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Abstract 
When people talk about a type as having *value* *semantics*, they are often thinking about its ability 

to be passed to (or returned from) a function by value.  In order to do that, the C++ language requires 

that the type implement a copy constructor, and so people routinely implement copy constructors on 

their classes, which begs the question, "Should an object of that type be copyable at all?"  If so, what 

should be true about the copy?  Should it have the same state as the original object?  Same 

behavior?  What does copying an object mean?! 

 

By *value* *type*, most people assume that the type is specifically intended to represent a member of 

some set (of values).  A value-semantic type, however, is one that strives to approximate an abstract 

*mathematical* type (e.g., integer, character set, complex-number sequence), which comprises 

operations as well as values.  When we copy an object of a value-semantic type, the new object 

might not have the same state, or even the same behavior as the original object; for proper value 

semantic types, however, the new object will have the same value. 

 

In this talk, we begin by gaining an intuitive feel for what we mean by *value* by identifying *salient* 

*attributes*, i.e., those that contribute to value, and by contrasting types whose objects naturally 

represent values with those that don't.  After quickly reviewing the syntactic properties common to 

typical value types, we dive into the much deeper issues that value semantics entail.  In particular, we 

explore the subtle Essential Property of Value, which applies to every *salient* mutating operation on 

a value-semantic object, and then profitably apply this property to realize a correct design for each of 

a variety of increasingly interesting (value-semantic) classes.   
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Most importantly, the Essential Property of Value 
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4. Conclusion 
What must be remembered when designing value types 
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Large-Scale C++ Software Design: 

• Involves many subtle logical and physical aspects. 
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 Component: Uniform Physical Structure 

// component.t.cpp 
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// ... 

int main(...) 
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  //...  
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A Component Is Physical 
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Large-Scale C++ Software Design: 

• Involves many subtle logical and physical aspects. 

• Requires an ability to isolate and modularize 
logical functionality within discrete, fine-grained 
physical components. 
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Logical content aggregated into a 
Physical hierarchy of components 

a b 

c 
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Large-Scale C++ Software Design: 

• Involves many subtle logical and physical aspects. 

• Requires an ability to isolate and modularize logical 
functionality within discrete, fine-grained physical 
components. 

• Compels the designer to delineate logical behavior 
precisely, while managing the physical 
dependencies on other subordinate components. 
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Large-Scale C++ Software Design: 

• Involves many subtle logical and physical aspects. 

• Requires an ability to isolate and modularize logical 
functionality within discrete, fine-grained physical 
components. 

• Compels the designer to delineate logical behavior 
precisely, while managing the physical 
dependencies on other subordinate components. 

• Demands a consistent, shared understanding of the 
properties of common class categories: Value Types. 
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2. Understanding Value Semantics 

Purpose of this Talk 

26 

Answer some key questions about value: 
What do we mean by value? 

Why is the notion of value important? 

Which types should be considered value types? 

What do we expect syntactically of a value type? 

What semantics should its operations have? 

How do we design proper value-semantic types? 

When should value-related syntax be omitted? 
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2. Understanding Value Semantics 

Value versus Non-Value Types 

Getting Started: 

• Not all useful C++ classes are value types. 

• Still, value types form an important category. 

• Let’s begin with understanding some basic 
properties of value types. 

• Then we’ll contrast them with non-value 
types, to create a type-category hierarchy. 

• After that, we’ll dig further into the details of 
value syntax and semantics. 
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2. Understanding Value Semantics 

True Story 

• Date: Friday Morning, October 5th, 2007 

• Place: LWG, Kona, Hawaii 

• Defect: issue #684: Wording of Working Paper 
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• Date: Friday Morning, October 5th, 2007 

• Place: LWG, Kona, Hawaii 

• Defect: issue #684: Wording of Working Paper 
 
What was meant by stating that two 

 

            std::match_result 
 

objects (§28.10) were “the same” ? 

2. Understanding Value Semantics 

True Story 
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“The Same” 

What do we mean by “the same”? 
• The two objects are identical? 

– same address, same process, same time? 

• The two objects are distinct, yet have certain 
properties in common. 

                 (It turned out to be the latter.) 

So the meaning was clear…        Or was it? 
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What exactly has to be “the Same”? 

The discussion continued…   
                  …some voiced suggestions: 

• Whatever the copy constructor preserves. 

• As long as the two are “equal”. 

• As long as they’re “equivalent”. 

• “You know what I mean!!” 
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What exactly has to be “the Same”? 

The discussion continued…   
                  …some voiced suggestions: 

• Whatever the copy constructor preserves. 

• As long as the two are “equal”. 

• As long as they’re “equivalent”. 

• “You know what I mean!!” 

Since “purely wording” left solely to the editor! 
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Not just an “Editorial Issue”? 

 
    What it means for two objects to be 
  “the same” is an important, pervasive, 
      and recurring concept in practical 
                   software design. 
  
 

  Based on the notion of “value”. 
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What do we 
mean by value? 
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What does a Copy Constructor do? 

After copy construction, the 
resulting object is… 

   substitutable for the original one 
with respect to “some criteria”. 

     What Criteria? 
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 std::vector<double> a, b(a); 

  

 assert(&a == &b);        // ?? 
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2. Understanding Value Semantics 

Same State? 

class String { 

   char *d_array_p;  // dynamic 

    int   d_capacity; 

    int   d_length; 

  public: 

    String(); 

    String(const String& original); 
          // ... 

}; 
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Same State? 

class String { 

   char *d_array_p;  // dynamic 

    int   d_capacity; 

    int   d_length; 

  public: 

    String(); 

    String(const String& original); 
          // ... 

}; 

What happens if this 

address is copied? 
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Same Behavior? 

    If we apply the same sequence of operations to both 
objects, the observable behavior will be the same: 
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2. Understanding Value Semantics 

Same Behavior? 

    If we apply the same sequence of operations to both 
objects, the observable behavior will be the same: 

 

  void f(bool x) 

  { 

    std::vector<int> a; 

    a.reserve(65536);         // is capacity copied? 

    std::vector<int> b(a);       assert(a == b) 
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    If we apply the same sequence of operations to both 
objects, the observable behavior will be the same: 

 

  void f(bool x) 

  { 

    std::vector<int> a; 

    a.reserve(65536);         // is capacity copied? 

    std::vector<int> b(a);       assert(a == b) 
 

    a.reserve(65536);         // no reallocation! 

    b.reserve(65536);         // memory allocation? 
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Same Behavior? 

    If we apply the same sequence of operations to both 
objects, the observable behavior will be the same: 

 

  void f(bool x) 
  { 

    std::vector<int> a; 

    a.reserve(65536);         // is capacity copied? 

    std::vector<int> b(a);       assert(a == b) 
 

    a.reserve(65536);         // no reallocation! 

    b.reserve(65536);         // memory allocation? 
 
  a.push_back(5);  b.push_back(5);  // so not empty 

 

    std::vector<int>& r = x ? a : b; 

    if (&r[0] == &a[0]) { std::cout << "Hello"; } 

    else                { std::cout << "Goodbye"; } 
  } 
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      What should be “the same”  

            after copy construction? 
 
 (It better be easy to understand.)  

 
            The two objects should 
          represent the same value! 
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particular representation. 

 

 

77 



2. Understanding Value Semantics 

Mathematical Types 

A mathematical type consists of  

• A set of globally unique values 

– Each one describable independently of any 
particular representation. 

– For example, the decimal integer 5: 
   

           5, 5, V, 101(binary), five , IIII  

 

 

78 



2. Understanding Value Semantics 

Mathematical Types 

A mathematical type consists of  

• A set of globally unique values 

– Each one describable independently of any 
particular representation. 

– For example, the decimal integer 5: 
   

           5, 5, V, 101(binary), five , IIII  

• A set of operations on those values 

– For example:    +,   -,   x            (3 + 2) 

 
79 



2. Understanding Value Semantics 

Mathematical Types 

A mathematical type consists of  

• A set of globally unique values 

– Each one describable independently of any 
particular representation. 

– For example, the decimal integer 5: 
   

           5, 5, V, 101(binary), five , IIII  

• A set of operations on those values 

– For example:    +,   -,   x            (3 + 2) 

 
80 

Operations 
will 

become 
important 

shortly! 



2. Understanding Value Semantics 

C++ Type 

81 



2. Understanding Value Semantics 

C++ Type 

• A C++ type may represent (an approximation 
to) an abstract mathematical type: 
– For example: The C++ type int represents (an 

approximation to) the mathematical type integer. 

• An object of such a C++ type represents one of 
(a subset of) the globally unique values in the 
set of the abstract mathematical type. 

• The C++ object is just another representation 
of that globally unique, abstract value. 
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2. Understanding Value Semantics 

C++ Type 

• A C++ type may represent (an approximation 
to) an abstract mathematical type: 
– For example: The C++ type int represents (an 

approximation to) the mathematical type integer. 

• An object of such a C++ type represents one of 
(a subset of) the globally unique values in the 
set of that abstract mathematical type. 

• The C++ object is just another representation 
of that globally unique, abstract value, e.g., 5. 
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2. Understanding Value Semantics 

So, what do we mean by “value”? 

class Date { 

     short d_year; 

     char  d_month; 

     char  d_day; 

  public: 
         // … 

    int year(); 

    int month(); 

    int day(); 

}; 
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int day() const; 

int month() const; 

int year() const; 
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    int day(); 

}; 
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2. Understanding Value Semantics 

So, what do we mean by “value”? 

         Salient Attributes 
  

            

           int year(); 

           int month(); 

           int day();  
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2. Understanding Value Semantics 

So, what do we mean by “value”? 

         Salient Attributes 
The documented set of (observable) 
named attributes of a type T that 
must respectively “have” (refer to) 
the same value in order for two 
instances of T to “have” (refer to) the 
same value. 
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2. Understanding Value Semantics 

So, what do we mean by “value”? 

class Time { 

     char  d_hour; 

     char  d_minute; 

     char  d_second; 

     short d_millisec; 

  public: 

    // … 

    int hour(); 

    int minute(); 

    int second(); 

    int millisecond(); 

}; 

 

class Time { 

    int d_mSeconds; 

 

 

 

  public: 

    // … 

    int hour(); 

    int minute(); 

    int second(); 

    int millisecond(); 

}; 
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class Time { 

   Internal Representation 

     

  

 

  public: 

    // … 

    int hour(); 

    int minute(); 

    int second(); 

    int millisecond(); 

}; 

 

2. Understanding Value Semantics 

So, what do we mean by “value”? 

class Time { 

   Internal Representation 

      

     

      

  public: 

    // … 

    int hour(); 

    int minute(); 

    int second(); 

    int millisecond(); 

}; 

 

VALUE 
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2. Understanding Value Semantics 

So, what do we mean by “value”? 

QUESTION: 

What would be the simplest 
overarching mathematical type 
for which std::string and 
(const char *)are both 

approximations? 
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2. Understanding Value Semantics 

So, what do we mean by “value”? 

QUESTION: 

So if they both represent the 
character sequence “Fred” do 

they represent the same value? 
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2. Understanding Value Semantics 

So, what do we mean by “value”? 

