
Value Semantics
It ain’t about the syntax!

John Lakos

Thursday, April 23, 2015

1

Copyright Notice

© 2014 Bloomberg L.P. Permission is granted to copy, distribute, and display
this material, and to make derivative works and commercial use of it. The
information in this material is provided "AS IS", without warranty of any
kind. Neither Bloomberg nor any employee guarantees the correctness or
completeness of such information. Bloomberg, its employees, and its
affiliated entities and persons shall not be liable, directly or indirectly, in any
way, for any inaccuracies, errors or omissions in such information. Nothing
herein should be interpreted as stating the opinions, policies,
recommendations, or positions of Bloomberg.

2

Abstract
When people talk about a type as having *value* *semantics*, they are often thinking about its ability

to be passed to (or returned from) a function by value. In order to do that, the C++ language requires

that the type implement a copy constructor, and so people routinely implement copy constructors on

their classes, which begs the question, "Should an object of that type be copyable at all?" If so, what

should be true about the copy? Should it have the same state as the original object? Same

behavior? What does copying an object mean?!

By *value* *type*, most people assume that the type is specifically intended to represent a member of

some set (of values). A value-semantic type, however, is one that strives to approximate an abstract

mathematical type (e.g., integer, character set, complex-number sequence), which comprises

operations as well as values. When we copy an object of a value-semantic type, the new object

might not have the same state, or even the same behavior as the original object; for proper value

semantic types, however, the new object will have the same value.

In this talk, we begin by gaining an intuitive feel for what we mean by *value* by identifying *salient*

attributes, i.e., those that contribute to value, and by contrasting types whose objects naturally

represent values with those that don't. After quickly reviewing the syntactic properties common to

typical value types, we dive into the much deeper issues that value semantics entail. In particular, we

explore the subtle Essential Property of Value, which applies to every *salient* mutating operation on

a value-semantic object, and then profitably apply this property to realize a correct design for each of

a variety of increasingly interesting (value-semantic) classes.

3

Outline

1. Introduction and Background
Components, Physical Design, and Class Categories

2. Understanding Value Semantics (and Syntax)
Most importantly, the Essential Property of Value

3. Two Important, Instructional Case Studies
Specifically, Regular Expressions and Priority Queues

4. Conclusion
What must be remembered when designing value types

4

Outline

1. Introduction and Background
Components, Physical Design, and Class Categories

2. Understanding Value Semantics (and Syntax)
Most importantly, the Essential Property of Value

3. Two Important, Instructional Case Studies
Specifically, Regular Expressions and Priority Queues

4. Conclusion
What must be remembered when designing value types

5

1. Introduction and Background

What’s the Problem?

6

1. Introduction and Background

What’s the Problem?

7

Large-Scale C++ Software Design:

• Involves many subtle logical and physical aspects.

1. Introduction and Background

Logical versus Physical Design

What distinguishes Logical from Physical Design?

Logical

physical

8

1. Introduction and Background

Logical versus Physical Design

What distinguishes Logical from Physical Design?

 Logical: Classes and Functions

Logical

physical

9

1. Introduction and Background

Logical versus Physical Design

What distinguishes Logical from Physical Design?

 Logical: Classes and Functions
 Physical: Files and Libraries

Logical

physical

10

1. Introduction and Background

 Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

 //...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

A Component Is Physical

11

1. Introduction and Background

 Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

 //...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

Implementation

12

1. Introduction and Background

 Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

 //...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

Header

13

1. Introduction and Background

 Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

 //...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

Test Driver

14

1. Introduction and Background

 Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

 //...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

The Fundamental Unit of Design

15

1. Introduction and Background

What’s the Problem?

16

Large-Scale C++ Software Design:

• Involves many subtle logical and physical aspects.

• Requires an ability to isolate and modularize
logical functionality within discrete, fine-grained
physical components.

1. Introduction and Background

Logical versus Physical Design

Logical content aggregated into a
Physical hierarchy of components

a b

c

17

1. Introduction and Background

What’s the Problem?

18

Large-Scale C++ Software Design:

• Involves many subtle logical and physical aspects.

• Requires an ability to isolate and modularize logical
functionality within discrete, fine-grained physical
components.

• Compels the designer to delineate logical behavior
precisely, while managing the physical
dependencies on other subordinate components.

1. Introduction and Background

Implied Dependency

Shape

PointList

PointList_Link

Is-A Uses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Depends-On

Polygon

Point

19

1. Introduction and Background

Implied Dependency

Shape

PointList

PointList_Link

Is-A Uses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Depends-On

Polygon

Point

20

1. Introduction and Background

What’s the Problem?

21

Large-Scale C++ Software Design:

• Involves many subtle logical and physical aspects.

• Requires an ability to isolate and modularize logical
functionality within discrete, fine-grained physical
components.

• Compels the designer to delineate logical behavior
precisely, while managing the physical
dependencies on other subordinate components.

• Demands a consistent, shared understanding of the
properties of common class categories: Value Types.

1. Introduction and Background

The Big Picture

factory bteso::InetStreamSocketFactory

baetzo::LocalTimeDescriptor

no

bdea::BitArray

singleton

guard/

proctor

reference

semantic

type

2
2

4

64

general

VST
enumeration

2

2

bslma::NewDeleteAllocator

bsls::AlignmentUtil

baetzo::LocalTimeValidity

bslmf::IsFundamental baetzo::Loader

bslma::DeallocatorGuard

bslma::DestructorProctor

utility
meta-

function
protocol

bdet::Date

bdem::ElemRef

2

externalizable,

no allocator

2

no yes

yesno

2

2

2

attribute

unconstrained
simply

constrained

complex

constrained
pure

baet::LocalDatetime baetzo::LocalTimePeriod

bsl::vector

standard

container

packed

container

yes

64 64

Referable

elements?

4

4

Externalizable?

bteso::LingerOptions

Takes allocator?

Has “value”?

Value-

Semantic Type

Mechanism

Is object-

instantiable?

container:
associative?

X ordered?

X unique?

X indexed?

