding Value Semantics

Value-Semantic Properties

Ox74al1254c

3
ElemPtr

Process Memory

2. Understanding Value Semantics

Value-Semantic Properties

bool operator==(const ElemPtré& lhs,
const ElemPtr& rhs);

260

2. Understanding Value Semantics

Value-Semantic Properties

bool operator==(const ElemPtré& lhs,
const ElemPtré& rhs);
// Two 'ElemPtr' objects have the

// same value if they ..

261

2. Understanding Value Semantics

Value-Semantic Properties

bool operator==(const ElemPtré& lhs,
const ElemPtré& rhs);

(1) refer

// to the same 'Record' object

// (in the current process)

262

2. Understanding Value Semantics

Value-Semantic Properties

bool operator==(const ElemPtré& lhs,
const ElemPtr& rhs);

and
// (2) have the same element
// index.

263

2. Understanding Value Semantics

Value-Semantic Properties

Record Record
objA OMB

(O ¢ \.

ElemPtr ElemPtr ElemPtr ElemPtr
objl obj2 obj3 obj4

264

2. Understanding Value Semantics

Value-Semantic Properties

Record Record
objA objB

(O ¢ 0

ElemPtr ElemPtr ElemPtr ElemPtr
objl obj2 obj3 obj4

265

2. Understanding Value Semantics

Value-Semantic Properties

Record Record
objA OMB

(O ¢ \.

ElemPtr ElemPtr ElemPtr ElemPtr
objl obj2 obj3 obj4

266

2. Understanding Value Semantics

Value-Semantic Properties

Record Record
objA OMB

) \.

ElemPtr ElemPtr ElemPtr ElemPtr
objl obj2 obj3 obj4

267

2. Understanding Value Semantics

Value-Semantic Properties

Record Record

objA objB
(r<::§i::> <iifi::>\ ‘IIEII')
_ J

ElemPtr ElemPtr ElemPtr ElemPtr
objl obj2 obj3 obj4

268

2. Understanding Value Semantics

Value-Semantic Properties

Record Record

objA objB
((<::§i::> <iif{::>\\ ‘lliill’
_ J

ElemPtr ElemPtr ElemPtr ElemPtr
objl obj2 obj3 obj4

269

2. Understanding Value Semantics

Value-Semantic Properties

Record
objB

Record
objA

= J

ElemPtr ElemPtr ElemPtr ElemPtr
objl obj2 obj3 obj4

270

2. Understanding Value Semantics

Value-Semantic Properties

Record
objB

- J

ElemPtr ElemPtr ElemPtr ElemPtr
objl obj2 obj3 obj4

271

2. Understanding Value Semantics

Value-Semantic er%(‘)%
)

. @N 0
o)) ;
G ElemPtr ElemPtr ElemPtr
\<\4 obj2 obj3 obj4

2. Understanding Value Semantics

2. Understanding Value Semantics

Value-Semantic Propertjes, ~&

In-Core Value Semantics,
While Important, Is Not
The Focus of Today’s Talk

obj2

Note that if we were to ascribe a notion of value to,
say, a scoped guard, it would clearly be in-core only.

2. Understanding Value Semantics

“Value Types” having Value Semantics

275

/AC++ type that “properly”
represents (a subset of)
the values of an abstract
“mathematical” type is said
Q) have value semantics

~

/

/AC++ type that “properly”
represents (a subset of)
the values of an abstract
“mathematical” type is said
Q) have value semantics

~

/

2. Understanding Value Semantics

Value-Semantic Properties

Recall that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

278

2. Understanding Value Semantics

Value-Semantic Properties

Recall that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

E.g., one might allocate
memory on an append

operation, whereas
another might not.

2. Understanding Value Semantics

Value-Semantic Properties

Recall that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

HOWEVER

280

2. Understanding Value Semantics

Value-Semantic Properties

Recall that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

HOWEVER

1. If a and b initially have the same value, and

281

2. Understanding Value Semantics

Value-Semantic Properties

Recall that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

HOWEVER

1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

282

2. Understanding Value Semantics

Value-Semantic Properties

1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

283

2. Understanding Value Semantics

Value-Semantic Properties

1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value!

284

2. Understanding Value Semantics

Value-Semantic Properties
There is alot more to this story!

Deciding what is (not) salient

IS surprisingly important.
SUBTLE ESSENTIAL PROPERTY OF VALUE

1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value'

2. Understanding Value Semantics

Value-Semantic Properties

That is...
1f (a == b) {
op;(a); op;(b); assert(a == b);
op,(a); op,(b); assert(a == b);
ops(a); op;(b); assert(a == b);
op,(a); op,(b); assert(a == b);

J
SUBTLE ESSENTIAL PROPERTY OF VALUE

286

2. Understanding Value Semapti

. h his i
Value-Semantic Prof "o e s

not a test case,
but rather a

Thatis.. e
1f (a == b) {
op;(a); op;(b); assert(a == b);
op,(a); op,(b); assert(a == b);
ops(a); op;(b); assert(a == b);
op,(a); op,(b); assert(a == b);
}

SUBTLE ESSENTIAL PROPERTY OF VALUE

287

2. Understanding Value Semantics

Value-Semantic Properties

QUESTION:

Suppose we have a “home grown” ordered-set
type that can be initialized to a sequence of
elements in either increasing or decreasing order:

template <class T>

class OrderedSet {
// .
OrderedSet (bool decreasingFlag = false);
// ..

I

288

2. Understanding Value Semantics

Value-Semantic Properties

QUESTION:

Suppose we have a “home grown” ordered-set
type that can be initialized to a sequence of
elements in either increasing or decreasing order:

template <class T>

class OrderedSet {
/] ..
OrderedSet (bool decreasingFlag = false);
/] ..

}.

What if the two sets were constructed differently.

289

2. Understanding Value Semantics

Value-Semantic Properties

QUESTION:

Suppose we have a “home grown” ordered-set
type that can be initialized to a sequence of
elements in either increasing or decreasing order:

template <class T>

class OrderedSet {
/] ..
OrderedSet (bool decreasingFlag = false);
/] ..

} i
What if the two sets were constructed differently.
Should any two empty objects be considered “equal”?

290

2. Understanding Value Semantics

Value-Semantic Properties

1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value!

2. Understanding Value Semantics

Value-Semantic Properties

1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent aﬁgleé)eﬂz];?tions or undefined behavior)

4. both objects will again have the same value!

2. Understanding Value Semantics

Value-Semantic Properties

By salient we mean
operations that directly reflect
those in the mathematical type

this C++ type is attempting to
approximate.

1. irfrtially have the same value, and

2. the same})per_ation is applied to each object, then
3. (absent aﬁgg)e(c,g;tions or undefined behavior)

4. both objects will again have the same value'

2. Understanding Value Semantics

Value-Semantic Properties

QUESTION:

What makes two unordered containers represent
the same value? 0“

Think about a bag
of Halloween

candy.

294

2. Understanding Value Semantics

Value-Semantic Properties

Note that this essential property applies only to
objects of the same type:

intx=5;, inty=5; assert(x==y);
X *= x: y *=vy: assert(x ==vy);
X *= x: v ¥*=vy; assert(x ==vy);

X *=X; y *=y;, assert(x ==y);

295

2. Understanding Value Semantics

Value-Semantic Properties

Note that this essential property applies only to
objects of the same type:

int x=>5; shorty=5; assert(x==y);

X *= x: y *=vy: assert(x ==vy);
X *= x: v ¥*=vy; assert(x ==vy);
X *= x: y *=vy, .assert(x==y);

Undefined Behavior! ' '
296

How do we
design proper

value types?