QUESTION: 

What about integers and 
integers mod 5? 
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2. Understanding Value Semantics 

So, what do we mean by “value”? 

An “interpretation” of a subset of instance state. 
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2. Understanding Value Semantics 

So, what do we mean by “value”? 

An “interpretation” of a subset of instance state. 

• The values of the Salient Attributes, and not 
the instance state used to represent them, 
comprise what we call the value of an object. 
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2. Understanding Value Semantics 

So, what do we mean by “value”? 

An “interpretation” of a subset of instance state. 

• The values of the Salient Attributes, and not 
the instance state used to represent them, 
comprise what we call the value of an object. 

• This definition may be recursive in that a 
documented Salient Attribute of a type T may 
itself be of type U having its own Salient 
Attributes. 
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2. Understanding Value Semantics 

So, what do we mean by “value”? 

class Point { 

     short int d_x; 

     short int d_y; 

  public: 

    // … 

    int x(); 

    int y(); 

}; 
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2. Understanding Value Semantics 

So, what do we mean by “value”? 

class Point { 

   Internal Representation 

       

  public: 

    // … 

    int x(); 

    int y(); 

}; 
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2. Understanding Value Semantics 

So, what do we mean by “value”? 

class Point { 

   Internal Representation 

       

  public: 

    // … 

    int x(); 

    int y(); 

}; 

 

class Box { 

    Point d_topLeft; 

    Point d_botRight; 

  public: 

    // … 

  Point origin(); 

    int length(); 

    int width(); 

      

}; 
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class Box { 

   Internal Representation 

     

  public: 

    // … 

  Point origin(); 

    int length(); 

    int width(); 

      

}; 

 

2. Understanding Value Semantics 

So, what do we mean by “value”? 

class Point { 

   Internal Representation 

       

  public: 

    // … 

    int x(); 

    int y(); 

}; 
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2. Understanding Value Semantics 

So, what do we mean by “value”? 

class Point { 

   Internal Representation 

       

  public: 

    // … 

    int x(); 

    int y(); 

}; 

 

class Box { 

   Internal Representation 

     

  public: 

    // … 

  Point origin(); 

    int length(); 

    int width(); 

      

}; 
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2. Understanding Value Semantics 

What are “Salient Attributes”? 
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2. Understanding Value Semantics 

What are “Salient Attributes”? 

class vector { 

   T         *d_array_p; 

    size_type  d_capacity; 

    size_type  d_size; 
          // ... 

  public: 

    vector(); 

    vector(const vector<T>& orig); 
          // ... 

}; 
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2. Understanding Value Semantics 

What are “Salient Attributes”? 

Consider std::vector<int>:   

            What are its salient attributes? 
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2. Understanding Value Semantics 

What are “Salient Attributes”? 

Consider std::vector<int>:   

            What are its salient attributes? 
 

1. The number of elements: size(). 
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2. Understanding Value Semantics 

What are “Salient Attributes”? 

Consider std::vector<int>:   

            What are its salient attributes? 
 

1. The number of elements: size(). 

2. The values of the respective elements. 
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2. Understanding Value Semantics 

What are “Salient Attributes”? 

Consider std::vector<int>:   

            What are its salient attributes? 
 

1. The number of elements: size(). 

2. The values of the respective elements. 

3. What about capacity()? 
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2. Understanding Value Semantics 

What are “Salient Attributes”? 

Consider std::vector<int>:   

            What are its salient attributes? 
 

1. The number of elements: size(). 

2. The values of the respective elements. 

3. What about capacity()? 

   How is the client supposed to know for sure? 
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2. Understanding Value Semantics 

What are “Salient Attributes”? 

Salient Attributes: 
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2. Understanding Value Semantics 

What are “Salient Attributes”? 

Salient Attributes: 

1.  Are a part of logical design. 
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2. Understanding Value Semantics 

What are “Salient Attributes”? 

Salient Attributes: 

1.  Are a part of logical design. 

2.  Should be “natural” & “intuitive”. 
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2. Understanding Value Semantics 

What are “Salient Attributes”? 

Salient Attributes: 

1.  Are a part of logical design. 

2.  Should be “natural” & “intuitive” 

3.  Must be documented explicitly! 
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Why is value 

important? 
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2. Understanding Value Semantics 

Why are unique values important? 
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2. Understanding Value Semantics 

Why are unique values important? 

                                      IPC 
 

 

               

    Inter-Process 

    Communication 
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2. Understanding Value Semantics 

Why are unique values important?  

   Abstract date Type              C++ Date Class 
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2. Understanding Value Semantics 

Why are unique values important?  

   Abstract date Type              C++ Date Class 

 Has an infinite set of        

 valid date values.              
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2. Understanding Value Semantics 

Why are unique values important?  

   Abstract date Type              C++ Date Class 

 Has an infinite set of        

 valid date values.              

                                              

  

1969-07-16 

2008-04-03 

2001-09-11 

1941-12-07 

1999-12-31 

1000000 B.C.  

1000000 A.D. 

  99999-12-31 

  1776-07-04 

Globally Unique Values  

1917-12-10 

1919-02-05 

  1959-03-08 

  1994-08-14 
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2. Understanding Value Semantics 

Why are unique values important?  

   Abstract date Type              C++ Date Class 

 Has an infinite set of       Each instance refers to 

 valid date values.             one of (a subset of) 

                                             these abstract values. 

 

  

1969-07-16 

2008-04-03 

2001-09-11 

1941-12-07 

1999-12-31 

1000000 B.C.  

1000000 A.D. 

  99999-12-31 

  1776-07-04 

Globally Unique Values  

1917-12-10 

1919-02-05 

  1959-03-08 

  1994-08-14 
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2. Understanding Value Semantics 

Why are unique values important?  

   Abstract date Type              C++ Date Class 

 Has an infinite set of       Each instance refers to 

 valid date values.             one of (a subset of) 

                                             these abstract values. 

 

  

1969-07-16 

Date 2008-04-03 

2001-09-11 

1941-12-07 

1999-12-31 

1000000 B.C.  

1000000 A.D. 

  99999-12-31 

  1776-07-04 C++ 
Globally Unique Values  

1917-12-10 

1919-02-05 

  1959-03-08 

  1994-08-14 
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2. Understanding Value Semantics 

Why are unique values important?  

   Abstract date Type              C++ Date Class 

 Has an infinite set of       Each instance refers to 

 valid date values.             one of (a subset of) 

                                             these abstract values. 

 

  

1969-07-16 

Date 2008-04-03 

2001-09-11 

1941-12-07 

1999-12-31 

1000000 B.C.  

1000000 A.D. 

  99999-12-31 

  1776-07-04 C++ 
Globally Unique Values  

1917-12-10 

1919-02-05 

  1959-03-08 

  1994-08-14 
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2. Understanding Value Semantics 

Why are unique values important?  

      

                                              

 

  1969-07-16 

Date 2008-04-03 

2001-09-11 

1941-12-07 

1999-12-31 

1000000 B.C.  

1000000 A.D. 

  99999-12-31 

  1776-07-04 C++ 
Globally Unique Values  

1917-12-10 

1919-02-05 

  1959-03-08 

  1994-08-14 
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2. Understanding Value Semantics 

Why are unique values important?  

      

                                              

 

  1969-07-16 

Date 2008-04-03 

2001-09-11 

1941-12-07 

1999-12-31 

1000000 B.C.  

1000000 A.D. 

  99999-12-31 

  1776-07-04 

Database 

C++ 
Globally Unique Values  

1917-12-10 

1919-02-05 

  1959-03-08 

  1994-08-14 
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2. Understanding Value Semantics 

Why are unique values important?  

      

                                              

 

  1969-07-16 

Date 2008-04-03 

2001-09-11 

1941-12-07 

1999-12-31 

1000000 B.C.  

1000000 A.D. 

  99999-12-31 

  1776-07-04 

D 

a 

b 

c 

d 

e 

Database 

1917-12-10 

1919-02-05 

C++ 
Globally Unique Values  

  1959-03-08 

  1994-08-14 
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2. Understanding Value Semantics 

Why are unique values important?  

      

                                              

 

  1969-07-16 

Date 2008-04-03 

2001-09-11 

1941-12-07 

1999-12-31 

1000000 B.C.  

1000000 A.D. 

  99999-12-31 

  1776-07-04 

D 

a 

b 

c 

d 

e 

Database 

1917-12-10 

1919-02-05 

C++ 
Globally Unique Values  

  1959-03-08 

  1994-08-14 

131 



2. Understanding Value Semantics 

Why are unique values important?  

      

                                              

 

  

Date 2008-04-03 

2001-09-11 

1999-12-31 

1000000 B.C.  

1000000 A.D. 

  99999-12-31 

D 

a 

b 

c 

d 

e 

Database 

1917-12-10 

1919-02-05 

Date 

  1959-03-08 

C++ 

Java 

Globally Unique Values  

  1994-08-14 

1969-07-16 

1941-12-07 

  1776-07-04 
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2. Understanding Value Semantics 

Why are unique values important?  

      

                                              

 

  1969-07-16 

Date 2008-04-03 

2001-09-11 

1941-12-07 

1999-12-31 

1000000 B.C.  

1000000 A.D. 

  99999-12-31 

  1776-07-04 

D 

a 

b 

c 

d 

e 

Database 

1917-12-10 

1919-02-05 

Date 

  1959-03-08 

C++ 

Java 

Globally Unique Values  

  1994-08-14 
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2. Understanding Value Semantics 

Why are unique values important?  

(Not just an academic exercise.) 
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2. Understanding Value Semantics 

Why are unique values important?  

 

 

   When we communicate a value 
outside of a running process, 
we know that everyone is 
referring to “the same” value.  

 

 

(Not just an academic exercise.) 
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Which types  

are naturally 

value types? 
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2. Understanding Value Semantics 

Does state always imply a “value”? 
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2. Understanding Value Semantics 

Does state always imply a “value”? 
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2. Understanding Value Semantics 

Does state always imply a “value”? 

139 



What is its state?    

2. Understanding Value Semantics 

Does state always imply a “value”? 
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What is its state?  OFF    

2. Understanding Value Semantics 

Does state always imply a “value”? 
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What is its state?    

2. Understanding Value Semantics 

Does state always imply a “value”? 
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What is its state?   ON    

2. Understanding Value Semantics 

Does state always imply a “value”? 

143 



What is its state?   ON 

What is its value?   $5.00 

2. Understanding Value Semantics 

Does state always imply a “value”? 
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What is its state?   ON 

What is its value?   ? 

2. Understanding Value Semantics 

Does state always imply a “value”? 
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What is its state?   ON 

What is its value?   1 ? 

2. Understanding Value Semantics 

Does state always imply a “value”? 
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What is its state?   ON 

What is its value?   false ? 

2. Understanding Value Semantics 

Does state always imply a “value”? 
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What is its state?   ON 

What is its value?   £5.00 ? 

2. Understanding Value Semantics 

Does state always imply a “value”? 
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What is its state?   ON 

What is its value?   $5.00 ? 

Cheap at half  
the price! 

2. Understanding Value Semantics 

Does state always imply a “value”? 
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What is its state?   ON 

What is its value?   ? 

Any notion of “value” 

here would be artificial! 