Type only

a x

a

 x

a

a

externalization

available from

bslx

a x

 x

a

bassvc::ControlMessageResponse

a x

stateless

functor
bsl::less

a

22

1. Introduction and Background

The Big Picture

factory bteso::InetStreamSocketFactory

baetzo::LocalTimeDescriptor

no

bdea::BitArray

singleton

guard/

proctor

reference

semantic

type

2
2

4

64

general

VST
enumeration

2

2

bslma::NewDeleteAllocator

bsls::AlignmentUtil

baetzo::LocalTimeValidity

bslmf::IsFundamental baetzo::Loader

bslma::DeallocatorGuard

bslma::DestructorProctor

utility
meta-

function
protocol

bdet::Date

bdem::ElemRef

2

externalizable,

no allocator

2

no yes

yesno

2

2

2

attribute

unconstrained
simply

constrained

complex

constrained
pure

baet::LocalDatetime baetzo::LocalTimePeriod

bsl::vector

standard

container

packed

container

yes

64 64

Referable

elements?

4

4

Externalizable?

bteso::LingerOptions

Takes allocator?

Has “value”?

Value-

Semantic Type

Mechanism

Is object-

instantiable?

container:
associative?

X ordered?

X unique?

X indexed?

Type only

a x

a

 x

a

a

externalization

available from

bslx

a x

 x

a

bassvc::ControlMessageResponse

a x

stateless

functor
bsl::less

a

Common
Category

Common
Category

Common
Category

Common
Category

23

YOU ARE HERE

Outline

1. Introduction and Background
Components, Physical Design, and Class Categories

2. Understanding Value Semantics (and Syntax)
Most importantly, the Essential Property of Value

3. Two Important, Instructional Case Studies
Specifically, Regular Expressions and Priority Queues

4. Conclusion
What must be remembered when designing value types

24

Outline

1. Introduction and Background
Components, Physical Design, and Class Categories

2. Understanding Value Semantics (and Syntax)
Most importantly, the Essential Property of Value

3. Two Important, Instructional Case Studies
Specifically, Regular Expressions and Priority Queues

4. Conclusion
What must be remembered when designing value types

25

2. Understanding Value Semantics

Purpose of this Talk

26

Answer some key questions about value:
What do we mean by value?

Why is the notion of value important?

Which types should be considered value types?

What do we expect syntactically of a value type?

What semantics should its operations have?

How do we design proper value-semantic types?

When should value-related syntax be omitted?

2. Understanding Value Semantics

Value versus Non-Value Types

Getting Started:

27

2. Understanding Value Semantics

Value versus Non-Value Types

Getting Started:

• Not all useful C++ classes are value types.

28

2. Understanding Value Semantics

Value versus Non-Value Types

Getting Started:

• Not all useful C++ classes are value types.

• Still, value types form an important category.

29

2. Understanding Value Semantics

Value versus Non-Value Types

Getting Started:

• Not all useful C++ classes are value types.

• Still, value types form an important category.

• Let’s begin with understanding some basic
properties of value types.

30

2. Understanding Value Semantics

Value versus Non-Value Types

Getting Started:

• Not all useful C++ classes are value types.

• Still, value types form an important category.

• Let’s begin with understanding some basic
properties of value types.

• Then we’ll contrast them with non-value
types, to create a type-category hierarchy.

31

2. Understanding Value Semantics

Value versus Non-Value Types

Getting Started:

• Not all useful C++ classes are value types.

• Still, value types form an important category.

• Let’s begin with understanding some basic
properties of value types.

• Then we’ll contrast them with non-value
types, to create a type-category hierarchy.

• After that, we’ll dig further into the details of
value syntax and semantics.

32

2. Understanding Value Semantics

True Story

• Date: Friday Morning, October 5th, 2007

• Place: LWG, Kona, Hawaii

• Defect: issue #684: Wording of Working Paper

33

• Date: Friday Morning, October 5th, 2007

• Place: LWG, Kona, Hawaii

• Defect: issue #684: Wording of Working Paper

What was meant by stating that two

 std::match_result

objects (§28.10) were “the same” ?

2. Understanding Value Semantics

True Story

34

2. Understanding Value Semantics

“The Same”

What do we mean by “the same”?

35

2. Understanding Value Semantics

“The Same”

What do we mean by “the same”?
• The two objects are identical?

– same address, same process, same time?

36

2. Understanding Value Semantics

“The Same”

What do we mean by “the same”?
• The two objects are identical?

– same address, same process, same time?

• The two objects are distinct, yet have certain
properties in common.

37

2. Understanding Value Semantics

“The Same”

What do we mean by “the same”?
• The two objects are identical?

– same address, same process, same time?

• The two objects are distinct, yet have certain
properties in common.

 (It turned out to be the latter.)

38

2. Understanding Value Semantics

“The Same”

What do we mean by “the same”?
• The two objects are identical?

– same address, same process, same time?

• The two objects are distinct, yet have certain
properties in common.

 (It turned out to be the latter.)

So the meaning was clear…

39

2. Understanding Value Semantics

“The Same”

What do we mean by “the same”?
• The two objects are identical?

– same address, same process, same time?

• The two objects are distinct, yet have certain
properties in common.

 (It turned out to be the latter.)

So the meaning was clear… Or was it?

40

2. Understanding Value Semantics

What exactly has to be “the Same”?

The discussion continued…
 …some voiced suggestions:

41

2. Understanding Value Semantics

What exactly has to be “the Same”?

The discussion continued…
 …some voiced suggestions:

• Whatever the copy constructor preserves.

42

2. Understanding Value Semantics

What exactly has to be “the Same”?

The discussion continued…
 …some voiced suggestions:

• Whatever the copy constructor preserves.

• As long as the two are “equal”.

43

2. Understanding Value Semantics

What exactly has to be “the Same”?

The discussion continued…
 …some voiced suggestions:

• Whatever the copy constructor preserves.

• As long as the two are “equal”.

• As long as they’re “equivalent”.

44

2. Understanding Value Semantics

What exactly has to be “the Same”?

The discussion continued…
 …some voiced suggestions:

• Whatever the copy constructor preserves.

• As long as the two are “equal”.

• As long as they’re “equivalent”.

• “You know what I mean!!”

45

2. Understanding Value Semantics

What exactly has to be “the Same”?

The discussion continued…
 …some voiced suggestions:

• Whatever the copy constructor preserves.

• As long as the two are “equal”.

• As long as they’re “equivalent”.

• “You know what I mean!!”

Since “purely wording” left solely to the editor!

46

2. Understanding Value Semantics

Not just an “Editorial Issue”?

47

2. Understanding Value Semantics

Not just an “Editorial Issue”?

 What it means for two objects to be
 “the same” is an important, pervasive,
 and recurring concept in practical
 software design.

48

2. Understanding Value Semantics

Not just an “Editorial Issue”?

 What it means for two objects to be
 “the same” is an important, pervasive,
 and recurring concept in practical
 software design.