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

class Rational {
int d numerator;
int d denominator; i?
public:

4)

int numerator () const;
int denominator () const;

b
/]

bool operator==(const Rationalé& lhs,
const Rational& rhs);

298

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

Whaf abouf

numerator () /denominator ()
as the salient attribute?

299

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

?
Wihat albouf:

numerator () /denominator ()
as the salient attribute?

bool operator==(const Rationalé& lhs,

const Rational& rhs)
// Two 'Rational' objects have the same value if
// the ratio of the values of 'numerator()' and
// 'denominator ()' for 'lhs' is the same as that for 'rhs'.

300

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

Wihat abourt

numerator () /denominator ()
as the salient attribute?

301

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

Wihat abourt

numerator () /denominator ()
as the salient attribute?

302

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

Wihat abourt

numerator () /denominator ()
as the salient attribute?

303

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

Wihat about
numerator (/denomlnator
as the sallent attribute?

304

2. Understanding Value Semantics

Value-Semantic Properties

Selecting Salient Attributes

Wihat abourt

/denomlnator()

numerator (

as the sallent attribute?

—

—

1
2

100

—

200

—

?

305

2. Understanding Value Semantics

Value-Semantic Properties

Selecting Salient Attributes

Whaf abouf

O Sean.Ql

2. 200

1__100

VIOLATES SUBTLE ESSENTIAL PROPERTY OF VALUE

306

2. Understanding Value Semantics

Value-Semantic Properties

Selecting Salient Attributes
?

If you choose to make
numerator () /denominator ()

a salient attribute

(probably a bad idea)

then do not expose numerator and
denominator as separate attributes...

307

2. Understanding Value Semantics

Value-Semantic Properties

...0or maintain them in
“canonical form” (which
may be computationally
expensive).

(probably a bad“dea)

then do not expose numerator and()
denominator as separate attributes...o

308

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

Guideline
If two objects have the same
value then the values of each
observable attribute that
contributes to value should
respectively compare equal.

309

When should
we omit valid

value syntax?

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

Craphs

311

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

312

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

Levelization Technique: Opaque Pointers

graph

313

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

Levelization Technique: Dumb Data

graph

314

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

Nodelterator

Simpler Design: No Explicit Edge Object

graph

315

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

Yet Simpler Design: No Explicit Nodelterator

graph

316

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

class Graph {
/]

public:
/] ..
int numNodes () const;
const Node& node (int 1ndex) const;
b s
/..

Graph
Node O Node 1 Node 2 Node 3 Node 4

317

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

class Node {
/.
public:
/] .

int nodeIndex ()

const;

int numAdjacentNodes ()

Node& adjacentNode (1nt 1ndex)

b

const;

Graph

Node 2

Node 3

@ Node 1

E

const;

318

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

class Node {
/] .

public:
/] ..

int nodelrdex ()

Really should be
~ declared const gut

ihere’§ no room!

int CpmAdjacentNodes() const;

°Node & adjacentNode (1nt 1ndex) const;

b

Graph
Node O Node 1 Node 2 Node 3 Node 4

319

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

class Node {
/.
public:
/] .

int nodeIndex

int numAdjacentNodes ()

Node& adjacentNode (int index)

b

() const;;

const;

Graph

Node 2

Node 3

@ Node 1

D

const;

320

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

class Node {
/] .

public:
/] ..
int nodeIndex () const;

int numAdjacentNodes () const;

Node& adjacentNode (1nt 1ndex) const;

b

Graph
Node O Node 1 Node 2 Node 3 Node 4
_/ _/

321

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

class Graph {
/] .

public:
/] .
int numNodes () const;
const Node& node (int 1ndex) const;
I
/..
bool operator==(const Graphé& lhs,
const Graphé& rhs) ;

322

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

class Graph {
/] .
public:
/] .
int numNodes () const;
const Node& node (int i1ndex) const;
¥
/] .
bool operator==(const Graphé& lhs,
const Graphé& rhs);
// Two 'Graph' objects have the same
// value if ..?7?7

323

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

What are the salient attributes of Graph?

324

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

What are the salient attributes of Graph?

e Number of nodes.

325

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

What are the salient attributes of Graph?

* Number of nodes.
* Number of edges.

326

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

What are the salient attributes of Graph?
* Number of nodes.
* Number of edges.

* Number of nodes adjacent to each node.

327

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

What are the salient attributes of Graph?

e Number of nodes.

* Number of nodes adjacent to each node.

328

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

What are the salient attributes of Graph?

e Number of nodes.

* Number of nodes adjacent to each node.
* Specific nodes adjacent to each node.

329

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

What are the salient attributes of Graph?

e Number of nodes.

* Specific nodes adjacent to each node.

330

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

bool operator==(const Graphé& lhs,
const Graphé& rhs);
// Two 'Graph' objects have the same

// value 1if

331

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

bool operator==(const Graphé& lhs,
const Graphé& rhs);
// Two 'Graph' objects have the same

// value if they have the same number of

// nodes 'N' and,

332

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

bool operator==(const Graphé& lhs,
const Graphé& rhs);
// Two 'Graph' objects have the same

// value 1if
for each node index '1i'
// '(0 <= i< N)',

333

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

bool operator==(const Graphé& lhs,
const Graphé& rhs);
// Two 'Graph' objects have the same

// value 1f

for each node index 'i'
// "(0 <= i < N)', the nodes adjacent to
// node 'i' in 'lhs' have the same
// indices as those of the nodes

// adjacent to node 'i' in 'rhs'.

334

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

class Node {
/] .

public:
/]
int nodelIndex () const;
int numAdjacentNodes () const;

Node& adjacentNode (1nt index) const;

b

335

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

lass Node : : :
cLa 9 { { Maintained in
public: sorted order?
/.
int nodeIndex () const;
int numAdjacentNodes () const;

Node& adjacentNode (1nt index) const;

b

Is “edge” order a salient attribute?

336

2. Understanding Value Semantics

Value-Semantic Properties

Selecting Salient Attributes
Ordered Edges

Unordered Edges Node—S Edge
0:413 /@\E 0:134
1:32 3) /) 1:23
2:04 © 2:04

3: \ 3:
4:3 4:3

337

2. Understanding Value Semantics

Value-Semantic Properties

Selecting Salient Attributes
Ordered Edges

Unordered Edges Node—S Edge
0:413 /@\E 0:134
1:32 3) /) 1:23
2:04 © 2:04

3: \ 3:

4:3 4:3
?

Oloperator==

338

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes
Ordered Edges

Unordered Edges Node—S Edge
0:413 /@\E 0:134
1:32 3) /) 1:23
2:04 © 2:04

3: \ 3:
4:3 4:3
?

O[N +E’] Oloperator==

339

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes
Ordered Edges

Unordered Edges Node—S Edge
0:413 /@\E 0:134
1:32 3) /) 1:23
2:04 © 2:04

3: \ 3:

4:3 4:3
?
O[N + £7] Oloperator== O[N + £]

340

2. Understanding Value Semantics

Value-Semantic Properties

Selecting Salient Attributes
Ordered Edges

Unordered Edges Node—S— Edge
0:413 /@‘\E 0:134
1:32 © / 5 1:23
2:04) 2:04
3. \ 3:
4-3 4:3
?
O[N +]v Oloperator== O[N +£]
\ \

Note that we could make it O[N +]. 31

2. Understanding Value Semantics

Value-Semantic Properties

Selecting Salient Attributes
Ordered Edges

Unordered Edges Node—S— Edge
0:413 /@‘\E 0:134
1:32 © / 5 1:23
2:04 © 2:04
3. \ 3:
4:3 4:3
?
on+:1 | Oloperator== O[N +£]

D
NoteQliat we comermaReTOIN + - D (1. -

2. Understanding Value Semantics

Value-Semantic Properties

343

2. Understanding Value Semantics

Value-Semantic Properties

OBSERVATION

Value Syntax: Not all or nothing!