2. Understanding Value Semantics 

Does state always imply a “value”? 

150 



Not every stateful object   has an obvious value. 

2. Understanding Value Semantics 

Does state always imply a “value”? 
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Not every stateful object 

• TCP/IP Socket 

• Thread Pool 

• Condition Variable 

• Mutex Lock 

• Reader/Writer Lock 

• Scoped Guard 

 

 

has an obvious value. 

2. Understanding Value Semantics 

Does state always imply a “value”? 
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Not every stateful object 

• TCP/IP Socket 

• Thread Pool 

• Condition Variable 

• Mutex Lock 

• Reader/Writer Lock 

• Scoped Guard 

 

 

has an obvious value. 

2. Understanding Value Semantics 

Does state always imply a “value”? 

153 

What would   
copy construction  
even mean here? 



Not every stateful object 

• TCP/IP Socket 

• Thread Pool 

• Condition Variable 

• Mutex Lock 

• Reader/Writer Lock 

• Scoped Guard 

 

 

has an obvious value. 

2. Understanding Value Semantics 

Does state always imply a “value”? 

154 

What would   
copy construction  
even mean here? 

We could invent 
some notion of value,  

but to what end?? 



Not every stateful object 

• TCP/IP Socket 

• Thread Pool 

• Condition Variable 

• Mutex Lock 

• Reader/Writer Lock 

• Scoped Guard 

 

 

has an obvious value. 

• Base64 En(De)coder 

• Expression Evaluator 

• Language Parser 

• Event Logger 

• Object Persistor 

• Widget Factory 

2. Understanding Value Semantics 

Does state always imply a “value”? 
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2. Understanding Value Semantics 

Does state always imply a “value”? 

QUESTION: 

Suppose we have a thread-safe 
queue used for inter-task 

communication: Is it a value 
type?  Should this object type 

support value-semantic syntax? 
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2. Understanding Value Semantics 

Does state always imply a “value”? 

QUESTION: 

Suppose we have a thread-safe 
queue used for inter-task 

communication: Is it a value 
type?  Should this object type 

support value-semantic syntax? 

157 

This class is a rare 
and subtle 

middle ground. 



Not every stateful object 

• TCP/IP Socket 

• Thread Pool 

• Condition Variable 

• Mutex Lock 

• Reader/Writer Lock 

• Scoped Guard 

 

 

has an obvious value. 

• Base64 En(De)coder 

• Expression Evaluator 

• Language Parser 

• Event Logger 

• Object Persistor 

• Widget Factory 

2. Understanding Value Semantics 

Does state always imply a “value”? 
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2. Understanding Value Semantics 

The Big Picture  
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2. Understanding Value Semantics 

Categorizing Object Types 

MyObjectType 
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The first question: “Does it have state?” 

Object 

2. Understanding Value Semantics 

Categorizing Object Types 
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The first question: “Does it have state?” 

Object 

Stateful Object Stateless Object 

2. Understanding Value Semantics 

Categorizing Object Types 

162 



The first question: “Does it have state?” 

Object 

Stateful Object Stateless Object 

DateUtil IsConvertible<U,V> std::less<T> 

2. Understanding Value Semantics 

Categorizing Object Types 
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The first question: “Does it have state?” 

Object 

Stateless Object 

DateUtil 

struct DateUtil { 

    // This 'struct' provides a namespace for a 

    // suite of pure functions that operate on  

    // 'Date' objects. 

 

    static Date lastDateInMonth(const Date& value); 

        // Return the last date in the same month 

        // as the specified date 'value'.  Note  

        // that the particular day of the month  

        // of 'value' is ignored. 

 

    // … 

 

} 

2. Understanding Value Semantics 

Categorizing Object Types 
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The first question: “Does it have state?” 

Object 

Stateless Object 

DateUtil 

struct DateUtil { 

    // This 'struct' provides a namespace for a 

    // suite of pure functions that operate on  

    // 'Date' objects. 

 

    static Date lastDateInMonth(const Date& value); 

        // Return the last date in the same month 

        // as the specified date 'value'.  Note  

        // that the particular day of the month  

        // of 'value' is ignored. 

 

    // … 

 

} 

2. Understanding Value Semantics 

Categorizing Object Types 
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2. Understanding Value Semantics 

The Big Picture  
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The second question: “Does it have value?” 

Object 

Stateful Object Stateless Object 

2. Understanding Value Semantics 

Categorizing Object Types 
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The second question: “Does it have value?” 

Object 

Stateful Object Stateless Object 

2. Understanding Value Semantics 

Categorizing Object Types 

Mechanism Value Type 
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The second question: “Does it have value?” 

Object 

Stateful Object Stateless Object 
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Categorizing Object Types 

Mechanism Value Type 
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The second question: “Does it have value?” 

Object 

Stateful Object Stateless Object 

2. Understanding Value Semantics 

Categorizing Object Types 

Mechanism Value Type 
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2. Understanding Value Semantics 

Top-Level Categorizations 

 
 
 
 
 
 
 

start here 
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2. Understanding Value Semantics 

The Big Picture  
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2. Understanding Value Semantics 

The Big Picture  

QUESTION: 

What does it mean for two 
abstract types to compare equal? 

 

upport value-semantic syntax? 
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2. Understanding Value Semantics 

The Big Picture  

QUESTION: 

What does it mean for two 
abstract types to compare equal? 
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—Tom Cargill (c. 1992) 

Data members are for: 



 

What syntax 
should value 
types have? 
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A value-semantic type T defines the following: 

• Default construction:   T a, b;         assert(a == b); 
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A value-semantic type T defines the following: 

• Default construction:   T a, b;         assert(a == b); 

Typically, but 
not necessarily 

(e.g., int) 
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A value-semantic type T defines the following: 

• Default construction:   T a, b;         assert(a == b); 

Typically, but 
not necessarily 

(e.g., int) 

 However “zero” initialization  
assert(T() == T()); 

Is true 
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A value-semantic type T defines the following: 

• Default construction:   T a, b;         assert(a == b); 

• Copy construction:       T a, b(a);    assert(a == b); 
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A value-semantic type T defines the following: 

• Default construction:   T a, b;         assert(a == b); 

• Copy construction:       T a, b(a);    assert(a == b); 

• Destruction:                  (Release all resources.) 
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A value-semantic type T defines the following: 

• Default construction:   T a, b;         assert(a == b); 

• Copy construction:       T a, b(a);    assert(a == b); 

• Destruction:                  (Release all resources.) 

• Copy assignment:         a = b;          assert(a == b); 
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A value-semantic type T defines the following: 

• Default construction:   T a, b;         assert(a == b); 

• Copy construction:       T a, b(a);    assert(a == b); 

• Destruction:                  (Release all resources.) 

• Copy assignment:         a = b;          assert(a == b); 

• Swap  (if well-formed):    T a(α), b(β);     swap(a, b); 

                                                                      assert(β == a); 

                                                                      assert(α == b);      
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A value-semantic type T defines the following: 

• Default construction:   T a, b;         assert(a == b); 

• Copy construction:       T a, b(a);    assert(a == b); 

• Destruction:                  (Release all resources.) 

• Copy assignment:         a = b;          assert(a == b); 

• Swap  (if well-formed):    T a(α), b(β);     swap(a, b); 

                                                                      assert(β == a); 

                                                                      assert(α == b);      
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operator==(T, T) describes what’s called 
an equivalence relation: 

1.  a == a                                            (reflexive) 

2.  a == b   b == a                                 (symmetric) 

3.  a == b && b == c  a == c           (transitive) 
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operator==(T, T) describes what’s called 
an equivalence relation: 

1.  a == a                                            (reflexive) 

2.  a == b   b == a                                 (symmetric) 

3.  a == b && b == c  a == c           (transitive) 
 

  !(a == b)  a != b 
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operator==(T, T) describes what’s called 
an equivalence relation: 

1.  a == a                                            (reflexive) 

2.  a == b   b == a                                 (symmetric) 

3.  a == b && b == c  a == c           (transitive) 
 

  !(a == b)  a != b 
 

  a == d (compiles)  d == a (compiles)      

               (Note that d is not of the same type as a.) 
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talking 
about? 



class T { 
        // …  

  public: 
        // … 

    bool operator==(const T& rhs) const; 
        // … 

};  

 Member operator== 
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class T { 
        // …  

  public: 
        // … 

    bool operator==(const T& rhs) const; 
        // … 

};  

class D { 
        // …  

  public: 
        // … 

    operator const T&() const; 
        // … 

};  

 Member operator== 
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class T { 
        // …  

  public: 
        // … 

    bool operator==(const T& rhs) const; 
        // … 

};  

class D { 
        // …  

  public: 
        // … 

    operator const T&() const; 
        // … 

};  

void f(const T& a, const D& d)  

{ 

    if (a == d) { /* … */ } 

    if (d == a) { /* … */ } 

}  

 Member operator== 
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class T { 
        // …  

  public: 
        // … 

    bool operator==(const T& rhs) const; 
        // … 

};  

class D { 
        // …  

  public: 
        // … 

    operator const T&() const; 
        // … 

};  

void f(const T& a, const D& d)  

{ 

    if (a == d) { /* … */ } 

    if (d == a) { /* … */ } 

}  

 Member operator== 
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class T { 
        // …  

  public: 
        // … 

}; 
 // … 

bool operator==(const T& lhs, const T& rhs);   

void f(const T& a, const D& d)  

{ 

    if (a == d) { /* … */ } 

    if (d == a) { /* … */ } 

}  

class D { 
        // …  

  public: 
        // … 

    operator const T&() const; 
        // … 

};  

Free operator== 
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class T { 
        // …  

  public: 
        // … 

}; 
 // … 

bool operator==(const T& lhs, const T& rhs);  

void f(const T& a, const D& d)  

{ 

    if (a == d) { /* … */ } 

    if (d == a) { /* … */ } 

}  

class D { 
        // …  

  public: 
        // … 

    operator const T&() const; 
        // … 

};  

(proper) 

Free operator== 
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class Str {                                  
        // …  

  public: 

    Str(const char *other); 
       // … 

    bool operator==(const char *rhs) const; 
       // … 

}; 
 // …  

bool operator==(const Str&   lhs, const Str& 

rhs); bool operator==(const char *lhs, const 

Str& rhs); 

Member 

Operator== 
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class Str {                                  
        // …  

  public: 

    Str(const char *other); 
       // … 

    bool operator==(const char *rhs) const; 
       // … 

}; 
 // …  

bool operator==(const Str&   lhs, const Str& rhs);  

bool operator==(const char *lhs, const Str& rhs); 

Member 

Operator== 
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class Str {                                  
        // …  

  public: 

    Str(const char *other); 
       // … 

    bool operator==(const char *rhs) const; 
       // … 

}; 
 // …  

bool operator==(const Str&   lhs, const Str& rhs);  

bool operator==(const char *lhs, const Str& rhs); 

Member 

Operator== 
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class Str {                                  
        // …  

  public: 

    Str(const char *other); 
       // … 

    bool operator==(const char *rhs) const; 
       // … 

}; 
 // …  

bool operator==(const Str&   lhs, const Str& rhs);  

bool operator==(const char *lhs, const Str& rhs); 