 Based on the notion of “value”.

49

What do we
mean by value?

50

2. Understanding Value Semantics

What does a Copy Constructor do?

51

2. Understanding Value Semantics

What does a Copy Constructor do?

After copy construction, the
resulting object is…

52

2. Understanding Value Semantics

What does a Copy Constructor do?

After copy construction, the
resulting object is…

 substitutable for the original one
with respect to “some criteria”.

53

2. Understanding Value Semantics

What does a Copy Constructor do?

After copy construction, the
resulting object is…

 substitutable for the original one
with respect to “some criteria”.

 What Criteria?

54

2. Understanding Value Semantics

Same Object?

55

2. Understanding Value Semantics

Same Object?

 std::vector<double> a, b(a);

 assert(&a == &b); // ??

56

2. Understanding Value Semantics

Same Object?

 std::vector<double> a, b(a);

 assert(&a == &b); // ??

 assert(0 == b.size());

 a.push_back(5.0);

 assert(1 == b.size()); // ??

57

2. Understanding Value Semantics

Same Object?

 std::vector<double> a, b(a);

 assert(&a == &b); // ??

 assert(0 == b.size());

 a.push_back(5.0);

 assert(1 == b.size()); // ??

58

2. Understanding Value Semantics

Same Object?

 std::vector<double> a, b(a);

 assert(&a == &b); // ??

 assert(0 == b.size());

 a.push_back(5.0);

 assert(1 == b.size()); // ??

59

2. Understanding Value Semantics

Same Object?

 std::vector<double> a, b(a);

 assert(&a == &b); // ??

 assert(0 == b.size());

 a.push_back(5.0);

 assert(1 == b.size()); // ??

60

2. Understanding Value Semantics

Same Object?

 std::vector<double> a, b(a);

 assert(&a == &b); // ??

 assert(0 == b.size());

 a.push_back(5.0);

 assert(1 == b.size()); // ??

61

2. Understanding Value Semantics

Same State?

62

2. Understanding Value Semantics

Same State?

class String {

 char *d_array_p; // dynamic

 int d_capacity;

 int d_length;

 public:

 String();

 String(const String& original);
 // ...

};

63

2. Understanding Value Semantics

Same State?

class String {

 char *d_array_p; // dynamic

 int d_capacity;

 int d_length;

 public:

 String();

 String(const String& original);
 // ...

};

What happens if this

address is copied?

64

2. Understanding Value Semantics

Same Behavior?

65

2. Understanding Value Semantics

Same Behavior?

 If we apply the same sequence of operations to both
objects, the observable behavior will be the same:

66

2. Understanding Value Semantics

Same Behavior?

 If we apply the same sequence of operations to both
objects, the observable behavior will be the same:

 void f(bool x)

 {

 std::vector<int> a;

 a.reserve(65536); // is capacity copied?

 std::vector<int> b(a); assert(a == b)

67

2. Understanding Value Semantics

Same Behavior?

 If we apply the same sequence of operations to both
objects, the observable behavior will be the same:

 void f(bool x)

 {

 std::vector<int> a;

 a.reserve(65536); // is capacity copied?

 std::vector<int> b(a); assert(a == b)

 a.reserve(65536); // no reallocation!

 b.reserve(65536); // memory allocation?

68

2. Understanding Value Semantics

Same Behavior?

 If we apply the same sequence of operations to both
objects, the observable behavior will be the same:

 void f(bool x)
 {

 std::vector<int> a;

 a.reserve(65536); // is capacity copied?

 std::vector<int> b(a); assert(a == b)

 a.reserve(65536); // no reallocation!

 b.reserve(65536); // memory allocation?

 a.push_back(5); b.push_back(5); // so not empty

 std::vector<int>& r = x ? a : b;

 if (&r[0] == &a[0]) { std::cout << "Hello"; }

 else { std::cout << "Goodbye"; }
 }

69

2. Understanding Value Semantics

Same What?

70

2. Understanding Value Semantics

Same What?

 What should be “the same”

 after copy construction?

 (It better be easy to understand.)

 The two objects should
 represent the same value!

71

2. Understanding Value Semantics

Same What?

 What should be “the same”

 after copy construction?

 (It better be easy to understand.)

 The two objects should
 represent the same value!

72

2. Understanding Value Semantics

Same What?

 What should be “the same”

 after copy construction?

 (It better be easy to understand.)

 The two objects should
 represent the same value!

73

2. Understanding Value Semantics

What do we mean by “value”?

74

2. Understanding Value Semantics

What do we mean by “value”?

75

2. Understanding Value Semantics

Mathematical Types

76

2. Understanding Value Semantics

Mathematical Types

A mathematical type consists of

• A set of globally unique values

– Each one describable independently of any
particular representation.

77

2. Understanding Value Semantics

Mathematical Types

A mathematical type consists of

• A set of globally unique values

– Each one describable independently of any
particular representation.

– For example, the decimal integer 5:

 5, 5, V, 101(binary), five , IIII

78

2. Understanding Value Semantics

Mathematical Types

A mathematical type consists of

• A set of globally unique values

– Each one describable independently of any
particular representation.

– For example, the decimal integer 5:

 5, 5, V, 101(binary), five , IIII

• A set of operations on those values

– For example: +, -, x (3 + 2)

79

2. Understanding Value Semantics

Mathematical Types

A mathematical type consists of

• A set of globally unique values

– Each one describable independently of any
particular representation.

– For example, the decimal integer 5:

 5, 5, V, 101(binary), five , IIII

• A set of operations on those values

– For example: +, -, x (3 + 2)

80

Operations
will

become
important

shortly!

2. Understanding Value Semantics

C++ Type

81

2. Understanding Value Semantics

C++ Type

• A C++ type may represent (an approximation
to) an abstract mathematical type:
– For example: The C++ type int represents (an

approximation to) the mathematical type integer.

• An object of such a C++ type represents one of
(a subset of) the globally unique values in the
set of the abstract mathematical type.

• The C++ object is just another representation
of that globally unique, abstract value.

82

2. Understanding Value Semantics

C++ Type

• A C++ type may represent (an approximation
to) an abstract mathematical type:
– For example: The C++ type int represents (an

approximation to) the mathematical type integer.

• An object of such a C++ type represents one of
(a subset of) the globally unique values in the
set of the abstract mathematical type.

• The C++ object is just another representation
of that globally unique, abstract value.

83

2. Understanding Value Semantics

C++ Type

• A C++ type may represent (an approximation
to) an abstract mathematical type:
– For example: The C++ type int represents (an

approximation to) the mathematical type integer.