344

2. Understanding Value Semantics

Value-Semantic Properties

OBSERVATION

Value Syntax: Not all or nothing!

An std: :set<int>is a value-semantic type.

345

2. Understanding Value Semantics

Value-Semantic Properties

OBSERVATION

Value Syntax: Not all or nothing!

An std: :set<int>is a value-semantic type.

An std: :unordered set<int>isa value-

semantic type,

346

2. Understanding Value Semantics

Value-Semantic Properties

OBSERVATION

Value Syntax: Not all or nothing!

An std: :unordered set<int> s avalue-

semantic type, except that — until 2010 - it did
not provide an operator==.

347

2. Understanding Value Semantics

Value-Semantic Properties

OBSERVATION

Value Syntax: Not all or nothing!

An std: :set<int>is a value-semantic type.

An std: :unordered set<int> s avalue-

semantic type, except that — until 2010 - it did
not provide an operator==.

In large part due to performance concerns!

L

348

2. Understanding Value Semantics

Value-Semantic Properties

OBSERVATION

Value Syntax: Not all or nothing!

semantic type, except that — until 2010 - it did
not provide an operator==.
In large part due to performance concerns!

2. Understanding Value Semantics

Value-Semantic Properties

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

What are the salient attributes of Graph?

351

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

What are the salient attributes of Graph?

v'"Number of nodes.

352

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

What are the salient attributes of Graph?

v'"Number of nodes.
v'Specific nodes adjacent to each node.

353

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

What are the salient attributes of Graph?
v'"Number of nodes.

v'Specific nodes adjacent to each node.
X Not adjacent-node (i.e., edge) order.

354

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

What are the salient attributes of Graph?
v'"Number of nodes.
v'Specific nodes adjacent to each node

X Not adjacent-node (i.e., edge) order.
»What about node indices?

(l.e., the numbering of the nodes)

355

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

bool operator==(const Graphé& lhs,
const Graphé& rhs);
// Two 'Graph' objects have the same

// value if
there exists a renumbering
// of the nodes in 'rhs' such that

356

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

357

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

Node
Index

(3 @

358

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

e K3) P

(3 @

359

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

o :@ /@\

360

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

me%3) P

A\

2. Understanding Value Semantics

Value-Semantic Properties

Selecting Salient Attributes

me%3) P

AL
/f)f':\é)/ =
@ (4

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

e %3) P

Should
operator==
mean
isomorphic?

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

In graph theory, an isomorphism of graphs* G and H is a bijection f
between the vertex sets of G and H such that any two vertices u and v
of G are adjacent in G if and only if f(u) and f(v) are adjacent in H.

An isomorphism
between G and H

fla)=1
f(b) =6
flc)=8
fld)=3
flg)=5
f(h) =2
f(i)=4
fi) =7

Graph G Graph H

*http://en.wikipedia.org/wiki/Graph_isomorphism

364

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

How hard is it to determine
Graph Isomorphism?

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

How hard is it to determine
Graph Isomorphism?

Is known to be in NP and CO-NP.

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

How hard is it to determine
Graph Isomorphism?

Is known to be in NP and CO-NP.
Not known to be NP Complete.

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

How hard is it to determine
Graph Isomorphism?

Is known to be in NP and CO-NP.
Not known to be NP Complete.
Not known to be in P (Polynomial time).

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

How hard is it to determine

Graph Isomorphism?

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

bool operator==(const Graphé& lhs,
const Graphé& rhs);
// Two 'Graph' objects have the same

// value if
there exists a renumbering
// of the nodes in 'rhs' such that

370

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

bool operator==(const Graphé& lhs,
const Graphé& rhs);
// Two 'Graph' objects have the same

// value 1if

371

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

bool operator==(const Graphé& lhs,

//
//
//
//
//
//
//

const Graphé& rhs);
Two 'Graph' objects have the same

value 1f they have the same number of
nodes 'N' and, for each node-index 'i'
'(0O <= 1 < N)', the ordered sequence
of nodes adjacent to node 'i' in

'lhs' has the same value as the one

for node 'i' in 'rhs'.

372

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

What are the salient attributes of Graph?

v'"Number of nodes.
v'Specific nodes adjacent to each node.

373

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

What are the salient attributes of Graph?

v'"Number of nodes.

v'Specific nodes adjacent to each node.
And, as a practical matter,

v’ Numbering of the nodes.

374

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

or clse we Must C?)mﬁﬁ
EquialityACompaisol

@peratoisiol thist€lass!

v’ Numbering of the nodes.

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

or clse we Must C?)mﬁﬁ
EquialityACompaisol

@peratoisiol thist€lass!
v Numbering of the nodes.

AND PERHAPS PROVIDE THIS
FUNCTIONALITY IN A UTILITY.

2. Understanding Value Semantics

Discussion

Why would we ever
omit valid value
syntax when there
IS only one obvious
notion of value?

2. Understanding Value Semantics

Discussion

Why would we ever
omit valid value

2. Understanding Value Semantics

Discussion

Why would we ever
omit valid value

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

(Summary So Far)

380

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

(Summary So Far)
When selecting salient attributes, avoid

subjective (domain-specific) interpretation:

381

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

(Summary So Far)
When selecting salient attributes, avoid

subjective (domain-specific) interpretation:
» Fractions may be equivalent, but not the same.

382

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

(Summary So Far)
When selecting salient attributes, avoid

subjective (domain-specific) interpretation:
» Fractions may be equivalent, but not the same.

» Graphs may be isomorphic, yet distinct.

383

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

(Summary So Far)
When selecting salient attributes, avoid

subjective (domain-specific) interpretation:
» Fractions may be equivalent, but not the same.
» Graphs may be isomorphic, yet distinct.
» Triangles may be similar and still differ.

DON’T “EDITORIALIZE” EQUALITY

384

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

(Summary So Far)
Relegate any “subjective interpretations” of equality

to named functions!

385

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

(Summary So Far)

— ideally, in higher-level components:

386

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

(Summary So Far)

— ideally, in higher-level components:

struct MyUtil {

static bool areEquivalent (const Rationalé& a)
const Rationalé& b);

static bool arelIsomorphic (const Graphé&
const Graphé&

static bool areSimilar (const Triangleé&
const Triangle&

Yy

gl,
g2);
X,

V) ;

387

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

(Summary So Far)

— ideally, in higher-level components:

struct MyUtil {

static bool areEquivalent (const Rationalé& a)
const Rationalé& b);

static bool arelIsomorphic (const Graphé&
const Graphé&

static bool areSimilar (const Triangleé&
const Triangle&

Yy

gl,
g2);
X,

V) ;

388

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

(Summary So Far)

— ideally, in higher-level components:

struct MyUtil {

static bool areEquivalent (const Rationalé& a)
const Rationalé& b);

static bool arelsomorphic (const Graphé&
const Graphé&

static bool areSimilar (const Triangleé&
const Triangle&

Yy

gl,
g2);
X,

V) ;

389

2. Understanding Value Semantics

Value-Semantic Properties
Selecting Salient Attributes

(Summary So Far)

— ideally, in higher-level components:

struct MyUtil {

static bool areEquivalent (const Rationalé& a)
const Rationalé& b);

Yy

390

2. Understanding Value Semantics

Value-Semantic Properties

A collateral benefit is Terminology:

2. Understanding Value Semantics

Collateral Benefit: Terminology

“...objects are the same...”
“...0objects are identical...”
“...objects are equal...”
“...objects are equivalent...”
“...create a copy of...”