Member Operator== 
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class Str {                                  
        // …  

  public: 

    Str(const char *other); 
       // … 

    bool operator==(const char *rhs) const; 
       // … 

}; 
 // …  

bool operator==(const Str&   lhs, const Str& rhs);  

bool operator==(const char *lhs, const Str& rhs); 

class Foo { 
        // …  

  public: 
        // … 

    operator const Str&() const; 
        // … 

}; 
 

 

 

 

Member Operator== 

2. Understanding Value Semantics 

Value-Semantic Properties 

203 



class Str {                                  
        // …  

  public: 

    Str(const char *other); 
       // … 

    bool operator==(const char *rhs) const; 
       // … 

}; 
 // …  

bool operator==(const Str&   lhs, const Str& rhs);  

bool operator==(const char *lhs, const Str& rhs); 

class Foo { 
        // …  

  public: 
        // … 

    operator const Str&() const; 
        // … 

}; 
 

 

 

 

class Bar { 
        // …  

  public: 
        // … 

    operator const char *() const; 
        // … 

};  

 

Member Operator== 
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class Str {                                  
        // …  

  public: 

    Str(const char *other); 
       // … 

    bool operator==(const char *rhs) const; 
       // … 

}; 
 // …  

bool operator==(const Str&   lhs, const Str& rhs);  

bool operator==(const char *lhs, const Str& rhs); 

class Foo { 
        // …  

  public: 
        // … 

    operator const Str&() const; 
        // … 

}; 
 

 

 

 

void f(const Foo& foo, const Bar& bar)   

{ 

    if (bar == foo) { /* … */ } 

    if (bar == foo) { /* … */ } 
}  

class Bar { 
        // …  

  public: 
        // … 

    operator const char *() const; 
        // … 

};  

 

Member Operator== 
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class Str {                                  
        // …  

  public: 

    Str(const char *other); 
       // … 

    bool operator==(const char *rhs) const; 
       // … 

}; 
 // …  

bool operator==(const Str&   lhs, const Str& rhs);  

bool operator==(const char *lhs, const Str& rhs); 

class Foo { 
        // …  

  public: 
        // … 

    operator const Str&() const; 
        // … 

}; 
 

 

 

 

void f(const Foo& foo, const Bar& bar)   

{ 

    if (bar == foo) { /* … */ } 

    if (foo == bar) { /* … */ } 
}  

class Bar { 
        // …  

  public: 
        // … 

    operator const char *() const; 
        // … 

};  

 

Member Operator== 
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class Str { 
        // …  

  public: 

    Str(const char *other); 
       // … 

}; 
 // …  

bool operator==(const Str&    lhs, const Str&   rhs); 

bool operator==(const char  *lhs, const Str&   rhs); 

bool operator==(const Str&   lhs, const char *rhs); 
  

class Foo { 
        // …  

  public: 
        // … 

    operator const Str&() const; 
        // … 

}; 
 

 

 

 

void f(const Foo& foo, const Bar& bar)   

{ 

    if (bar == foo) { /* … */ } 

    if (foo == bar) { /* … */ } 
}  

class Bar { 
        // …  

  public: 
        // … 

    operator const char *() const; 
        // … 

};  

 

        Free Operator== 
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class Str { 
        // …  

  public: 

    Str(const char *other); 
       // … 

}; 
 // …  

bool operator==(const Str&    lhs, const Str&   rhs);  

bool operator==(const char  *lhs, const Str&   rhs); 

bool operator==(const Str&   lhs, const char *rhs); 
  

class Foo { 
        // …  

  public: 
        // … 

    operator const Str&() const; 
        // … 

}; 
 

 

 

 

void f(const Foo& foo, const Bar& bar)   

{ 

    if (bar == foo) { /* … */ } 

    if (foo == bar) { /* … */ } 
}  

class Bar { 
        // …  

  public: 
        // … 

    operator const char *() const; 
        // … 

};  

 

        Free Operator== 

(proper) 
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The operator== should ALWAYS be free! 

Same for most* binary operators with const parameters: 

  == !=            (equality) 

  <  <= >  =>      (relational) 

  +  -  *  /   %   (arithmetic) 

  |  &  ^  <<  >>  (logical) 

X  += -= *= /=  %=  (assignment) 

X  |= &= ^= <<= >>= (assignment) 
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The operator== should ALWAYS be free! 

Same for most* binary operators with const parameters: 

  == !=            (equality) 

  <  <= >  =>      (relational) 

  +  -  *  /   %   (arithmetic) 

  |  &  ^  <<  >>  (logical) 

X  += -= *= /=  %=  (assignment) 

X  |= &= ^= <<= >>= (assignment) 

 
*Except for operators such as operator[] that return a reference instead of a value, and operator(). 
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The operator== should ALWAYS be free! 

Same for most* binary operators with const parameters: 

  == !=            (equality) 

  <  <= >  =>      (relational) 

  +  -  *  /   %   (arithmetic) 

  |  &  ^  <<  >>  (logical) 

X  += -= *= /=  %=  (assignment) 

X  |= &= ^= <<= >>= (assignment) 

 
*Except for operators such as operator[] that return a reference instead of a value, and operator(). 
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The operator== should ALWAYS be free! 

Same for most* binary operators with const parameters: 

  == !=            (equality) 

  <  <= >  =>      (relational) 

  +  -  *  /   %   (arithmetic) 
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The operator== should ALWAYS be free! 

Same for most* binary operators with const parameters: 

  == !=            (equality) 

  <  <= >  =>      (relational) 

  +  -  *  /   %   (arithmetic) 

  |  &  ^  <<  >>  (logical) 

X  += -= *= /=  %=  (assignment) 

X  |= &= ^= <<= >>= (assignment) 

 
*Except for operators such as operator[] that return a reference instead of a value, and operator(). 
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The operator== should ALWAYS be free! 

Same for most* binary operators with const parameters: 

  == !=            (equality) 

  <  <= >  =>      (relational) 

  +  -  *  /   %   (arithmetic) 

  |  &  ^  <<  >>  (logical) 

X  += -= *= /=  %=  (assignment) 

X  |= &= ^= <<= >>= (assignment) 

 
*Except for operators such as operator[] that return a reference instead of a value, and operator(). 
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The operator== should ALWAYS be free! 

Same for most* binary operators with const parameters: 
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The operator== should ALWAYS be free! 

Same for most* binary operators with const parameters: 

  == !=            (equality) 

  <  <= >  =>      (relational) 

  +  -  *  /   %   (arithmetic) 

  |  &  ^  <<  >>  (logical) 

X  += -= *= /=  %=  (assignment) 

X  |= &= ^= <<= >>= (assignment) 

 
*Except for operators such as operator[] that return a reference instead of a value, and operator(). 
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What semantics 
should value-type 
operations have? 
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    The salient attributes of a type T are the 
documented set of named attributes whose 
respective values for a given instance of T … 
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    The salient attributes of a type T are the 
documented set of named attributes whose 
respective values for a given instance of T 

1. Derive from the physical state of only that 
instance of T. 
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    The salient attributes of a type T are the 
documented set of named attributes whose 
respective values for a given instance of T 

1. Derive from the physical state of only that 
instance of T. 

2. Must respectively “have” (refer to) the same 
value in order for two instances of T to have 
(refer to) the same value as a whole. 
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    The salient attributes of a type T are the 
documented set of named attributes whose 
respective values for a given instance of T that 

1. Derive from the physical state of only that 
instance of T. 

2. Must respectively “have” (refer to) the same 
value in order for two instances of T to have 
(refer to) the same value as a whole. 
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    The salient attributes of a type T are the 
documented set of named attributes whose 
respective values for a given instance of T that 

1. Derive from the physical state of only that 
instance of T. 

2. Must respectively “have” (refer to) the same 
value in order for two instances of T to have 
(refer to) the same value as a whole. 

Copy Constructor?  
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• By def., all salient attributes must be copied. 

 

 
 

Copy Constructor?  
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• By def., all salient attributes must be copied. 

• What about “non-salient” attributes? 
– E.g., capacity() 

 

 
 

Copy Constructor?  
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• By def., all salient attributes must be copied. 

• What about “non-salient” attributes? 
– E.g., capacity() 

• Non-salient attributes may or may not be copied. 

 

 
 

Copy Constructor?  
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• By def., all salient attributes must be copied. 

• What about “non-salient” attributes? 
– E.g., capacity() 

• Non-salient attributes may or may not be copied. 

• Hence, we cannot infer from the implementation of 
a Copy Constructor which attributes are “salient.” 

 

 
 

Copy Constructor?  
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• By def., all salient attributes must be copied. 

• What about “non-salient” attributes? 
– E.g., capacity() 

• Non-salient attributes may or may not be copied. 

• Hence, we cannot infer from the implementation of 
a Copy Constructor which attributes are “salient.” 

• Cannot  tell us if two objects have the same value!  

 
 

Copy Constructor?  
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    The salient attributes of a type T are the 
documented set of named attributes whose 
respective values for a given instance of T that 

1. Derive from the physical state of only that 
instance of T. 

2. Must respectively “have” (refer to) the same 
value in order for two instances of T to “have” 
(refer to) the same value as a whole. 
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Where is “Value” Defined? 

230 



     

    The salient attributes of a type T are the 
documented set of named attributes whose 
respective values for a given instance of T that 

1. Derive from the physical state of only that 
instance of T. 

2. Must respectively “have” iii compare equal value 
value in order for two instances of T to iiiiiiiiiavie 
iiim compare equal iiIIIIII as a whole. 
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Where is “Value” Defined? 
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    The salient attributes of a type T are the 
documented set of named attributes whose 
respective values for a given instance of T that 

1. Derive from the physical state of only that 
instance of T. 

2. Must respectively compare equal in order for 
two instances of T to compare equal as a whole. 

   operator==  
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    The associated, homogeneous (free) operator== 
for a type T 

 

 

   operator==  
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    The associated, homogeneous (free) operator== 
for a type T 

1. Provides an operational definition of what it means 
for two objects of type T to have “the same” value. 

 

   operator==  
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    The associated, homogeneous (free) operator== 
for a type T 

1. Provides an operational definition of what it means 
for two objects of type T to have “the same” value. 

2. Defines the salient attributes of T as those 
attributes whose respective values must 
compare equal in order for two instances of T to 
compare equal. 

   operator==  
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2. Understanding Value Semantics 

Value-Semantic Properties 

Value-semantic objects share many properties. 

• Each of these properties is objectively 
verifiable, irrespective of the intended 
application domain. 

• Most are (or should be) intuitive.   

• Those few that are not, are particularly useful 
for providing design guidance in “unusual” cases. 
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Value-semantic objects share many properties. 

• Each of these properties is objectively 
verifiable, irrespective of the intended 
application domain. 

• Most are (or should be) intuitive.   

• Those few that are not, are particularly useful 
for providing design guidance in “unusual” cases. 
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2. Understanding Value Semantics 

What should be copied? 

NMOS CMOS 

0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1  

Orthogonal to value! Orthogonal to value! 

Should attributes that are orthogonal to value 
be copied? 
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Should attributes that are orthogonal to value 
be copied? 