• An object of such a C++ type represents one of
(a subset of) the globally unique values in the
set of that abstract mathematical type.

• The C++ object is just another representation
of that globally unique, abstract value.

84

2. Understanding Value Semantics

C++ Type

• A C++ type may represent (an approximation
to) an abstract mathematical type:
– For example: The C++ type int represents (an

approximation to) the mathematical type integer.

• An object of such a C++ type represents one of
(a subset of) the globally unique values in the
set of that abstract mathematical type.

• The C++ object is just another representation
of that globally unique, abstract value, e.g., 5.

85

2. Understanding Value Semantics

So, what do we mean by “value”?

class Date {

 short d_year;

 char d_month;

 char d_day;

 public:
 // …

 int year();

 int month();

 int day();

};

87

2. Understanding Value Semantics

So, what do we mean by “value”?

class Date {

 short d_year;

 char d_month;

 char d_day;

 public:
 // …

 int year();

 int month();

 int day();

};

88

2. Understanding Value Semantics

So, what do we mean by “value”?

class Date {

 short d_year;

 char d_month;

 char d_day;

 public:
 // …

 int year();

 int month();

 int day();

};

89

2. Understanding Value Semantics

So, what do we mean by “value”?

class Date {

 short d_year;

 char d_month;

 char d_day;

 public:
 // …

 int year()

 int month()

 int day()

};

int day() const;

int month() const;

int year() const;

90

2. Understanding Value Semantics

So, what do we mean by “value”?

class Date {

 short d_year;

 char d_month;

 char d_day;

 public:
 // …

 int year();

 int month();

 int day();

};

class Date {

 int d_serial;

 public:
 // …

 int year();

 int month();

 int day();

};

91

2. Understanding Value Semantics

So, what do we mean by “value”?

class Date {

 short d_year;

 char d_month;

 char d_day;

 public:
 // …

 int year();

 int month();

 int day();

};

class Date {

 int d_serial;

 public:
 // …

 int year();

 int month();

 int day();

};

92

2. Understanding Value Semantics

So, what do we mean by “value”?

 Salient Attributes

 int year();

 int month();

 int day();

93

2. Understanding Value Semantics

So, what do we mean by “value”?

 Salient Attributes
The documented set of (observable)
named attributes of a type T that
must respectively “have” (refer to)
the same value in order for two
instances of T to “have” (refer to) the
same value.

94

2. Understanding Value Semantics

So, what do we mean by “value”?

class Time {

 char d_hour;

 char d_minute;

 char d_second;

 short d_millisec;

 public:

 // …

 int hour();

 int minute();

 int second();

 int millisecond();

};

class Time {

 int d_mSeconds;

 public:

 // …

 int hour();

 int minute();

 int second();

 int millisecond();

};

95

class Time {

 Internal Representation

 public:

 // …

 int hour();

 int minute();

 int second();

 int millisecond();

};

2. Understanding Value Semantics

So, what do we mean by “value”?

class Time {

 Internal Representation

 public:

 // …

 int hour();

 int minute();

 int second();

 int millisecond();

};

VALUE

96

2. Understanding Value Semantics

So, what do we mean by “value”?

QUESTION:

What would be the simplest
overarching mathematical type
for which std::string and
(const char *)are both

approximations?

97

2. Understanding Value Semantics

So, what do we mean by “value”?

QUESTION:

So if they both represent the
character sequence “Fred” do

they represent the same value?

98

2. Understanding Value Semantics

So, what do we mean by “value”?

QUESTION:

What about integers and
integers mod 5?

99

2. Understanding Value Semantics

So, what do we mean by “value”?

An “interpretation” of a subset of instance state.

100

2. Understanding Value Semantics

So, what do we mean by “value”?

An “interpretation” of a subset of instance state.

• The values of the Salient Attributes, and not
the instance state used to represent them,
comprise what we call the value of an object.

101

2. Understanding Value Semantics

So, what do we mean by “value”?

An “interpretation” of a subset of instance state.

• The values of the Salient Attributes, and not
the instance state used to represent them,
comprise what we call the value of an object.

• This definition may be recursive in that a
documented Salient Attribute of a type T may
itself be of type U having its own Salient
Attributes.

102

2. Understanding Value Semantics

So, what do we mean by “value”?

class Point {

 short int d_x;

 short int d_y;

 public:

 // …

 int x();

 int y();

};

103

2. Understanding Value Semantics

So, what do we mean by “value”?

class Point {

 Internal Representation

 public:

 // …

 int x();

 int y();

};

104

2. Understanding Value Semantics

So, what do we mean by “value”?

class Point {

 Internal Representation

 public:

 // …

 int x();

 int y();

};

class Box {

 Point d_topLeft;

 Point d_botRight;

 public:

 // …

 Point origin();

 int length();

 int width();

};

105

class Box {

 Internal Representation

 public:

 // …

 Point origin();

 int length();

 int width();

};

2. Understanding Value Semantics

So, what do we mean by “value”?

class Point {

 Internal Representation

 public:

 // …

 int x();

 int y();

};

106

2. Understanding Value Semantics

So, what do we mean by “value”?

class Point {

 Internal Representation

 public:

 // …

 int x();

 int y();

};

class Box {

 Internal Representation

 public:

 // …

 Point origin();

 int length();

 int width();

};

107

2. Understanding Value Semantics

What are “Salient Attributes”?

108

2. Understanding Value Semantics

What are “Salient Attributes”?

class vector {

 T *d_array_p;

 size_type d_capacity;

 size_type d_size;
 // ...

 public:

 vector();

 vector(const vector<T>& orig);
 // ...

};

109

2. Understanding Value Semantics

What are “Salient Attributes”?

Consider std::vector<int>:

 What are its salient attributes?

110

2. Understanding Value Semantics

What are “Salient Attributes”?

Consider std::vector<int>:

 What are its salient attributes?

1. The number of elements: size().

111

2. Understanding Value Semantics

What are “Salient Attributes”?

Consider std::vector<int>:

 What are its salient attributes?

1. The number of elements: size().

2. The values of the respective elements.

112

2. Understanding Value Semantics

What are “Salient Attributes”?

Consider std::vector<int>:

 What are its salient attributes?

1. The number of elements: size().

2. The values of the respective elements.

3. What about capacity()?

113

2. Understanding Value Semantics

What are “Salient Attributes”?

Consider std::vector<int>:

 What are its salient attributes?