392

2. Understanding Value Semantics

Collateral Benefit: Terminology

A
-

Objects are the sa

7)

“..0L s are ideftical...

“...obje o equal...”

{ 7)

.0 ont...

ts are eq

“...create a copy of...

393

2. Understanding Value Semantics

Collateral Benefit: Terminology

BE PRE('H‘ISE'

objects are the'sa

A
-

{ 7)

...OC s are ideftical...

“...obje o equal...”

{ 7)

.0 ont...

ts are eq

“...create a copy of...

394

2. Understanding Value Semantics

Collateral Benefit: Terminology

BE PRE%‘ISE'

objects are the'sa

A
-

{ 7)

...OC s are ideftical...

“...objecis®re equal...”

{ 7)

...Q01 ont...

ts are eq

“...create a copy of...
SAY EXACTLY WHAT MUST BE THE SAME!

2. Understanding Value Semantics

Collateral Benefit: Terminology

“...objects are the same...”
“...0objects are identical...”
(identity)

396

2. Understanding Value Semantics

Collateral Benefit: Terminology

(identity)

“...(aliases) refer to the same object...”

397

2. Understanding Value Semantics

Collateral Benefit: Terminology

“...objects are the same...”
(value)

398

2. Understanding Value Semantics

Collateral Benefit: Terminology

(value)
“...obiects) have the same value...”

399

2. Understanding Value Semantics

Collateral Benefit: Terminology

(value)

{4

...(objects) have the same value...”

“...(objects) refer to the same value...”

400

2. Understanding Value Semantics

Collateral Benefit: Terminology

(value)

(]

...(objects) have the same value...”

{4

...(objects) refer to the same value...”

“...(objects) represent the same value...”

401

2. Understanding Value Semantics

Collateral Benefit: Terminology

“...objects are the same...”
“...objects are equal...”

(equality)

402

2. Understanding Value Semantics

Collateral Benefit: Terminology

(equality)
“...(objects) compare equal...”

403

2. Understanding Value Semantics

Collateral Benefit: Terminology

(equality)
“...(objects) compare equal...”

"...(homogeneous) operator==returns true...”

404

2. Understanding Value Semantics

Collateral Benefit: Terminology

(equality)
“...(objects) compare equal...”

"...(homogeneous) operator==returns true...”
For value-semantic objects:

405

F

Mea

2. Understanding Value Semantics

Collateral Benefit: Terminology

(equality)
“...(objects) compare equal...”

...(homogeneous) operator==returns true...

r value-semantic @bj@gt
ans have the same value!

=y

2. Understanding Value Semantics

Collateral Benefit: Terminology

“...objects are the same..”
(equivalent)

407

2. Understanding Value Semantics

Collateral Benefit: Terminology

(equivalent)
In separate named functions:

408

2. Understanding Value Semantics

Collateral Benefit: Terminology

(equivalent)
In separate named functions:

“...fractions are equivalent...”

409

2. Understanding Value Semantics

Collateral Benefit: Terminology

(equivalent)
In separate named functions:

“...fractions are equivalent...”

“...graphs are isomorphic...”

410

2. Understanding Value Semantics

Collateral Benefit: Terminology

(equivalent)
In separate named functions:

“...fractions are equivalent...”
“...graphs are isomorphic...”
“...triangles are similar...”

411

Outline

Introduction and Background

Components, Physical Design, and Class Categories

Understanding Value Semantics (and Syntax)
Most importantly, the Essential Property of Value

Two Important, Instructional Case Studies

Specifically, Regular Expressions and Priority Queues

Conclusion

What must be remembered when designing value types

412

Outline

Introduction and Background

Components, Physical Design, and Class Categories

Understanding Value Semantics (and Syntax)
Most importantly, the Essential Property of Value

Two Important, Instructional Case Studies

Specifically, Regular Expressions and Priority Queues

Conclusion

What must be remembered when designing value types

413

3. Two Important, Instructional Case Studies

Regular Expressions

Important Design Questions:
 What is a Regular Expression?

* Why create a separate class for it?
* Does/should it represent a value?
* How should its value be defined?
* Should such a class be regular?

3. Two Important, Instructional Case Studies

Regular Expressions

Important Design Questions:

* What is a Reqgular Expression?

* Why create a separate class for it?
* Does/should it represent a value?
* How should its value be defined?

* Should such a class be regular?

415

3. Two Important, Instructional Case Studies

Regular Expressions

What is a Regular Expression?

416

3. Two Important, Instructional Case Studies

Regular Expressions

What is a Regular Expression?

A Regular Expression describes a
language that can be accepted by a
Finite-State Machine (FSM).

3. Two Important, Instructional Case Studies

Regular Expressions

What is a Regular Expression?

A Regular Expression describes a
language that can be accepted by a
Finite-State Machine (FSM).

E.g.,
(1]0)+ describes binary numbers.

3. Two Important, Instructional Case Studies

Regular Expressions

Important Design Questions:

 What is a Regular Expression?

* Why create a separate class for it?
* Does/should it represent a value?
* How should its value be defined?

* Should such a class be regular?

419

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?

420

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?
A Regular-Expression class imbued
with the value of a regular expression
can be used to determine whether (or
not) arbitrary string tokens are
members of the language that the
regular-expression value denotes.

421

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?

class RegkEx {

[/ ..

public:
static bool i1sValid(const char *regEkEx);
RegEx (); // Empty language; accepts nothing.
RegEx (const char *regkx);
RegEx (const RegEx& other);
~RegEx () ;
RegEx& operator=(const RegEx& rhs);
vold setValue (const char *regEx);
int setValuelfValid(const char *regEx);
bool isMember (const char *token) const;

b

422

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?
class RegEx {

/] . -
public: O

static bool 1sValid(const char *regkx);

RegEx (); // Empty language: Accepts nothing.

RegEx (const char *regkx);

RegEx (const RegEx& other);

~RegEx () ;

RegEx& operator=(const RegEx& rhs);

vold setValue (const char *regEx);

int setValuelfValid(const char *regEx);

bool isMember (const char *token) const;

b

423

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?
class RegkEx {

// ..
public:
static bool isValid(const char *regEx) ;
RegEx (); // Empty language: Accepts nothing.
RegEx (const char *regEx);
RegEx (const RegkExé& other);
\Reghx) ; . o Y,
RegEx& operator=(const RegEx& rhs);
vold setValue (const char *regEx);
int setValuelfValid(const char *regEx);
bool isMember (const char *token) const;

b

o

424

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?
class RegkEx {

// ..
public:
static bool isValid(const char *regEx) ;
//RegEX(); // Empty language: Accepts nothingj\
RegEx (const char *regkx);
RegEx (const RegkExé& other);
\Reghx) ; . o Y,
RegEx& operator=(const RegEx& rhs);
vold setValue (const char *regEx);
int setValuelfValid(const char *regEx);
bool isMember (const char *token) const;

b

o

425

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?
class RegkEx {

// ..
public:

static bool isValid(const char *regEx) ;
//RegEX(); // Empty language: Accepts nothingj\
RegEx (const char *regEx);
RegEx (const RegkEx& other);
\Reghx) ; . o Y,

RegEx& operator=(const RegEx& rhs);

vold setValue (const char *regEx);

int setValuelfValid(const char *regEx);

bool isMember (const char *token) const;

b

o

426

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?
class RegkEx {

// ..
public:
static bool isValid(const char *regEx) ;
//RegEX(); // Empty language: Accepts nothingj\
RegEx (const char *regEx);
RegEx (const RegkExé& other);
(SReghx D) ; - - J
RegEx& operator=(const RegEx& rhs);
vold setValue (const char *regEx);
int setValuelfValid(const char *regEx);
bool isMember (const char *token) const;

b

o

427

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?
class RegkEx {
/] ..

public:
static bool i1sValid(const char *regEkEx);
RegEx (); // Empty language: Accepts nothing.
RegEx (const char *regEx);)
RegEx (const RegEx& other);
~Regkx () ; J
RegEx& operator=(const RegEx& rhs);
vold setValue (const char *regEx);
int setValuelfValid(const char *regEx);
bool 1sMember (const char *token) const;

— Whatever the value is.