NMOS CMOS 

0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1  != 
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Should attributes that are orthogonal to value 
be copied? 

NMOS CMOS assignment 

0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1  
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Should attributes that are orthogonal to value 
be copied? 

NMOS CMOS assignment 

0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1  
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CMOS 

Should attributes that are orthogonal to value 
be copied? 

NMOS CMOS assignment 

1 1 1 1 0 0 1 1  1 1 1 1 0 0 1 1  == 

??                  
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 As it turns out… 
 
  

Selecting Salient Attributes 
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If T is a value-semantic type,  

    a, b, and c are objects of type T, and  

    d is an object of some other type D, then   
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If T is a value-semantic type,  

    a, b, and c are objects of type T, and  

    d is an object of some other type D, then   

 a == b  a and b have the same value 
(assuming an associated operator== exists). 
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If T is a value-semantic type,  

    a, b, and c are objects of type T, and  

    d is an object of some other type D, then   

 a == b  a and b have the same value 
(assuming an associated operator== exists). 
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If T is a value-semantic type,  

    a, b, and c are objects of type T, and  

    d is an object of some other type D, then   

 a == b  a and b have the same value 
(assuming an associated operator== exists). 
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If T is a value-semantic type,  

    a, b, and c are objects of type T, and  

    d is an object of some other type D, then   

 a == b  a and b have the same value 
(assuming an associated operator== exists). 

The value of a is independent of any external 
object or state; any change to a must be 
accomplished via a’s (public) interface. 
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Suppose a “value-semantic” object refers to 
another autonomous object in memory: 

 

    class ElemRef {  

        Record *d_record_p; 

        int elementIndex; 

      public: 

        // … 

    }; 
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Suppose a “value-semantic” object refers to 
another autonomous object in memory: 

 

    class ElemPtr {  

        Record *d_record_p; 

        int     d_elementIndex; 

      public: 

        // … 

    }; 
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Suppose a “value-semantic” object refers to 
another autonomous object in memory: 

 

    class ElemPtr {  

        Record *d_record_p; 

        int     d_elementIndex; 

      public: 

        // … 

    }; 
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Suppose a “value-semantic” object refers to 
another autonomous object in memory: 

 

    class ElemPtr {  

        Record *d_record_p; 

        int     d_elementIndex; 

      public: 

        // … 

    }; 
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bool operator==(const ElemPtr& lhs, 

                const ElemPtr& rhs); 

2. Understanding Value Semantics 
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bool operator==(const ElemPtr& lhs, 

                const ElemPtr& rhs); 

    // Two 'ElemPtr' objects have the 

    // same value if they … 
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bool operator==(const ElemPtr& lhs, 

                const ElemPtr& rhs); 

    // Two 'ElemPtr' objects have the 

    // same value if they (1) refer 

    // to the same 'Record' object 

    // (in the current process) … 

2. Understanding Value Semantics 

Value-Semantic Properties 

262 



bool operator==(const ElemPtr& lhs, 

                const ElemPtr& rhs); 

    // Two 'ElemPtr' objects have the 

    // same value if they (1) refer 

    // to the same 'Record' object 

    // (in the current process), and 

    // (2) have the same element 

    // index.  
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Note that if we were to ascribe a notion of value to, 

say, a scoped guard, it would clearly be in-core only.  



2. Understanding Value Semantics 

“Value Types” having Value Semantics 

275 



2. Understanding Value Semantics 

“Value Types” having Value Semantics 

A C++ type that “properly” 
represents (a subset of) 
the values of an abstract 
“mathematical” type is said   
to have value semantics. 
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2. Understanding Value Semantics 

“Value Types” having Value Semantics 

A C++ type that “properly” 
represents (a subset of) 
the values of an abstract 
“mathematical” type is said   
to have value semantics. 
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Recall that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 
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Recall that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 
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Recall that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 
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Recall that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 
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Recall that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 
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Recall that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 
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Recall that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 

4. both objects will again have the same value! 
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Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 

4. both objects will again have the same value! 
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Value-Semantic Properties 
There is a lot more to this story! 
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That is… 
  if (a == b) { 

      op1(a); op1(b); assert(a == b); 

      op2(a); op2(b); assert(a == b); 

      op3(a); op3(b); assert(a == b); 

      op4(a); op4(b); assert(a == b); 

  

  }   
         

          .              .                      .                                 
          .              .                      .                                           .              .                      .                                 
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That is… 
  if (a == b) { 

      op1(a); op1(b); assert(a == b); 

      op2(a); op2(b); assert(a == b); 

      op3(a); op3(b); assert(a == b); 

      op4(a); op4(b); assert(a == b); 

  

  }   
         

          .              .                      .                                 
          .              .                      .                                           .              .                      .                                 

2. Understanding Value Semantics 

Value-Semantic Properties Note that this is 
not a test case, 

but rather a 
requirements 
specification.  
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                          QUESTION: 
Suppose we have a “home grown” ordered-set 
type that can be initialized to a sequence of 
elements in either increasing or decreasing order: 
 
 
 
 
 

288 

template <class T> 

class OrderedSet { 

   // … 

   OrderedSet(bool decreasingFlag = false); 

   // … 

}; 
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                          QUESTION: 
Suppose we have a “home grown” ordered-set 
type that can be initialized to a sequence of 
elements in either increasing or decreasing order: 
 
 
 
What if the two sets were constructed differently. 
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template <class T> 

class OrderedSet { 

   // … 

   OrderedSet(bool decreasingFlag = false); 

   // … 

}; 
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                          QUESTION: 
Suppose we have a “home grown” ordered-set 
type that can be initialized to a sequence of 
elements in either increasing or decreasing order: 
 
 
 
What if the two sets were constructed differently. 
Should any two empty objects be considered “equal”? 
 290 

template <class T> 

class OrderedSet  { 

   // … 

   OrderedSet(bool decreasingFlag = false); 

   // … 

}; 



Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 

4. both objects will again have the same value! 
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Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 

4. both objects will again have the same value! 
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^salient 



Note that two distinct objects a and b of 
type T that have the same value might not 
exhibit “the same” observable behavior. 

                      However  
1. If a and b initially have the same value, and 

2. the same operation is applied to each object, then 

3. (absent any exceptions or undefined behavior) 

4. both objects will again have the same value! 
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^salient 

 By salient we mean 
operations that directly reflect 
those in the mathematical type 
this C++ type is attempting to 

approximate. 



                          QUESTION: 
What makes two unordered containers represent 
the same value? 
 
 

294 
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Think about a bag 
of Halloween 

candy. 



 Note that this essential property applies only to 
objects of the same type: 

  int x = 5;       int y = 5;   assert(x == y); 

     x *= x;          y *= y;      assert(x == y); 

     x *= x;          y *= y;      assert(x == y); 

     x *= x;          y *= y;      assert(x == y); 
 
               .                             .                                .                 .                             .                                .                 .                             .                                .  
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               .                             .                                .                 .                             .                                .  

 Note that this essential property applies only to 
objects of the same type: 

  int x = 5;  short  y  = 5;   assert(x == y); 

     x *= x;          y *= y;      assert(x == y); 

     x *= x;          y *= y;      assert(x == y); 

     x *= x;          y *= y;      assert(x == y); 
 
               .                             .                                .  
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Undefined Behavior! 



 

How do we 
design proper 
value types? 
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    class Rational { 

        int d_numerator; 

        int d_denominator; 

      public: 

        // 

        int numerator() const; 

        int denominator() const; 

     }; 

     // … 

     bool operator==(const Rational& lhs, 

                     const Rational& rhs); 

Selecting Salient Attributes 
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   numerator()/denominator() 
 

 

  

bool operator=(const Rational& lhs, 

               const Rational& rhs);  
// Two 'Rational' objects have the same value if        
// the ratio of the values of 'numerator()' and            
//  'denominator ()' for 'lhs' is the same as that for 'rhs'.  
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as the salient attribute? 
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   numerator()/denominator() 
 

 

  

bool operator==(const Rational& lhs, 

                const Rational& rhs);  
// Two 'Rational' objects have the same value if        
// the ratio of the values of 'numerator()' and            
//  'denominator ()' for 'lhs' is the same as that for 'rhs'.  
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as the salient attribute? 
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   numerator()/denominator() 
 

 

  

bool operator=(const Rational& lhs, 

               const Rational& rhs);      
// Two 'Rational' objects have the same value if        
// the ratio of the values of 'numerator()' and            
//  'denominator ()' for 'lhs' is the same as that for 'rhs'.  

 

Selecting Salient Attributes 

  

as the salient attribute? 

== 
1 
2 

2 
4 
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   numerator()/denominator() 
 

 

  

bool operator=(const Rational& lhs, 

               const Rational& rhs);      
// Two 'Rational' objects have the same value if        
// the ratio of the values of 'numerator()' and            
//  'denominator ()' for 'lhs' is the same as that for 'rhs'.  

 

Selecting Salient Attributes 

  

as the salient attribute? 

== 
1 
0 

2 
0 X X 
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   numerator()/denominator() 
 

 

  

bool operator=(const Rational& lhs, 

               const Rational& rhs);      
// Two 'Rational' objcts have the same value if        // 
the ratio of the values of 'numerator()' and            //  
'denominator ()' for 'lhs' is the same as that for 'rhs'.  

 

Selecting Salient Attributes 

  

as the salient attribute? 

== 
1 
2 

-1 
-2 
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   numerator()/denominator() 
 

 

  

bool operator=(const Rational& lhs, 

               const Rational& rhs);      
// Two 'Rational' objcts have the same value if        // 
the ratio of the values of 'numerator()' and            //  
'denominator ()' for 'lhs' is the same as that for 'rhs'.  

 

Selecting Salient Attributes 

  

as the salient attribute? 

== 
1 
2 

100 
200 
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   numerator()/denominator() 
 

 

  

bool operator=(const Rational& lhs, 

               const Rational& rhs);      
// Two 'Rational' objects have the same value if        
// the ratio of the values of 'numerator()' and            
//  'denominator ()' for 'lhs' is the same as that for 'rhs'.  

 

Selecting Salient Attributes 

  

as the salient attribute? 

== 
1 
2 

100 
200 

10 10 
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   numerator()/denominator() 
 

 

  

bool operator=(const Rational& lhs, 

               const Rational& rhs);      
// Two 'Rational' objects have the same value if        
// the ratio of the values of 'numerator()' and            
//  'denominator ()' for 'lhs' is the same as that for 'rhs'.  

 

Selecting Salient Attributes 

  

as the salient attribute? 