1. The number of elements: size().

2. The values of the respective elements.

3. What about capacity()?

 How is the client supposed to know for sure?

114

2. Understanding Value Semantics

What are “Salient Attributes”?

Salient Attributes:

115

2. Understanding Value Semantics

What are “Salient Attributes”?

Salient Attributes:

1. Are a part of logical design.

116

2. Understanding Value Semantics

What are “Salient Attributes”?

Salient Attributes:

1. Are a part of logical design.

2. Should be “natural” & “intuitive”.

117

2. Understanding Value Semantics

What are “Salient Attributes”?

Salient Attributes:

1. Are a part of logical design.

2. Should be “natural” & “intuitive”

3. Must be documented explicitly!

118

Why is value

important?

119

2. Understanding Value Semantics

Why are unique values important?

120

2. Understanding Value Semantics

Why are unique values important?

 IPC

 Inter-Process

 Communication

121

2. Understanding Value Semantics

Why are unique values important?

 Abstract date Type C++ Date Class

122

2. Understanding Value Semantics

Why are unique values important?

 Abstract date Type C++ Date Class

 Has an infinite set of

 valid date values.

123

2. Understanding Value Semantics

Why are unique values important?

 Abstract date Type C++ Date Class

 Has an infinite set of

 valid date values.

1969-07-16

2008-04-03

2001-09-11

1941-12-07

1999-12-31

1000000 B.C.

1000000 A.D.

 99999-12-31

 1776-07-04

Globally Unique Values

1917-12-10

1919-02-05

 1959-03-08

 1994-08-14

124

2. Understanding Value Semantics

Why are unique values important?

 Abstract date Type C++ Date Class

 Has an infinite set of Each instance refers to

 valid date values. one of (a subset of)

 these abstract values.

1969-07-16

2008-04-03

2001-09-11

1941-12-07

1999-12-31

1000000 B.C.

1000000 A.D.

 99999-12-31

 1776-07-04

Globally Unique Values

1917-12-10

1919-02-05

 1959-03-08

 1994-08-14

125

2. Understanding Value Semantics

Why are unique values important?

 Abstract date Type C++ Date Class

 Has an infinite set of Each instance refers to

 valid date values. one of (a subset of)

 these abstract values.

1969-07-16

Date 2008-04-03

2001-09-11

1941-12-07

1999-12-31

1000000 B.C.

1000000 A.D.

 99999-12-31

 1776-07-04 C++
Globally Unique Values

1917-12-10

1919-02-05

 1959-03-08

 1994-08-14

126

2. Understanding Value Semantics

Why are unique values important?

 Abstract date Type C++ Date Class

 Has an infinite set of Each instance refers to

 valid date values. one of (a subset of)

 these abstract values.

1969-07-16

Date 2008-04-03

2001-09-11

1941-12-07

1999-12-31

1000000 B.C.

1000000 A.D.

 99999-12-31

 1776-07-04 C++
Globally Unique Values

1917-12-10

1919-02-05

 1959-03-08

 1994-08-14

127

2. Understanding Value Semantics

Why are unique values important?

 1969-07-16

Date 2008-04-03

2001-09-11

1941-12-07

1999-12-31

1000000 B.C.

1000000 A.D.

 99999-12-31

 1776-07-04 C++
Globally Unique Values

1917-12-10

1919-02-05

 1959-03-08

 1994-08-14

128

2. Understanding Value Semantics

Why are unique values important?

 1969-07-16

Date 2008-04-03

2001-09-11

1941-12-07

1999-12-31

1000000 B.C.

1000000 A.D.

 99999-12-31

 1776-07-04

Database

C++
Globally Unique Values

1917-12-10

1919-02-05

 1959-03-08

 1994-08-14

129

2. Understanding Value Semantics

Why are unique values important?

 1969-07-16

Date 2008-04-03

2001-09-11

1941-12-07

1999-12-31

1000000 B.C.

1000000 A.D.

 99999-12-31

 1776-07-04

D

a

b

c

d

e

Database

1917-12-10

1919-02-05

C++
Globally Unique Values

 1959-03-08

 1994-08-14

130

2. Understanding Value Semantics

Why are unique values important?

 1969-07-16

Date 2008-04-03

2001-09-11

1941-12-07

1999-12-31

1000000 B.C.

1000000 A.D.

 99999-12-31

 1776-07-04

D

a

b

c

d

e

Database

1917-12-10

1919-02-05

C++
Globally Unique Values

 1959-03-08

 1994-08-14

131

2. Understanding Value Semantics

Why are unique values important?

Date 2008-04-03

2001-09-11

1999-12-31

1000000 B.C.

1000000 A.D.

 99999-12-31

D

a

b

c

d

e

Database

1917-12-10

1919-02-05

Date

 1959-03-08

C++

Java

Globally Unique Values

 1994-08-14

1969-07-16

1941-12-07

 1776-07-04

132

2. Understanding Value Semantics

Why are unique values important?

 1969-07-16

Date 2008-04-03

2001-09-11

1941-12-07

1999-12-31

1000000 B.C.

1000000 A.D.

 99999-12-31

 1776-07-04

D

a

b

c

d

e

Database

1917-12-10

1919-02-05

Date

 1959-03-08

C++

Java

Globally Unique Values

 1994-08-14

133

2. Understanding Value Semantics

Why are unique values important?

(Not just an academic exercise.)

134

2. Understanding Value Semantics

Why are unique values important?

 When we communicate a value
outside of a running process,
we know that everyone is
referring to “the same” value.

(Not just an academic exercise.)

135

Which types

are naturally

value types?

136

2. Understanding Value Semantics

Does state always imply a “value”?

137

2. Understanding Value Semantics

Does state always imply a “value”?

138

2. Understanding Value Semantics

Does state always imply a “value”?

139

What is its state?

2. Understanding Value Semantics

Does state always imply a “value”?

140

What is its state? OFF

2. Understanding Value Semantics

Does state always imply a “value”?

141

What is its state?

2. Understanding Value Semantics

Does state always imply a “value”?

142

What is its state? ON

2. Understanding Value Semantics

Does state always imply a “value”?

143

What is its state? ON

What is its value? $5.00

2. Understanding Value Semantics

Does state always imply a “value”?

144

What is its state? ON

What is its value? ?

2. Understanding Value Semantics

Does state always imply a “value”?

145

What is its state? ON

What is its value? 1 ?

2. Understanding Value Semantics

Does state always imply a “value”?

146

What is its state? ON

What is its value? false ?