428

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?
class RegkEx {
/] ..

public:
static bool i1sValid(const char *regEkEx);
RegEx (); // Empty language: Accepts nothing.
RegEx (const char *regkx); .

RegEx (const RegEx& other); w;ﬂmmaﬂsﬂmvame?m%
~RegEx () ; -
RegEx& operator=(const RegEx& rhs); .

vold setValue (const char *regEx);
int setValuelfValid(const char *regkEx);
bool 1sMember (const char *token) const;

429

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?
class RegkEx {
/] ..

public:
static bool i1sValid(const char *regEkEx);
RegEx (); // Empty language: Accepts nothing.
RegEx (const char *regEx); ’
RegEx (const RegEx& other);
~RegEx () ;
RegEx& operator=(const RegEx& rhs);
vold setValue (const char *regEx);
int setValuelfValid(const char *regEx);
bool 1sMember (const char *token) const;

430

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?
class RegkEx {

// ..
public:

static bool i1sValid(const char *regEkEx);

RegEx (); // Empty language: Accepts nothing.

RegEx (const char *regkEx);

RegEx (const RegEx& other); “ aka.”
accept
~RegEx () ; or

RegEx& operator=(const RegkEx& rhs); _“matching
vold setValue (const char *regEx); |
int setValuelfValid(const char *regEx);

bool isMember (const char *token) const; o

1

431

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?

class Regkx {

... Which Operations Are Salient?

public:
static bool 1sValid(const char *regEx);
RegEx (); // Empty language; accepts nothing.
RegEx (const char *regEx);
RegEx (const RegEx& other);
~RegEx () ;
RegEx& operator=(const RegEx& rhs);
vold setValue (const char *regEx);
int setValuelfValid(const char *regEx);
bool isMember (const char *token) const;

b

432

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?

class Regkx {

static bool 1sValid(const char *regEx);
RegEx (); // Empty language; accepts nothing.
RegEx (const char *regkx);

RegEx (const RegEx& other);

~RegEx () ;

RegEx& operator=(const RegEx& rhs);

void setValue (const char *regEx); @

int setValuelfValid(const char *regkEx); ?
bool isMember (const char *token) const;

Y

433

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?

class Regkx {

static bool 1sValid(const char *regEx);

RegEx (); // Empty language; accepts nothing.
RegEx (const char *regkx);
RegEx (const RegkEx& other);

RegEx& operator=(const RegEx& rhs); mu

~RegEx () ;

void setValue (const char *regEx); @

int setValueIfValid(const char *regEx);: ..
<__bool isMember (const char *token) const; >

Y

434

3. Two Important, Instructional Case Studies

Regular Expressions

Why create a separate class for it?

class Regkx {

// . . x)
-w1ic: | Which Operations Are Salient?

static bool 1sValid(const char *regEx);

RegEx (); // Empty language; accepts nothing.

RegEx (const char *regkx);

RegEx (const RegEx& other) ; Let’s think
.~ about this!

~RegEx () ;
RegEx& operator=(const RegEx& rhs);
vold setValue (const char *regEx);

int setValuelfValid(const char *regEx);

<__bool isMember (const char *token) const; :::>

435

3. Two Important, Instructional Case Studies

Regular Expressions

Important Design Questions:
 What is a Regular Expression?

* Why create a separate class for it?
* Does/should it represent a value?
* How should its value be defined?
* Should such a class be regular?

436

3. Two Important, Instructional Case Studies

Regular Expressions

Does/should it represent a value?

437

3. Two Important, Instructional Case Studies

Regular Expressions

Does/should it represent a value?
Is a RegEx class a value type, or a

mechanism?

438

3. Two Important, Instructional Case Studies

Regular Expressions

Does/should it represent a value?
Is a RegEx class a value type, or a

mechanism?

l.e., is there an obvious notion of
what it means for two RegEx

objects to have the same value?

439

3. Two Important, Instructional Case Studies

Regular Expressions

Does/should it represent a value?

| claim, “yes!”

l.e., is there an obwous notion of
what it means for two RegEx

objects to have the same value?

3. Two Important, Instructional Case Studies

Regular Expressions

Important Design Questions:
 What is a Regular Expression?

* Why create a separate class for it?
* Does/should it represent a value?
* How should its value be defined?
* Should such a class be regular?

441

3. Two Important, Instructional Case Studies

Regular Expressions

How should its value be defined?
1. The string used to create it.

442

3. Two Important, Instructional Case Studies

Regular Expressions

How should its value be defined?
1. The string used to create it.
2. The language it accepts.

443

3. Two Important, Instructional Case Studies

Regular Expressions

How should its value be defined?
1. The string used to create it.
2. The language it accepts.

Note that there is no accessor to get
the string used to initialize the value.

3. Two Important, Instructional Case Studies

Regular Expressions

How should its value be defined?
1. The string used to create it.
2. The language it accepts.

IMO, the correct answer is 2. Why?
Note that there is no accessor to get
the string used to initialize the value.

3. Two Important, Instructional Case Studies

Regular Expressions

How should its value be defined?

Actually, there is no
such accessor, precisely

because we defined
value the way we did!

3. Two Important, Instructional Case Studies

Regular Expressions

How should |ts value be defined?

1. ™

~ \\J
e Wh: at makes a RegEx

o) value special —i.e.,
< distinct from that of the A
(const char *) |
. u sed to create it—isthe
lan que value a RegEx
N Ject represents. lue.

S—

S \\\\ /////)

3. Two Important, Instructional Case Studies

Regular Expressions

How should its value be defined?

Had we provided

such an accessor,
s{ It would not be et
tNconsidered salient.}-

3. Two Important, Instructional Case Studies

Regulc

ol
1. 5 -

_| Had we provided

-{ Such an accessor,

8¢ It would not be et

tHconsidered salient.|-

3. Two Important, Instructional Case Studies
Regular Expressic
Or iteration order for

std: :unorderd map

3. Two Important, Instructional Case Studies
Regular Expressic
Or iteration order for

std: :unorderd map

3. Two Important, Instructional Case Studies

Regular Expressions

Important Design Questions:
 What is a Regular Expression?

* Why create a separate class for it?
* Does/should it represent a value?
* How should its value be defined?
* Should such a class be regular?

452

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

l.e., Should our RegEx class

support all of the value-semantic
syntax of a regular class?

453

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

l.e., Should our RegEx class

support all of the value-semantic
syntax of a regular class?

Question: How expensive would
operator== be to implement?

454

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?

455

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?

457

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= O[1]?

458

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= O[1]?

459

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= Oflog N]

460

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= Oflog N]

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= Oflog N]

462

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= Oflog N]
= O[sqrt N]

463

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?

log N]
sqrt N]
N]

464

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?

O

O
O
O

log N]
sqrt N]
N]

‘N * log N]

465

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= Oflog N]

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?