== 
1 
2 

100 
200 

10 10 
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If you choose to make  
   numerator()/denominator() 

a salient attribute  

       (probably a bad idea)  
then do not expose numerator and 

denominator as separate attributes… 
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If you choose to make  
   numerator()/denominator() 

a salient attribute  

       (probably a bad idea)  
then do not expose numerator and 

denominator as separate attributes… 
 

 

Selecting Salient Attributes 

…or maintain them in 
 “canonical form” (which 
may be computationally 

expensive). 
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Selecting Salient Attributes 

Guideline 

If two objects have the same 

value then the values of each 

observable attribute that 

contributes to value should 

respectively compare equal. 
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When should 
we omit valid 
value syntax? 
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4 

1 

3 2 
0 
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Selecting Salient Attributes 

Graph 

Node Edge 

graph 

      Cyclic Physical Dependency? 
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Selecting Salient Attributes 

Graph 

Node Edge 

graph 

Levelization Technique: Opaque Pointers 
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Selecting Salient Attributes 

Graph 

Node Edge 

graph 

Levelization Technique: Dumb Data 
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Selecting Salient Attributes 

Graph 

Node 

NodeIterator 

graph 

 Simpler Design: No Explicit Edge Object 
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Selecting Salient Attributes 

graph 

Graph 

Node 

 Yet Simpler Design: No Explicit NodeIterator 
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Graph 

  

    class Graph { 

            // …  

      public: 

            // … 

        int numNodes() const; 

      const Node& node(int index) const; 

   };       

      // … 

 

 

Selecting Salient Attributes 

Node 0 Node 1 Node 2 Node 3 Node 4 
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Graph 

  

    class Node { 

            // …  

      public: 

            // … 

        int nodeIndex() const; 

        int numAdjacentNodes() const; 

        Node& adjacentNode(int index) const; 

    }; 

  

Selecting Salient Attributes 

Node 0 Node 1 Node 2 Node 3 Node 4 
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Graph 

  

    class Node { 

            // …  

      public: 

            // … 

        int nodeIndex() const; 

        int numAdjacentNodes() const; 

        Node& adjacentNode(int index) const; 

    }; 

  

Selecting Salient Attributes 

Node 0 Node 1 Node 2 Node 3 Node 4 
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Really should be 
declared const but 

there’s no room! 
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Graph 

  

    class Node { 

            // …  

      public: 

            // … 

        int nodeIndex() const; 

        int numAdjacentNodes() const; 

        Node& adjacentNode(int index) const; 

    }; 

  

Selecting Salient Attributes 

Node 0 Node 1 Node 2 Node 3 Node 4 

2 
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Graph 

  

    class Node { 

            // …  

      public: 

            // … 

        int nodeIndex() const; 

        int numAdjacentNodes() const; 

        Node& adjacentNode(int index) const; 

    }; 

  

Selecting Salient Attributes 

Node 0 Node 1 Node 2 Node 3 Node 4 

2 
2 Node 0 

and 
Node 4 
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    class Graph { 

            // …  

      public: 

            // … 

        int numNodes() const;                 

a     const Node& node(int index) const;    

a };       

      // … 

    bool operator==(const Graph& lhs,         

cccccccccccc     cconst Graph& rhs);  
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    class Graph { 

            // …  

      public: 

            // … 

        int numNodes() const;                 

a     const Node& node(int index) const;    

a };       

      // … 

    bool operator==(const Graph& lhs,         

cccccccccccc     cconst Graph& rhs);          

cc    // Two 'Graph' objects have the same   

cc    // value if …???  

 

Selecting Salient Attributes 

2. Understanding Value Semantics 

Value-Semantic Properties 

323 



  

What are the salient attributes of Graph? 

Selecting Salient Attributes 

2. Understanding Value Semantics 

Value-Semantic Properties 

324 



  

What are the salient attributes of Graph? 

• Number of nodes. 

Selecting Salient Attributes 
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What are the salient attributes of Graph? 

• Number of nodes. 

• Number of edges. 

Selecting Salient Attributes 
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What are the salient attributes of Graph? 

• Number of nodes. 

• Number of edges. 

• Number of nodes adjacent to each node. 

Selecting Salient Attributes 

2. Understanding Value Semantics 

Value-Semantic Properties 

327 



  

What are the salient attributes of Graph? 

• Number of nodes. 

• Number of edges. 

• Number of nodes adjacent to each node. 
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What are the salient attributes of Graph? 

• Number of nodes. 

• Number of edges. 

• Number of nodes adjacent to each node. 

• Specific nodes adjacent to each node. 
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What are the salient attributes of Graph? 

• Number of nodes. 

• Number of edges. 

• Number of nodes adjacent to each node. 

• Specific nodes adjacent to each node. 
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bool operator==(const Graph& lhs,         

cccccccccccc  const Graph& rhs);          

cc// Two 'Graph' objects have the same 

   c// value if 

Selecting Salient Attributes 
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bool operator==(const Graph& lhs,         

cccccccccccc  const Graph& rhs);          

cc// Two 'Graph' objects have the same 

   c// value if they have the same number of 

    // nodes 'N' and,   
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bool operator==(const Graph& lhs,         

cccccccccccc  const Graph& rhs);          

cc// Two 'Graph' objects have the same 

   c// value if they have the same number of 

    // nodes 'N' and, for each node index 'i' 

    // '(0 <= i < N)',   
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bool operator==(const Graph& lhs,         

cccccccccccc  const Graph& rhs);          

cc// Two 'Graph' objects have the same 

   c// value if they have the same number of 

    // nodes 'N' and, for each node index 'i' 

    // '(0 <= i < N)', the nodes adjacent to 

    // node 'i' in 'lhs' have the same 

    // indices as those of the nodes 

    // adjacent to node 'i' in 'rhs'. 
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    class Node { 

            // …  

      public: 

            // … 

        int nodeIndex() const; 

        int numAdjacentNodes() const; 

        Node& adjacentNode(int index) const; 

    }; 
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    class Node { 

            // …  

      public: 

            // … 

        int nodeIndex() const; 

        int numAdjacentNodes() const; 

        Node& adjacentNode(int index) const; 

    }; 
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 Maintained in 

sorted order? 

Is “edge” order a salient attribute? 
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Unordered Edges 

         0: 4 1 3 
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         2: 0 4 

         3:  

         4: 3 

 

 

  

                             Ordered Edges 
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         3:  
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Value Syntax: Not all or nothing! 
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Value Syntax: Not all or nothing! 
 

An std::set<int> is a value-semantic type. 
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Observation  

Value Syntax: Not all or nothing! 
 

An std::set<int> is a value-semantic type. 

 

An std::unordered_set<int> is a value- 

semantic type, except that – until 2010 – it did 
not provide an operator==. 
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Observation  

Value Syntax: Not all or nothing! 
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Observation  
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Observation  

Value Syntax: Not all or nothing! 
 

An std::set<int> is a value-semantic type. 
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semantic type, except that – until 2010 – it did 
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Observation  

Value Syntax: Not all or nothing! 
 

An std::set<int> is a value-semantic type. 

 

An std::unordered_set<int> is a value- 

semantic type, except that – until 2010 – it did 
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What are the salient attributes of Graph? 
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What are the salient attributes of Graph? 

Number of nodes. 
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What are the salient attributes of Graph? 

Number of nodes. 

Specific nodes adjacent to each node. 
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What are the salient attributes of Graph? 

Number of nodes. 

Specific nodes adjacent to each node. 

X Not adjacent-node (i.e., edge) order. 
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What are the salient attributes of Graph? 

Number of nodes. 

Specific nodes adjacent to each node. 

X Not adjacent-node (i.e., edge) order. 

What about node indices? 
 

         (I.e., the numbering of the nodes) 
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bool operator==(const Graph& lhs,         

cccccccccccc  const Graph& rhs);          

cc// Two 'Graph' objects have the same 

   c// value if they have the same number of 

    // nodes 'N' and there exists a renumbering 

    // of the nodes in 'rhs' such that, for 

    // each node-index 'i' '(0 <= i < N)', 

    // the nodes adjacent to node 'i' in 'lhs' 

     //  have the same indices as those of the 

    // nodes adjacent to node 'i' in 'rhs'. 
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Should 
operator== 

mean  
isomorphic? 
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           Graph G           Graph H 
An isomorphism 
between G and H 

ƒ(a) = 1  
ƒ(b) = 6 
ƒ(c) = 8 
ƒ(d) = 3 
ƒ(g) = 5 
ƒ(h) = 2 
ƒ(i) = 4 
ƒ(j) = 7 

Selecting Salient Attributes 
In graph theory, an isomorphism of graphs* G and H is a bijection ƒ 

between the vertex sets of G and H such that any two vertices u and v 

of G are adjacent in G if and only if ƒ(u) and ƒ(v) are adjacent in H.  
 

*http://en.wikipedia.org/wiki/Graph_isomorphism    
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How hard is it to determine 

Graph Isomorphism?  
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How hard is it to determine 

Graph Isomorphism?  
 

Is known to be in NP and CO-NP. 
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How hard is it to determine 

Graph Isomorphism?  
 

Is known to be in NP and CO-NP. 

Not known to be NP Complete. 
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How hard is it to determine 

Graph Isomorphism?  
 

Is known to be in NP and CO-NP. 

Not known to be NP Complete. 

Not known to be in P (Polynomial time). 
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How hard is it to determine 

Graph Isomorphism?  
 

Is known to be in NP and CO-NP. 

Not know to be NP Complete. 

Not known to be in P (Polynomial time). 
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bool operator==(const Graph& lhs,         

cccccccccccc  const Graph& rhs);          

cc// Two 'Graph' objects have the same 

   c// value if they have the same number of 

    // nodes 'N' and there exists a renumbering 

    // of the nodes in 'rhs' such that, for 

    // each node-index 'i' '(0 <= i < N)', 

    // the nodes adjacent to node 'i' in 'lhs' 

     //  have the same indices as those of the 

    // nodes adjacent to node 'i' in 'rhs'. 
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bool operator==(const Graph& lhs,         

cccccccccccc  const Graph& rhs);          

cc// Two 'Graph' objects have the same 

   c// value if they have the same number of 

    // nodes 'N' and there exists a renumbering 

    // of the nodes in 'rhs' such that, for 

    // each node-index 'i' '(0 <= i < N)', 

    // the nodes adjacent to node 'i' in 'lhs' 

     //  have the same indices as those of the 

    // nodes adjacent to node 'i' in 'rhs'. 
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bool operator==(const Graph& lhs,         

cccccccccccc  const Graph& rhs);          

cc// Two 'Graph' objects have the same 

   c// value if they have the same number of 

    // nodes 'N' and, for each node-index 'i' 

    // '(0 <= i < N)', the ordered sequence 

    // of nodes adjacent to node 'i' in 

    // 'lhs' has the same value as the one 

    // for node 'i' in 'rhs'. 
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What are the salient attributes of Graph? 

Number of nodes. 

Specific nodes adjacent to each node. 
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What are the salient attributes of Graph? 

Number of nodes. 

Specific nodes adjacent to each node. 

And, as a practical matter, 

Numbering of the nodes. 
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What are the salient attributes of Graph? 

Number of nodes. 

Specific nodes adjacent to each node. 

And, as a practical matter, 

Numbering of the nodes. 
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What are the salient attributes of Graph? 

Number of nodes. 

Specific nodes adjacent to each node. 

And, as a practical matter, 

Numbering of the nodes. 
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is only one obvious 
notion of value? 
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 (Summary So Far) 
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When selecting salient attributes, avoid 
subjective (domain-specific) interpretation: 
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When selecting salient attributes, avoid 
subjective (domain-specific) interpretation: 

 Fractions may be equivalent, but not the same. 
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When selecting salient attributes, avoid 
subjective (domain-specific) interpretation: 

 Fractions may be equivalent, but not the same. 