2. Understanding Value Semantics

Does state always imply a “value”?

147

What is its state? ON

What is its value? £5.00 ?

2. Understanding Value Semantics

Does state always imply a “value”?

148

What is its state? ON

What is its value? $5.00 ?

Cheap at half
the price!

2. Understanding Value Semantics

Does state always imply a “value”?

149

What is its state? ON

What is its value? ?

Any notion of “value”

here would be artificial!

2. Understanding Value Semantics

Does state always imply a “value”?

150

Not every stateful object has an obvious value.

2. Understanding Value Semantics

Does state always imply a “value”?

151

Not every stateful object

• TCP/IP Socket

• Thread Pool

• Condition Variable

• Mutex Lock

• Reader/Writer Lock

• Scoped Guard

has an obvious value.

2. Understanding Value Semantics

Does state always imply a “value”?

152

Not every stateful object

• TCP/IP Socket

• Thread Pool

• Condition Variable

• Mutex Lock

• Reader/Writer Lock

• Scoped Guard

has an obvious value.

2. Understanding Value Semantics

Does state always imply a “value”?

153

What would
copy construction
even mean here?

Not every stateful object

• TCP/IP Socket

• Thread Pool

• Condition Variable

• Mutex Lock

• Reader/Writer Lock

• Scoped Guard

has an obvious value.

2. Understanding Value Semantics

Does state always imply a “value”?

154

What would
copy construction
even mean here?

We could invent
some notion of value,

but to what end??

Not every stateful object

• TCP/IP Socket

• Thread Pool

• Condition Variable

• Mutex Lock

• Reader/Writer Lock

• Scoped Guard

has an obvious value.

• Base64 En(De)coder

• Expression Evaluator

• Language Parser

• Event Logger

• Object Persistor

• Widget Factory

2. Understanding Value Semantics

Does state always imply a “value”?

155

2. Understanding Value Semantics

Does state always imply a “value”?

QUESTION:

Suppose we have a thread-safe
queue used for inter-task

communication: Is it a value
type? Should this object type

support value-semantic syntax?

156

2. Understanding Value Semantics

Does state always imply a “value”?

QUESTION:

Suppose we have a thread-safe
queue used for inter-task

communication: Is it a value
type? Should this object type

support value-semantic syntax?

157

This class is a rare
and subtle

middle ground.

Not every stateful object

• TCP/IP Socket

• Thread Pool

• Condition Variable

• Mutex Lock

• Reader/Writer Lock

• Scoped Guard

has an obvious value.

• Base64 En(De)coder

• Expression Evaluator

• Language Parser

• Event Logger

• Object Persistor

• Widget Factory

2. Understanding Value Semantics

Does state always imply a “value”?

158

2. Understanding Value Semantics

The Big Picture

factory bteso::InetStreamSocketFactory

baetzo::LocalTimeDescriptor

no

bdea::BitArray

singleton

guard/

proctor

reference

semantic

type

2
2

4

64

general

VST
enumeration

2

2

bslma::NewDeleteAllocator

bsls::AlignmentUtil

baetzo::LocalTimeValidity

bslmf::IsFundamental baetzo::Loader

bslma::DeallocatorGuard

bslma::DestructorProctor

utility
meta-

function
protocol

bdet::Date

bdem::ElemRef

2

externalizable,

no allocator

2

no yes

yesno

2

2

2

attribute

unconstrained
simply

constrained

complex

constrained
pure

baet::LocalDatetime baetzo::LocalTimePeriod

bsl::vector

standard

container

packed

container

yes

64 64

Referable

elements?

4

4

Externalizable?

bteso::LingerOptions

Takes allocator?

Has “value”?

Value-

Semantic Type

Mechanism

Is object-

instantiable?

container:
associative?

X ordered?

X unique?

X indexed?

Type only

a x

a

 x

a

a

externalization

available from

bslx

a x

 x

a

bassvc::ControlMessageResponse

a x

stateless

functor
bsl::less

a

Common
Category

Common
Category

Common
Category

Common
Category

159

YOU ARE HERE

2. Understanding Value Semantics

Categorizing Object Types

MyObjectType

160

The first question: “Does it have state?”

Object

2. Understanding Value Semantics

Categorizing Object Types

161

The first question: “Does it have state?”

Object

Stateful Object Stateless Object

2. Understanding Value Semantics

Categorizing Object Types

162

The first question: “Does it have state?”

Object

Stateful Object Stateless Object

DateUtil IsConvertible<U,V> std::less<T>

2. Understanding Value Semantics

Categorizing Object Types

163

The first question: “Does it have state?”

Object

Stateless Object

DateUtil

struct DateUtil {

 // This 'struct' provides a namespace for a

 // suite of pure functions that operate on

 // 'Date' objects.

 static Date lastDateInMonth(const Date& value);

 // Return the last date in the same month

 // as the specified date 'value'. Note

 // that the particular day of the month

 // of 'value' is ignored.

 // …

}

2. Understanding Value Semantics

Categorizing Object Types

164

The first question: “Does it have state?”

Object

Stateless Object

DateUtil

struct DateUtil {

 // This 'struct' provides a namespace for a

 // suite of pure functions that operate on

 // 'Date' objects.

 static Date lastDateInMonth(const Date& value);

 // Return the last date in the same month

 // as the specified date 'value'. Note

 // that the particular day of the month

 // of 'value' is ignored.

 // …

}

2. Understanding Value Semantics

Categorizing Object Types

165

2. Understanding Value Semantics

The Big Picture

factory bteso::InetStreamSocketFactory

baetzo::LocalTimeDescriptor

no

bdea::BitArray

singleton

guard/

proctor

reference

semantic

type

2
2

4

64

general

VST
enumeration

2

2

bslma::NewDeleteAllocator

bsls::AlignmentUtil

baetzo::LocalTimeValidity

bslmf::IsFundamental baetzo::Loader

bslma::DeallocatorGuard

bslma::DestructorProctor

utility
meta-

function
protocol

bdet::Date

bdem::ElemRef

2

externalizable,

no allocator

2

no yes

yesno

2

2

2

attribute

unconstrained
simply

constrained

complex

constrained
pure

baet::LocalDatetime baetzo::LocalTimePeriod

bsl::vector

standard

container

packed

container

yes

64 64

Referable

elements?

4

4

Externalizable?

bteso::LingerOptions

Takes allocator?

Has “value”?

Value-

Semantic Type

Mechanism

Is object-

instantiable?

container:
associative?