O

O
O
O

log N]
sqrt N]
N]

‘N * log N]

467

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= Oflog NJ
O[sqgrt N]
= O[N]
O[N * log N]
O[N * sgrt N]

468

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= Oflog NJ

sqrt N]

N]

‘N * log N]

[N * sgrt N]

[NA2]

|
O O O O O

469

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= Oflog NJ

sqrt N]

N]

‘N * log N]

[N * sgrt N]

[NA2]

N"2 * log N]

|
O O O O O O

470

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= Oflog NJ

sqrt N]

N]

‘N * log N]

[N * sgrt N]

[NA2]

N"2 * log N]

= Polynomial

O O O O O O

471

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= Oflog NJ

sqrt N]

N]

‘N * log N]

[N * sgrt N]

[NA2]

N"2 * log N]

= Polynomial

= NP

|
O O O O O O

472

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= Oflog NJ

sqrt N]

N]

‘N * log N]

[N * sgrt N]

[NA2]

N"2 * log N]

= Polynomial

= NP

= NP complete 473

O O O O O O

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
" QOflog N]

sqrt N]

N]

‘N * log N]

N * sgrt N]

[NA2]

N2 * log N]

= Polynomial

= NP

= NP Complete

= P-SPACE 174

O O O O O O

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= Oflog N]

O[sgrt N]

O[N]

O[N * log N]

O[N * sqrt N]
O[NA2]

O[N”2 * log N]
Polynomial

NP

NP Complete
P-SPACE

P-SPACE Complete

475

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= Oflog N]

= O[sqrt N]

= OJN]

= O[N * log N]

= O[N *sqgrt N]

= O[N~2]

= O[N”2 * log N]

= Polynomial

= NP

= NP Complete

= P-SPACE

= P-SPACE Complete
= Undecidable

476

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

Question: How expensive would operator== be to implement?
= Oflog N]
O[sgrt N]

O[N]

O[N * log N]
O[N * sqrt N]
O[NA2]

O[N”2 * log N]
Polynomial

NP

NP Complete
P-SPACE
P-SPACE Complete >
Undecidable

477

3. Two Important, Instructional Case Studies

Regular Expressions

Over an alphabet Z, given one DFA having states S={si} (of which
ACS are accepting) and transition function 6:5x2-S, and another
DFA having states T={tj} (of which BET are accepting) and
transition function :TxZ->T, one can "easily" construct a DFA
with states U=SxT (Cartesian product) and transition function
n((si, tj), o) = (6(si, o), l(tj, o)), where o € 2. Then the two original
DFAs are equivalent iff the only states reachable in this Cartesian-
product DFA are a subset of (AxB)U((S\A)x(T\B)) — i.e., it's
impossible to reach a state that is accepting in one of the original
DFAs, but not in the other. Once one has translated the regular
expressions to DFAs, the naive time complexity is O[| 2] !S!'1T1],
and the space complexity is O[|S|-|T|-|Z]].

478

3. Two Important, Instructional Case Studies

Regular Expressi

Should we avoid value types
Should such

where equality comparison
Question: How expensive wo is expensive?
= Oflog N]

= P-SPACE

= P-SPACE Complete >
= Undecidable

479

3. Two Important, Instructional Case Studies

Regular Expressions

Should such a class be regular?

ion: How expensive would operator== be to implement?

and Ass;j @nfﬂ@m?
Aren’t

\]

= P-SPACE

= P-SPACE Complete >
= Undecidable

3. Two Important, Instructional Case Studies

Regular Expressions

Discussion?

3. Two Important, Instructional Case Studies

Priority Queues

Important Design Questions:
 What is a Priority Queue?

* Why create a separate class for it?
* Does/should it represent a value?
* How should its value be defined?
* Should such a class be regular?

3. Two Important, Instructional Case Studies

Priority Queues

Important Design Questions:
 What is a Priority Queue?

* Why create a separate class for it?
* Does/should it represent a value?
* How should its value be defined?
* Should such a class be regular?

483

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

484

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

A priority queue is a (generic) container that
provides constant-time access to its top
priority element — defined by a user-
supplied priority function (or functor) — as
well as supporting logarithmic-time pushes
and pops of queue-element values.

485

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

Salient seneric) container that

= defin%i by a user-
suppliec priority function (or fr:nctor) — as
well as'supporting Iogarithmic-time@s

and of queue-element values.

486

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
Example Queue Element:

class LabeledPoint {
std::string d label;

int d x;
int d y;
public:

// .. (Regular Type)

const std::stringé& label() const { return d label };
int x () const { return d x; };
int v () const { return d y; };

s

bool operator==(const LabeledPointé& lhs,
const LabeledPoint& rhs) {
return lhs.label () == rhs.label ()

&& lhs.x () == rhs.x ()

&& lhs.y () == rhs.y(); (Unconstrained Attribute Class)

487

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

Example Queue Element: Example Comparison Function:

class LabeledPoint { bool less (const LabeledPointé& a,
std::string d label; const LabeledPointé& b) {
int d x;
int dy: return abs(a.x()) + abs(a.y())

public: B < abs(b.x()) + abs(b.y());
// .. (Regular Type) } (a.k.a. "Manhattan Distance”)

const std::stringé& label() const { return d label };
int x () const { return d x; };
int v () const { return d y; };

s

bool operator==(const LabeledPointé& lhs,
const LabeledPoint& rhs) {

return lhs.label () == rhs.label ()
&& lhs.x () == rhs.x ()
&& lhs.y () == rhs.y(); (Unconstrained Attribute Class)

} 488

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

Example Queue Element: Example Comparison Function:
class LabeledPoint { bool less (const LabeledPointé& a,
std::string d label; const LabeledPointé& b) {

<g g_D\ return abs(a.x()) + abs(a.y())

public: < abs(b.x()) + abs(b.y());
}\ (a.k.a. "Manhattan Distance”)

// .. (Regular Type)

const std::stringé& label() const { return d label };
int x () const { return d x; };
int v () const { return d y; };

s

bool operator==(const LabeledPointé& lhs,
const LabeledPoint& rhs) {

return lhs.label () == rhs.label ()
&& lhs.x () == rhs.x ()
&& lhs.y () == rhs.y(); (Unconstrained Attribute Class)

} 489

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue? T —

- labeled with its
0 -_ calculated priority.
element having a
313014 [[].

1- Each distinct color
distinct value.
\ J\ Y J\ J\ Y)

represents an
2_
31 assert (g.top() ==);
0 1 3 490

®

Array-Based Heap:

3. Two Important, Instructional Case Studies

Priority Queues

Each element is
labeled with its
calculated priority.

Each distinct color
represents an
element having a
distinct value.

Different Priorities,
Different Values

3. Two Important, Instructional Case Studies

Priority Queues

° o o ?
What IS a Pr'or’ty Queue' Each element is
o - labeled with its

- calculated priority.
1 Each distinct color

L represents an

- element having a
) . distinct value.

Different Priorities,
Different Values

Array-Based Heap: [3]30 I I }}
2

S— | I\ J
0 1

i
3 492

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue? T —

) [labeled with its
| 2 calculated priority.
element having a
‘@ distinct value.
r‘v
RICIET CIC)
N~
2 3

represents an
2 |
3 _]
Different Values
e
J—

J\

1 Each distinct color
Same Priority,
0 1

493

3. Two Important, Instructional Case Studies

Priority Queues

® [g ?

What IS a Prlor’ty Queue' Each element is

- labeled with its
0 calculated priority.
Each distinct color

represents an
element having a

. distinct value.

Same Priority,
Same Value

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue? T —
[labeled with its
’ 1 calculated priority.

1- . Each distinct color
represents an

element having a
2 . L.

distinct value.
3]

Same Priority,
Array-Based Heap: [a 3 ISOI 4 I I }}

Different Values

Y Y
1 3 495

o{

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue? T —

) i labeled with its
__ 2 calculated priority.
element having a
313014 [[].