Graphs may be isomorphic, yet distinct. 
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When selecting salient attributes, avoid 
subjective (domain-specific) interpretation: 

 Fractions may be equivalent, but not the same. 

Graphs may be isomorphic, yet distinct. 

Triangles may be similar and still differ. 
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Relegate any “subjective interpretations” of equality 

to named  functions! 
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Relegate any “subjective interpretations” of equality 

to named  functions – ideally, in higher-level components: 
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Relegate any “subjective interpretations” of equality 

to named  functions – ideally, in higher-level components: 
 

struct MyUtil {  

   static bool areEquivalent(const Rational& a)-

--------------------       const Rational& b); 

   static bool areIsomorphic(const Graph& g1,---

--------------------       const Graph& g2); 

   static bool areSimilar(const Triangle& x,----

-----------------       const Triangle& y); 

}; 
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Relegate any “subjective interpretations” of equality 

to named  functions – ideally, in higher-level components: 
 

struct MyUtil {  

   static bool areEquivalent(const Rational& a)-

--------------------       const Rational& b); 

   static bool areIsomorphic(const Graph& g1,---

--------------------       const Graph& g2); 

   static bool areSimilar(const Triangle& x,----

-----------------       const Triangle& y); 

}; 
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Relegate any “subjective interpretations” of equality 

to named  functions – ideally, in higher-level components: 
 

struct MyUtil {  

   static bool areEquivalent(const Rational& a)-

--------------------       const Rational& b); 

   static bool areIsomorphic(const Graph& g1,---

--------------------       const Graph& g2); 

   static bool areSimilar(const Triangle& x,----

-----------------       const Triangle& y); 

}; 
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Relegate any “subjective interpretations” of equality 

to named  functions – ideally, in higher-level components: 
 

struct MyUtil {  

   static bool areEquivalent(const Rational& a)-

--------------------       const Rational& b); 

   static bool areIsomorphic(const Graph& g1,---

--------------------       const Graph& g2); 

   static bool areSimilar(const Triangle& x,----

-----------------       const Triangle& y); 

}; 
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 A collateral benefit is Terminology:  
 
  

2. Understanding Value Semantics 

Value-Semantic Properties 

391 



2. Understanding Value Semantics 

Collateral Benefit: Terminology 

            “…objects are the same…” 

          “…objects are identical…” 

            “…objects are equal…” 

        “…objects are equivalent…” 

             “…create a copy of…” 
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            “…objects are the same…” 

          “…objects are identical…” 

                       (identity) 
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            “…objects are the same…” 

          “…objects are identical…” 

                       (identity) 

 

“…(aliases) refer to the same object…” 
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          “…objects are the same…” 

                         (value) 
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          “…objects are the same…” 

                         (value) 

   “…(objects) have the same value…” 
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          “…objects are the same…” 

                         (value) 

   “…(objects) have the same value…” 

“…(objects) refer to the same value…” 
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          “…objects are the same…” 

                         (value) 

   “…(objects) have the same value…” 

“…(objects) refer to the same value…” 

“…(objects) represent the same value…”  
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          “…objects are the same...” 

           “…objects are equal…” 

                       (equality) 
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          “…objects are the same...” 

           “…objects are equal…” 

                       (equality) 

       “…(objects) compare equal…” 
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          “…objects are the same...” 

           “…objects are equal…” 

                       (equality) 

       “…(objects) compare equal…” 
“…(homogeneous) operator== returns true…” 
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           “…objects are equal…” 

                       (equality) 

       “…(objects) compare equal…” 
“…(homogeneous) operator== returns true…” 
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          “…objects are the same...” 
 aaa           (equivalent) 
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          “…objects are the same...” 
 aaa           (equivalent) 
   In separate named functions: 
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          “…objects are the same...” 
 aaa           (equivalent) 
   In separate named functions: 

       “…fractions are equivalent…” 
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          “…objects are the same...” 
 aaa           (equivalent) 
   In separate named functions: 

       “…fractions are equivalent…” 

        “…graphs are isomorphic…” 
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          “…objects are the same...” 
 aaa           (equivalent) 
   In separate named functions: 

       “…fractions are equivalent…” 

        “…graphs are isomorphic…” 

          “…triangles are similar…” 
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Components, Physical Design, and Class Categories 

2. Understanding Value Semantics (and Syntax) 
Most importantly, the Essential Property of Value 

3. Two Important, Instructional Case Studies 
Specifically, Regular Expressions and Priority Queues 

4. Conclusion 
What must be remembered when designing value types 
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Important Design Questions: 

• What is a Regular Expression? 

• Why create a separate class for it? 

• Does/should it represent a value? 

• How should its value be defined? 

• Should such a class be regular? 

3. Two Important, Instructional Case Studies 

Regular Expressions 
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What is a Regular Expression? 
 
 

3. Two Important, Instructional Case Studies 

Regular Expressions 
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What is a Regular Expression? 
A Regular Expression describes a 
language that can be accepted by a 
Finite-State Machine (FSM). 
 

3. Two Important, Instructional Case Studies 

Regular Expressions 
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What is a Regular Expression? 
A Regular Expression describes a 
language that can be accepted by a 
Finite-State Machine (FSM). 
 
E.g.,  
    (1|0)+ describes binary numbers. 

3. Two Important, Instructional Case Studies 

Regular Expressions 
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Important Design Questions: 
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• Why create a separate class for it? 

• Does/should it represent a value? 
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Why create a separate class for it? 
 

3. Two Important, Instructional Case Studies 
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Why create a separate class for it? 
A Regular-Expression class imbued 
with the value of a regular expression 
can be used to determine whether (or 
not) arbitrary string tokens are 
members of the language that the 
regular-expression value denotes. 

3. Two Important, Instructional Case Studies 

Regular Expressions 
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Why create a separate class for it? 
class RegEx { 

  // … 

 public: 

  static bool isValid(const char *regEx); 

  RegEx();  // Empty language; accepts nothing. 

  RegEx(const char *regEx); 

  RegEx(const RegEx& other); 

  ~RegEx(); 

  RegEx& operator=(const RegEx& rhs); 

  void setValue(const char *regEx); 

  int setValueIfValid(const char *regEx); 

  bool isMember(const char *token) const; 

}; 

3. Two Important, Instructional Case Studies 
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Why create a separate class for it? 
class RegEx { 

  // … 

 public: 

  static bool isValid(const char *regEx); 

  RegEx();  // Empty language: Accepts nothing. 

  RegEx(const char *regEx); 

  RegEx(const RegEx& other); 

  ~RegEx(); 

  RegEx& operator=(const RegEx& rhs); 

  void setValue(const char *regEx); 

  int setValueIfValid(const char *regEx); 

  bool isMember(const char *token) const; 

}; 

3. Two Important, Instructional Case Studies 

Regular Expressions 

Class Methods 
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Why create a separate class for it? 
class RegEx { 

  // … 

 public: 

  static bool isValid(const char *regEx); 

  RegEx();  // Empty language: Accepts nothing. 

  RegEx(const char *regEx); 
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  ~RegEx(); 
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  int setValueIfValid(const char *regEx); 
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}; 
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Why create a separate class for it? 
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  bool isMember(const char *token) const; 

}; 
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Why create a separate class for it? 
class RegEx { 
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 public: 

  static bool isValid(const char *regEx); 

  RegEx();  // Empty language: Accepts nothing. 

  RegEx(const char *regEx); 

  RegEx(const RegEx& other); 

  ~RegEx(); 

  RegEx& operator=(const RegEx& rhs); 

  void setValue(const char *regEx); 

  int setValueIfValid(const char *regEx); 

  bool isMember(const char *token) const; 

}; 
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Why create a separate class for it? 
class RegEx { 

  // … 

 public: 

  static bool isValid(const char *regEx); 

  RegEx();  // Empty language: Accepts nothing. 

  RegEx(const char *regEx); 

  RegEx(const RegEx& other); 

  ~RegEx(); 

  RegEx& operator=(const RegEx& rhs); 

  void setValue(const char *regEx); 

  int setValueIfValid(const char *regEx); 

  bool isMember(const char *token) const; 

}; 
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Why create a separate class for it? 
class RegEx { 

  // … 

 public: 

  static bool isValid(const char *regEx); 

  RegEx();  // Empty language: Accepts nothing. 

  RegEx(const char *regEx); 

  RegEx(const RegEx& other); 

  ~RegEx(); 

  RegEx& operator=(const RegEx& rhs); 

  void setValue(const char *regEx); 

  int setValueIfValid(const char *regEx); 

  bool isMember(const char *token) const; 

}; 
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Why create a separate class for it? 
class RegEx { 

  // … 

 public: 

  static bool isValid(const char *regEx); 

  RegEx();  // Empty language: Accepts nothing. 

  RegEx(const char *regEx); 

  RegEx(const RegEx& other); 

  ~RegEx(); 

  RegEx& operator=(const RegEx& rhs); 

  void setValue(const char *regEx); 

  int setValueIfValid(const char *regEx); 

  bool isMember(const char *token) const; 

}; 
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Why create a separate class for it? 
class RegEx { 

  // … 

 public: 

  static bool isValid(const char *regEx); 

  RegEx();  // Empty language; accepts nothing. 

  RegEx(const char *regEx); 

  RegEx(const RegEx& other); 

  ~RegEx(); 

  RegEx& operator=(const RegEx& rhs); 

  void setValue(const char *regEx); 

  int setValueIfValid(const char *regEx); 

  bool isMember(const char *token) const; 

}; 
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Why create a separate class for it? 
class RegEx { 
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  RegEx(const RegEx& other); 

  ~RegEx(); 

  RegEx& operator=(const RegEx& rhs); 

  void setValue(const char *regEx); 

  int setValueIfValid(const char *regEx); 

  bool isMember(const char *token) const; 

}; 
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Why create a separate class for it? 
class RegEx { 

  // … 

 public: 

  static bool isValid(const char *regEx); 

  RegEx();  // Empty language; accepts nothing. 
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  RegEx(const RegEx& other); 

  ~RegEx(); 

  RegEx& operator=(const RegEx& rhs); 

  void setValue(const char *regEx); 
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Why create a separate class for it? 
class RegEx { 

  // … 

 public: 

  static bool isValid(const char *regEx); 

  RegEx();  // Empty language; accepts nothing. 

  RegEx(const char *regEx); 

  RegEx(const RegEx& other); 

  ~RegEx(); 

  RegEx& operator=(const RegEx& rhs); 

  void setValue(const char *regEx); 

  int setValueIfValid(const char *regEx); 

  bool isMember(const char *token) const; 

}; 
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Let’s think  
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Important Design Questions: 

• What is a Regular Expression? 

• Why create a separate class for it? 

• Does/should it represent a value? 

• How should its value be defined? 

• Should such a class be regular? 
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Does/should it represent a value? 
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Does/should it represent a value? 
Is a RegEx class a value type, or a 
mechanism? 
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Does/should it represent a value? 
Is a RegEx class a value type, or a 
mechanism? 
 

I.e., is there an obvious notion of 
what it means for two RegEx 
objects to have the same value? 
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Does/should it represent a value? 
Is a RegEx class a value type, or a 
mechanism? 
 