X ordered?

X unique?

X indexed?

Type only

a x

a

 x

a

a

externalization

available from

bslx

a x

 x

a

bassvc::ControlMessageResponse

a x

stateless

functor
bsl::less

a

Common
Category

Common
Category

Common
Category

Common
Category

166

YOU

ARE

HERE

The second question: “Does it have value?”

Object

Stateful Object Stateless Object

2. Understanding Value Semantics

Categorizing Object Types

167

The second question: “Does it have value?”

Object

Stateful Object Stateless Object

2. Understanding Value Semantics

Categorizing Object Types

Mechanism Value Type

168

The second question: “Does it have value?”

Object

Stateful Object Stateless Object

2. Understanding Value Semantics

Categorizing Object Types

Mechanism Value Type

169

Yes

The second question: “Does it have value?”

Object

Stateful Object Stateless Object

2. Understanding Value Semantics

Categorizing Object Types

Mechanism Value Type

170

No

2

2

2

2

no yes

yesno
Takes allocator?

Has “value”?

Value-

Semantic Type

Is object-

instantiable?

Type only

2

Mechanism

2. Understanding Value Semantics

Top-Level Categorizations

start here

171

2

2

2

2

no yes

yesno
Takes allocator?

Has “value”?

Value-

Semantic Type

Is object-

instantiable?

Type only

2

Mechanism

2. Understanding Value Semantics

Top-Level Categorizations

start here

172

Yes

2

2

2

2

no yes

yesno
Takes allocator?

Has “value”?

Value-

Semantic Type

Is object-

instantiable?

Type only

2

Mechanism

2. Understanding Value Semantics

Top-Level Categorizations

start here

173

No

2. Understanding Value Semantics

The Big Picture

factory bteso::InetStreamSocketFactory

baetzo::LocalTimeDescriptor

no

bdea::BitArray

singleton

guard/

proctor

reference

semantic

type

2
2

4

64

general

VST
enumeration

2

2

bslma::NewDeleteAllocator

bsls::AlignmentUtil

baetzo::LocalTimeValidity

bslmf::IsFundamental baetzo::Loader

bslma::DeallocatorGuard

bslma::DestructorProctor

utility
meta-

function
protocol

bdet::Date

bdem::ElemRef

2

externalizable,

no allocator

2

no yes

yesno

2

2

2

attribute

unconstrained
simply

constrained

complex

constrained
pure

baet::LocalDatetime baetzo::LocalTimePeriod

bsl::vector

standard

container

packed

container

yes

64 64

Referable

elements?

4

4

Externalizable?

bteso::LingerOptions

Takes allocator?

Has “value”?

Value-

Semantic Type

Mechanism

Is object-

instantiable?

container:
associative?

X ordered?

X unique?

X indexed?

Type only

a x

a

 x

a

a

externalization

available from

bslx

a x

 x

a

bassvc::ControlMessageResponse

a x

stateless

functor
bsl::less

a

174

2. Understanding Value Semantics

The Big Picture

factory bteso::InetStreamSocketFactory

baetzo::LocalTimeDescriptor

no

bdea::BitArray

singleton

guard/

proctor

reference

semantic

type

2
2

4

64

general

VST
enumeration

2

2

bslma::NewDeleteAllocator

bsls::AlignmentUtil

baetzo::LocalTimeValidity

bslmf::IsFundamental baetzo::Loader

bslma::DeallocatorGuard

bslma::DestructorProctor

utility
meta-

function
protocol

bdet::Date

bdem::ElemRef

2

externalizable,

no allocator

2

no yes

yesno

2

2

2

attribute

unconstrained
simply

constrained

complex

constrained
pure

baet::LocalDatetime baetzo::LocalTimePeriod

bsl::vector

standard

container

packed

container

yes

64 64

Referable

elements?

4

4

Externalizable?

bteso::LingerOptions

Takes allocator?

Has “value”?

Value-

Semantic Type

Mechanism

Is object-

instantiable?

container:
associative?

X ordered?

X unique?

X indexed?

Type only

a x

a

 x

a

a

externalization

available from

bslx

a x

 x

a

bassvc::ControlMessageResponse

a x

stateless

functor
bsl::less

a

Common
Category

Common
Category

Common
Category

Common
Category

175

pure

abstract

interface

2. Understanding Value Semantics

The Big Picture

QUESTION:

What does it mean for two
abstract types to compare equal?

upport value-semantic syntax?

176

2. Understanding Value Semantics

The Big Picture

QUESTION:

What does it mean for two
abstract types to compare equal?

upport value-semantic syntax?

177

2. Understanding Value Semantics

The Big Picture

QUESTION:

What does it mean for two
abstract types to compare equal?

upport value-semantic syntax?
178

—Tom Cargill (c. 1992)

Data members are for:

What syntax
should value
types have?

179

A value-semantic type T defines the following:

2. Understanding Value Semantics

Value-Semantic Properties

180

A value-semantic type T defines the following:

• Default construction: T a, b; assert(a == b);

2. Understanding Value Semantics

Value-Semantic Properties

181

A value-semantic type T defines the following:

• Default construction: T a, b; assert(a == b);

Typically, but
not necessarily

(e.g., int)

2. Understanding Value Semantics

Value-Semantic Properties

182

A value-semantic type T defines the following:

• Default construction: T a, b; assert(a == b);

Typically, but
not necessarily

(e.g., int)

 However “zero” initialization
assert(T() == T());

Is true

2. Understanding Value Semantics

Value-Semantic Properties

183

A value-semantic type T defines the following:

• Default construction: T a, b; assert(a == b);

• Copy construction: T a, b(a); assert(a == b);

2. Understanding Value Semantics

Value-Semantic Properties

184

A value-semantic type T defines the following:

• Default construction: T a, b; assert(a == b);

• Copy construction: T a, b(a); assert(a == b);

• Destruction: (Release all resources.)

2. Understanding Value Semantics

Value-Semantic Properties

185

A value-semantic type T defines the following:

• Default construction: T a, b; assert(a == b);

• Copy construction: T a, b(a); assert(a == b);

• Destruction: (Release all resources.)

• Copy assignment: a = b; assert(a == b);

2. Understanding Value Semantics

Value-Semantic Properties

186

A value-semantic type T defines the following:

• Default construction: T a, b; assert(a == b);

• Copy construction: T a, b(a); assert(a == b);

• Destruction: (Release all resources.)