1- Each distinct color
distinct value.
\ J\ Y J\ J\ Y)

represents an
2 _
. qg.push (| 2);
0 1 3 496

—
m

Array-Based Heap:

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue? T —
[labeled with its
’ 1 calculated priority.

1- Each distinct color
represents an

element having a
2 . L.
distinct value.
3 2 - q-push([2);

Array-Based Heap: [3] 0 4 2 H

L | I Y I , J
0 1 2 3 497

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue? T —

) [labeled with its
| 2 calculated priority.

Each distinct color
represents an
2 _
3 |

element having a
distinct value.
q.push () 7
e 22 SEEEEEE -
\ J{ Y J\)

0 1 498

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue? T —
[labeled with its
’ 1 calculated priority.

1- Each distinct color

represents an
2 -
3 -

element having a
distinct value.
q.push () 7

- (CINEEEE -
Y) Y J\ J\ Y)

0 1 3 499

—
ﬂ

Array-Based Heap:

3. Two Important, Instructional Case Studies

Priority Queues

(] [J [?

What is a Priority Queue: e TT—

[labeled with its
0 '_ 2 calculated priority.
1 Each distinct color

- represents an

i element having a
: 1 4 31 distinct value.
. q.push () 7
s |2 (00 + D DEBEE

) 2 3

- I\ J
0

3. Two Important, Instructional Case Studies

Priority Queues

(] [J [?

What is a Priority Queue: e TT—

[labeled with its
0 '_ 2 calculated priority.
1 Each distinct color

- represents an

i element having a
: 1 4 31 distinct value.
. q.push () 7
waesesve | 2 (@)« O BEEE

S— | I Y I , J
0 1 2 3 501

3. Two Important, Instructional Case Studies

Priority Queues

Each element is
labeled with its
calculated priority.

What is a Priority Queue?

Each distinct color
represents an

element having a
2 distinct value.
q.push();
@Isol caflee@e

J\ J
i i

1 2 3 502

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

0 -

Each element is
labeled with its
calculated priority.

Each distinct color
represents an
element having a
distinct value.

g.push () ;
———rrrn e

\ Tt , I , I , J
0 1 2 3 503

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

0 -

Each element is
labeled with its
calculated priority.

Each distinct color
represents an
element having a
distinct value.

q.pop () ;

ersesarer 22 0+ 3 o @EEEE

\ Tt , I , I , J
0 1 2 3 504

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

0 -

Each element is
labeled with its
calculated priority.

Each distinct color
represents an
element having a
distinct value.

q.pop () ;

waypasea vy (2)2 0 4| o [e

\ Tt , I , I , J
0 1 2 3 505

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

0 -

Each element is
labeled with its
calculated priority.

Each distinct color
represents an
element having a
distinct value.

q.pop () ;

vassren (O304 s MEREE

\ Tt , I , I , J
0 1 2 3 506

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

Each element is

Swap with the = 2
0- If equally urgent, S element having the labeled with |_tS _
choose the left child. more urgent priority. Calculated pI’IOI’Ity.

1- Each distinct color
- represents an
i element having a
2 - ..
I distinct value.
1 g.pop () 7

woyssearar: [@]2] < s DEEEEO

L J
0 1 2 3 507

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

Each element is
labeled with its
calculated priority.

Each distinct color
represents an

, i element having a
1 distinct value.
1 q.pop () ;

l@lwl B L

J\ J
i i

1 2 3 508

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

Each element is
labeled with its
calculated priority.

Each distinct color
represents an

, i element having a
1 distinct value.
1 q.pop () ;

Array-Based Heap: @ 301 4 I 3 131“ I I }}

S— | I Y I , J
0 1 2 3 509

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

Each element is

) labeled with its
| 2 calculated priority.
1 Each distinct color
- represents an
, i element having a
__ . sl distinct value.
7 qg.pop () ;

Array-Based Heap: [30141@131)\“ I I }}

\ It , I J
0

1 510

3. Two Important, Instructional Case Studies

Priority Queues

Each element is

What is a Priority Queue?

) labeled with its
| 2 calculated priority.
1 Each distinct color
- represents an
, i element having a
__ . sl distinct value.
7 qg.pop () ;

Array-Based Heap: [\@13014 I I }}

J\ J\ J
i i

0 1 2 3 511

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue? T —
[labeled with its
’ 1 calculated priority.

1- Each distinct color

represents an
2 -
3 -

313014 [).

distinct value.
Y) . J\ J\ Y |

0 1 3 512

q.pop () ;

—
“

Array-Based Heap:

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue? T —
[labeled with its
’ 1 calculated priority.

1- Each distinct color

represents an
2 -
3 -

313014 [).

distinct value.
Y) . J\ J\ Y |

0 1 3 513

q.pop () ;

—
“

Array-Based Heap:

3. Two Important, Instructional Case Studies

Priority Queues

Important Design Questions:

 What is a Priority Queue?

* Why create a separate class for it?
* Does/should it represent a value?
* How should its value be defined?

* Should such a class be regular?

514

3. Two Important, Instructional Case Studies

Priority Queues

Why create a separate class for it?

515

3. Two Important, Instructional Case Studies

Priority Queues

Why create a separate class for it?
A Priority Queue is a useful data
structure for dispensing value-
semantic (as well as other types of)
objects according to a user-specified
priority order.

516

3. Two Important, Instructional Case Studies

Priority Queues

Important Design Questions:
 What is a Priority Queue?

* Why create a separate class for it?
* Does/should it represent a value?
* How should its value be defined?
* Should such a class be regular?

517

3. Two Important, Instructional Case Studies

Priority Queues

Does/should it represent a value?

518

3. Two Important, Instructional Case Studies

Priority Queues

Does/should it represent a value?
Isa PriorityQueue class a value

type, or a mechanism?

519

3. Two Important, Instructional Case Studies

Priority Queues

Does/should it represent a value?
Isa PriorityQueue class a value

type, or a mechanism?

l.e., is there an obvious notion of what it
means for two PriorityQueue

objects to have the same value?

520

3. Two Important, Instructional Case Studies

Priority Queues

Does/should it represent a value?

Py 2 (@ A—gg
1lm, “yes!

l.e., is there an obvious notion of what it
means for two PriorityQueue

objects to have the same value?

521

3. Two Important, Instructional Case Studies

Priority Queues

Does/should it represent a value?

| claim, “yes!”

course, |of what it
ue

Assuming, of
that the queue-

element type IS
3lso value semantic.

objects

522

3. Two Important, Instructional Case Studies

Priority Queues

Important Design Questions:
 What is a Priority Queue?

* Why create a separate class for it?
* Does/should it represent a value?
* How should its value be defined?
* Should such a class be regular?

523

3. Two Important, Instructional Case Studies

Priority Queues

How should its value be defined?

524

3. Two Important, Instructional Case Studies

Priority Queues

How should its value be defined?

o™

4

525

3. Two Important, Instructional Case Studies

Priority Queues

How should its value be defined?

526

3. Two Important, Instructional Case Studies

Priority Queues

How should its value be defined?
Two objects of class PriorityQueue

have the same value iff there does not
exist a distinguishing sequence among
all of its salient operations:

1. top

2. push
3. pop

3. Two Important, Instructional Case Studies

Priority Queues

Important Design Questions:
 What is a Priority Queue?

* Why create a separate class for it?
* Does/should it represent a value?
* How should its value be defined?
* Should such a class be regular?

528

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

l.e., should our PriorityQueue
class support all of the value-
semantic syntax of a regular class?