I.e., is there an obvious notion of 
what it means for two RegEx 
objects to have the same value? 
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Important Design Questions: 

• What is a Regular Expression? 

• Why create a separate class for it? 

• Does/should it represent a value? 

• How should its value be defined? 

• Should such a class be regular? 
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How should its value be defined? 

1. The string used to create it. 
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How should its value be defined? 

1. The string used to create it. 

2. The language it accepts. 
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How should its value be defined? 

1. The string used to create it. 

2. The language it accepts. 

  
Note that there is no accessor to get 
the string used to initialize the value. 
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How should its value be defined? 

1. The string used to create it. 

2. The language it accepts. 

IMO, the correct answer is 2.  Why? 
Note that there is no accessor to get 
the string used to initialize the value. 
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How should its value be defined? 

1. The string used to create it. 

2. The language it accepts. 

The correct answer is 2.  Why? 
Because, there is no accessor to get 
the string used to assign the value. 
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How should its value be defined? 

1. The string used to create it. 

2. The language it accepts. 

The correct answer is 2.  Why? 
Because, there is no accessor to get 
the string used to assign the value. 

 

3. Two Important, Instructional Case Studies 

Regular Expressions 

What makes a RegEx 
value special – i.e., 

distinct from that of the 
(const char *) 

used to create it – is the 
language value a RegEx 

object represents.  
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How should its value be defined? 

1. The string used to create it. 

2. The language it accepts. 

The correct answer is 2.  Why? 
Because, there is no accessor to get 
the string used to assign the value. 
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How should its value be defined? 

1. The string used to create it. 

2. The language it accepts. 

The correct answer is 2.  Why? 
Because, there is no accessor to get 
the string used to assign the value. 
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How should its value be defined? 

1. The string used to create it. 

2. The language it accepts. 

The correct answer is 2.  Why? 
Because, there is no accessor to get 
the string used to assign the value. 
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How should its value be defined? 

1. The string used to create it. 

2. The language it accepts. 

The correct answer is 2.  Why? 
Because, there is no accessor to get 
the string used to assign the value. 
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Important Design Questions: 

• What is a Regular Expression? 

• Why create a separate class for it? 

• Does/should it represent a value? 

• How should its value be defined? 

• Should such a class be regular? 
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Should such a class be regular? 

I.e., Should our RegEx class 
support all of the value-semantic 
syntax of a regular class? 
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Should such a class be regular? 

I.e., Should our RegEx class 
support all of the value-semantic 
syntax of a regular class? 
 

Question: How expensive would 
operator== be to implement? 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[1]? 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[1]? 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

3. Two Important, Instructional Case Studies 

Regular Expressions 

460 



Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

 O[sqrt N] 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

 O[sqrt N] 

 O[N] 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

 O[sqrt N] 

 O[N] 

 O[N * log N] 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

 O[sqrt N] 

 O[N] 

 O[N * log N] 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

 O[sqrt N] 

 O[N] 

 O[N * log N] 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

 O[sqrt N] 

 O[N] 

 O[N * log N] 

 O[N * sqrt N] 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

 O[sqrt N] 

 O[N] 

 O[N * log N] 

 O[N * sqrt N] 

 O[N^2] 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

 O[sqrt N] 

 O[N] 

 O[N * log N] 

 O[N * sqrt N] 

 O[N^2] 

 O[N^2 * log N] 

3. Two Important, Instructional Case Studies 

Regular Expressions 

470 



Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

 O[sqrt N] 

 O[N] 

 O[N * log N] 

 O[N * sqrt N] 

 O[N^2] 

 O[N^2 * log N] 

 Polynomial 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 
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 O[N] 

 O[N * log N] 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

 O[sqrt N] 

 O[N] 

 O[N * log N] 

 O[N * sqrt N] 

 O[N^2] 

 O[N^2 * log N] 

 Polynomial 

 NP 

 NP complete 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

 O[sqrt N] 

 O[N] 

 O[N * log N] 

 O[N * sqrt N] 

 O[N^2] 

 O[N^2 * log N] 

 Polynomial 

 NP 

 NP Complete 

 P-SPACE 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

 O[sqrt N] 

 O[N] 

 O[N * log N] 

 O[N * sqrt N] 

 O[N^2] 

 O[N^2 * log N] 

 Polynomial 

 NP 

 NP Complete 

 P-SPACE 

 P-SPACE Complete 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

 O[sqrt N] 

 O[N] 

 O[N * log N] 

 O[N * sqrt N] 

 O[N^2] 

 O[N^2 * log N] 
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 NP Complete 
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 P-SPACE Complete 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 
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3. Two Important, Instructional Case Studies 

Regular Expressions 

Over an alphabet Σ, given one DFA having states S={si} (of which 
A⊆S are accepting) and transition function δ:S×Σ→S, and another 
DFA having states T={tj} (of which B⊆T are accepting) and 
transition function ζ:T×Σ→T, one can "easily" construct a DFA 
with states U=S×T (Cartesian product) and transition function 
η((si, tj), σ) = (δ(si, σ), ζ(tj, σ)), where σ e Σ. Then the two original 
DFAs are equivalent iff the only states reachable in this Cartesian-
product DFA are a subset of (A×B)∪((S∖A)×(T∖B)) — i.e., it's 
impossible to reach a state that is accepting in one of the original 
DFAs, but not in the other. Once one has translated the regular 
expressions to DFAs, the naive time complexity is O[|Σ||S||T|], 
and the space complexity is O[|S||T||Σ|]. 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 

 O[log N] 

 O[sqrt N] 

 O[N] 

 O[N * log N] 

 O[N * sqrt N] 

 O[N^2] 

 O[N^2 * log N] 

 Polynomial 

 NP 

 NP Complete 

 P-SPACE 

 P-SPACE Complete 

 Undecidable 
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Should such a class be regular? 
Question: How expensive would operator== be to implement? 
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 Polynomial 

 NP 

 NP Complete 

 P-SPACE 

 P-SPACE Complete 
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Important Design Questions: 

• What is a Priority Queue? 

• Why create a separate class for it? 

• Does/should it represent a value? 

• How should its value be defined? 

• Should such a class be regular? 
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Important Design Questions: 

• What is a Priority Queue? 

• Why create a separate class for it? 

• Does/should it represent a value? 

• How should its value be defined? 

• Should such a class be regular? 
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What is a Priority Queue? 

 

3. Two Important, Instructional Case Studies 

Priority Queues 

484 



What is a Priority Queue? 

A priority queue is a (generic) container that 

provides constant-time access to its top 

priority element – defined by a user-

supplied priority function (or functor) – as 

well as supporting logarithmic-time pushes 

and pops of queue-element values. 
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What is a Priority Queue? 

A priority queue is a (generic) container that 

provides constant-time access to its top 

priority element – defined by a user-

supplied priority function (or functor) – as 

well as supporting logarithmic-time pushes 

and pops of queue-element values. 
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Salient 
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Example Queue Element:     
 

class LabeledPoint { 
  std::string d_label; 
  int         d_x; 
  int         d_y; 
 public: 
 

  // … (Regular Type) 
  
  const std::string& label() const { return d_label }; 
  int                x()     const { return d_x; }; 
  int                y()     const { return d_y; }; 
}; 
 

bool operator==(const LabeledPoint& lhs,  
                const LabeledPoint& rhs) { 
  return lhs.label() == rhs.label() 

      && lhs.x()     == rhs.x() 
      && lhs.y()     == rhs.y();       (Unconstrained Attribute Class) 
}  
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Example Queue Element:     
 

class LabeledPoint { 
  std::string d_label; 
  int         d_x; 
  int         d_y; 
 public: 
 

  // … (Regular Type) 
  
  const std::string& label() const { return d_label }; 
  int                x()     const { return d_x; }; 
  int                y()     const { return d_y; }; 
}; 
 

bool operator==(const LabeledPoint& lhs,  
                const LabeledPoint& rhs) { 
  return lhs.label() == rhs.label() 

      && lhs.x()     == rhs.x() 
      && lhs.y()     == rhs.y();       (Unconstrained Attribute Class) 
}  

3. Two Important, Instructional Case Studies 

Priority Queues 

What is a Priority Queue? 
Example Comparison Function:  
bool less(const LabeledPoint& a, 

          const LabeledPoint& b) { 

  return abs(a.x()) + abs(a.y()) 

       < abs(b.x()) + abs(b.y()); 

}         (a.k.a. “Manhattan Distance”) 
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Example Comparison Function:  
bool less(const LabeledPoint& a, 

          const LabeledPoint& b) { 

  return abs(a.x()) + abs(a.y()) 

       < abs(b.x()) + abs(b.y()); 

}         (a.k.a. “Manhattan Distance”) 

Example Queue Element:     
 

class LabeledPoint { 
  std::string d_label; 
  int         d_x; 
  int         d_y; 
 public: 
 

  // … (Regular Type) 
  
  const std::string& label() const { return d_label }; 
  int                x()     const { return d_x; }; 
  int                y()     const { return d_y; }; 
}; 
 

bool operator==(const LabeledPoint& lhs,  
                const LabeledPoint& rhs) { 
  return lhs.label() == rhs.label() 

      && lhs.x()     == rhs.x() 
      && lhs.y()     == rhs.y();       (Unconstrained Attribute Class) 
}  
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What is a Priority Queue? 
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Important Design Questions: 

• What is a Priority Queue? 

• Why create a separate class for it? 

• Does/should it represent a value? 

• How should its value be defined? 

• Should such a class be regular? 
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Why create a separate class for it? 
A Priority Queue is a useful data 
structure for dispensing value-
semantic (as well as other types of) 
objects according to a user-specified 
priority order.  
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How should its value be defined? 
Two objects of class PriorityQueue  
have the same value iff there does not 
exist a distinguishing sequence among 
all of its salient operations: 
    1. top 

    2. push 

    3. pop 
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Should such a class be regular? 

I.e., should our PriorityQueue 
class support all of the value-
semantic syntax of a regular class? 
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semantic syntax of a regular class? 
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not have a distinguishing sequence 
of salient operations?? 
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4. Conclusion 

What to Remember about VSTs 

So what are the take-aways? 
 Some types naturally represent a value. 
 Ideally, each value type will have regular syntax. 
 Moreover, all operations on value types should 

follow proper value semantics: 
 Value derives only from autonomous object state, 

but not all object state need contribute to value. 

 Adhere to the Essential Property of Value. 

 Behave as if each value has a canonical internal 
representation. 
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 Two objects of a given value-
semantic type have the same 
value iff there does not exist a 
distinguishing sequence among 
all of its salient operations. 
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4. Conclusion 

What to Remember about VSTs 

The key take-away: 

What makes a value-type proper 
has essentially nothing to do with 
syntax; it has everything to do with 
semantics: A class that respects the 
Essential Property of Value is value-
semantic; otherwise, it is not!   
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• Find our open-source distribution at: 
http://www.openbloomberg.com/bde 

• Moderator: kpfleming@bloomberg.net  

• How to contribute?  See our site. 

• All comments and criticisms welcome... 

• I can be reached at jlakos@bloomberg.net 

             The End 
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