529

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

l.e., should our PriorityQueue

class support all of the value-
semantic syntax of a regular class?

Question: How expensive would
operator== be to implement?

530

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

531

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Moreover, how on earth would we
determine whether two arbitrary
PriorityQueue objects do or do
not have a distinguishing sequence
of salient operations??

532

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Necessary:

533

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Necessary:
- Same number of elements.

534

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Necessary:
- Same number of elements.

- Same numbers of respective element values.

535

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Necessary:
- Same number of elements.

- Same numbers of respective element values.
Sufficient:

536

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Necessary:
- Same number of elements.

- Same numbers of respective element values.

Sufficient:
- Same underlying linear heap order.

537

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Necessary:
- Same number of elements.

- Same numbers of respective element values.
Sufficient:
- Same underlying linear heap order.

BUT IS THIS NECESSARY OR NOT??

538

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

For example, both of these linear heaps
pop in the same order:

Array-Based Heap 1: [3 ISOI 4 I I }}
Y}l J\ J

Y Y
0 1 2 3 539

Array-Based Heap 2: [3 ISOI 4 I I }}

Y“ | |
0 1 2 3 539

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

For example, both of these linear heaps
pop in the same order (of coursel):

Array-Based Heap 1: [3 ISOI 4 I I }}

Y“ Y Y
0 1 2 3 540

Array-Based Heap 2: [3 ISOI 4 I I }}

Y“ | |
0 1 2 3 540

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

But so do these:

Array-Based Heap 1: [2 I 4 I 3 m Z.\
|)

L Y I Y
0 1 2

vz (]3] 2 6]
Array-Based Heap 2: . 4] I]
— =
1

-
0

)
i

2

541

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

As it turns out, we can distinguish these
two values with appropriate pushes,
tops, and pops.

542

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

As it turns out, we can distinguish these
two values with appropriate pushes,
tops, and pops.

But can we always do that?

543

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

As it turns out, we can distinguish these
two values with appropriate pushes,
tops, and pops.

But can we always do that?

If we aren’t sure, should we implement
operator== for this class anyway? ..

3. Two Important, Instructional Case Studies

Priority Queues

What if we know that more than
99.99% (but less than 100%) of the time
we can distinguish the values of two
PriorityQueue objects that do not
have the same linear heap orderings?

s do that?

If we aren’t sure, should we implement
operator== for this class anyway? ..

3. Two Important, Instructional Case Studies

Priority Queues

If we aren’t sure, should we implement
operator== for this class anyway? ..

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Suppose it were true that, for any pair
of priority queues, where the linear
heap order is not the same, there exists
a sequence of salient operations that
distinguishes them:

What is the complexity of operator==":

547

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Suppose it were trr+~* or any pair

of priority qu linear
heap order ere exists
a distinguis)t salient
operations that ishesQe@:

What is the complexity of ope rator==:

548

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Until quite recently, that linear order is
necessary was just a conjecture.

549

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Until quite recently, that linear order is
necessary was just a conjecture.

| finally have a simple constructive proof.

550

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Until quite recently, that linear order is
necessary was just a conjecture.

| finally have a simple constructive proof.
Here is a very quick sketch:

551

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Priority One

Priority Two

552

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Priority One

Element Index i

Priority Two

Highest-Index Element |

aving Distinct Priorities

553

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Priority One
Element Index i
Priority Two

/ A\ /
Push Arbitrary Priority-Two Values

554

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Priority One
Element Index i
Priority Two

/ \ / \

Push a Priority-One Value

555

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Priority One
Element Index i
Priority Two

/ \ / A\

Push a Priority-One Value

556

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Priority One
Element Index i
Priority Two
[/ N\ i [N\

Push Arbitrary Priority-Two values

557

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Priority One
Element Index i
Priority Two
[/ N\ i [N\

Push a Different Priority-One Value

558

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Priority One
Element Index i
Priority Two
[/ N\ i [N\

Push a Different Priority-One Value

559

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Priority One

Element Index i

Priority Two
[/ N\ i [N\
A .

Push N Arbitrary Priority-Two Values s«

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Priority One

Element Index i

Priority Two

Push N Arbitrary Priority-Two Values s«

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Wil P Will Pop
'_ op First!
First! °

@

Priority One

Element Index i

Priority Two

Pop N Elements

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

Priority One —

Priority Two
!]
e

After almost N pop operations
the tops are not the same!

563

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

o
Priority One —

Priority Two
!]
e

After one more pop operation
the element values are not the same!

564

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

?

565

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

YES IT SHOULD!

566

3. Two Important, Instructional Case Studies

Priority Queues

Should such a class be regular?

Question: How expensive would operator== be to implement?

YES IT SHOULD!
O[N] 1]

567

3. Two Important, Instructional Case Studies

Priority Queues

Discussion?

Outline

Introduction and Background

Components, Physical Design, and Class Categories

Understanding Value Semantics (and Syntax)
Most importantly, the Essential property of Value

Two Important, Instructional Case Studies

Specifically, Regular Expressions and Priority Queues

Conclusion

What must be remembered when designing value types

569

Outline

Introduction and Background

Components, Physical Design, and Class Categories

Understanding Value Semantics (and Syntax)
Most importantly, the Essential property of Value

Two Important, Instructional Case Studies

Specifically, Regular Expressions and Priority Queues

Conclusion
What must be remembered when designing value types

570

4. Conclusion

What to Remember about VSTs

571

4. Conclusion

What to Remember about VSTs
So what are the take-aways?

4. Conclusion

What to Remember about VSTs

So what are the take-aways?
= Some types naturally represent a value.

573

4. Conclusion

What to Remember about VSTs
So what are the take-aways?

= |deally, each value type will have regular syntax.

574

4. Conclusion

What to Remember about VSTs
So what are the take-aways?

= Moreover, all operations on value types should
follow proper value semantics:

575

4. Conclusion

What to Remember about VSTs
So what are the take-aways?

= Moreover, all operations on value types should
follow proper value semantics:

= Value derives only from autonomous object state,
but not all object state need contribute to value.

576

4. Conclusion

What to Remember about VSTs
So what are the take-aways?

= Moreover, all operations on value types should
follow proper value semantics:

= Adhere to the Essential Property of Value.

577

4. Conclusion

What to Remember about VSTs
So what are the take-aways?

= Moreover, all operations on value types should
follow proper value semantics:

= Behave as if each value has a canonical internal
representation.

578

4. Conclusion

What to Remember about VSTs

» Two objects of a given value-
semantic type have the same
value iff there does not exist a
distinguishing sequence among
all of its salient operations.

Value iIs in a class’s DNA

4. Conclusion

What to Remember about VSTs
The key take-away:

4. Conclusion

What to Remember about VSTs
The key take-away:

What makes a value-type proper
has essentially nothing to do with
syntax...

4. Conclusion

What to Remember about VSTs
The key take-away:

What makes a value-type proper
has essentially nothing to do with
syntax; it has everything to do with
semantics:

4. Conclusion

What to Remember about VSTs
The key take-away:

A class that respects the
Essential Property of Value is value-
semantic...

4. Conclusion

What to Remember about VSTs
The key take-away:

What makes a value-type proper
has essentially nothing to do with
syntax; it has everything to do with
semantics: A class that respects the
Essential Property of Value is value-
semantic; otherwise, it is not!

For More Information

Find our open-source distribution at:
http://www.openbloomberg.com/bde

Moderator: kpfleming@bloomberg.net

How to contribute? See our site.
All comments and criticisms welcome...

| can be reached at jlakos@bloomberg.net

The End

585

mailto:kpfleming@bloomberg.net
mailto:jlakos@bloomberg.net