• Copy assignment: a = b; assert(a == b);

• Swap (if well-formed): T a(α), b(β); swap(a, b);

 assert(β == a);

 assert(α == b);

2. Understanding Value Semantics

Value-Semantic Properties

187

A value-semantic type T defines the following:

• Default construction: T a, b; assert(a == b);

• Copy construction: T a, b(a); assert(a == b);

• Destruction: (Release all resources.)

• Copy assignment: a = b; assert(a == b);

• Swap (if well-formed): T a(α), b(β); swap(a, b);

 assert(β == a);

 assert(α == b);

2. Understanding Value Semantics

Value-Semantic Properties

188

operator==(T, T) describes what’s called
an equivalence relation:

1. a == a (reflexive)

2. a == b  b == a (symmetric)

3. a == b && b == c  a == c (transitive)

2. Understanding Value Semantics

Value-Semantic Properties

189

operator==(T, T) describes what’s called
an equivalence relation:

1. a == a (reflexive)

2. a == b  b == a (symmetric)

3. a == b && b == c  a == c (transitive)

 !(a == b)  a != b

2. Understanding Value Semantics

Value-Semantic Properties

190

operator==(T, T) describes what’s called
an equivalence relation:

1. a == a (reflexive)

2. a == b  b == a (symmetric)

3. a == b && b == c  a == c (transitive)

 !(a == b)  a != b

 a == d (compiles)  d == a (compiles)

 (Note that d is not of the same type as a.)

2. Understanding Value Semantics

Value-Semantic Properties

191

operator==(T, T) describes what’s called
an equivalence relation:

1. a == a (reflexive)

2. a == b  b == a (symmetric)

3. a == b && b == c  a == c (transitive)

 !(a == b)  a != b

 a == d (compiles)  d == a (compiles)

 (Note that d is not of the same type as a.)

2. Understanding Value Semantics

Value-Semantic Properties

192

What am I
talking
about?

class T {
 // …

 public:
 // …

 bool operator==(const T& rhs) const;
 // …

};

 Member operator==

2. Understanding Value Semantics

Value-Semantic Properties

193

class T {
 // …

 public:
 // …

 bool operator==(const T& rhs) const;
 // …

};

class D {
 // …

 public:
 // …

 operator const T&() const;
 // …

};

 Member operator==

2. Understanding Value Semantics

Value-Semantic Properties

194

class T {
 // …

 public:
 // …

 bool operator==(const T& rhs) const;
 // …

};

class D {
 // …

 public:
 // …

 operator const T&() const;
 // …

};

void f(const T& a, const D& d)

{

 if (a == d) { /* … */ }

 if (d == a) { /* … */ }

}

 Member operator==

2. Understanding Value Semantics

Value-Semantic Properties

195

class T {
 // …

 public:
 // …

 bool operator==(const T& rhs) const;
 // …

};

class D {
 // …

 public:
 // …

 operator const T&() const;
 // …

};

void f(const T& a, const D& d)

{

 if (a == d) { /* … */ }

 if (d == a) { /* … */ }

}

 Member operator==

2. Understanding Value Semantics

Value-Semantic Properties

196

class T {
 // …

 public:
 // …

};
 // …

bool operator==(const T& lhs, const T& rhs);

void f(const T& a, const D& d)

{

 if (a == d) { /* … */ }

 if (d == a) { /* … */ }

}

class D {
 // …

 public:
 // …

 operator const T&() const;
 // …

};

Free operator==

2. Understanding Value Semantics

Value-Semantic Properties

197

class T {
 // …

 public:
 // …

};
 // …

bool operator==(const T& lhs, const T& rhs);

void f(const T& a, const D& d)

{

 if (a == d) { /* … */ }

 if (d == a) { /* … */ }

}

class D {
 // …

 public:
 // …

 operator const T&() const;
 // …

};

(proper)

Free operator==

2. Understanding Value Semantics

Value-Semantic Properties

198

class Str {
 // …

 public:

 Str(const char *other);
 // …

 bool operator==(const char *rhs) const;
 // …

};
 // …

bool operator==(const Str& lhs, const Str&

rhs); bool operator==(const char *lhs, const

Str& rhs);

Member

Operator==

2. Understanding Value Semantics

Value-Semantic Properties

199

class Str {
 // …

 public:

 Str(const char *other);
 // …

 bool operator==(const char *rhs) const;
 // …

};
 // …

bool operator==(const Str& lhs, const Str& rhs);

bool operator==(const char *lhs, const Str& rhs);

Member

Operator==

2. Understanding Value Semantics

Value-Semantic Properties

200

class Str {
 // …

 public:

 Str(const char *other);
 // …

 bool operator==(const char *rhs) const;
 // …

};
 // …

bool operator==(const Str& lhs, const Str& rhs);

bool operator==(const char *lhs, const Str& rhs);

Member

Operator==

2. Understanding Value Semantics

Value-Semantic Properties

201

class Str {
 // …

 public:

 Str(const char *other);
 // …

 bool operator==(const char *rhs) const;
 // …

};
 // …

bool operator==(const Str& lhs, const Str& rhs);

bool operator==(const char *lhs, const Str& rhs);

Member Operator==

2. Understanding Value Semantics

Value-Semantic Properties

202

class Str {
 // …

 public:

 Str(const char *other);
 // …

 bool operator==(const char *rhs) const;
 // …

};
 // …

bool operator==(const Str& lhs, const Str& rhs);

bool operator==(const char *lhs, const Str& rhs);

class Foo {
 // …

 public:
 // …

 operator const Str&() const;
 // …

};

Member Operator==

2. Understanding Value Semantics

Value-Semantic Properties

203

class Str {
 // …

 public:

 Str(const char *other);
 // …

 bool operator==(const char *rhs) const;
 // …

};
 // …

bool operator==(const Str& lhs, const Str& rhs);

bool operator==(const char *lhs, const Str& rhs);

class Foo {
 // …

 public:
 // …

 operator const Str&() const;
 // …

};

class Bar {
 // …

 public:
 // …

 operator const char *() const;
 // …

};

Member Operator==

2. Understanding Value Semantics

Value-Semantic Properties

204

class Str {
 // …

 public:

 Str(const char *other);
 // …

 bool operator==(const char *rhs) const;
 // …

};
 // …

bool operator==(const Str& lhs, const Str& rhs);

bool operator==(const char *lhs, const Str& rhs);

class Foo {
 // …

 public:
 // …

 operator const Str&() const;
 // …

};

void f(const Foo& foo, const Bar& bar)

{

 if (bar == foo) { /* … */ }

 if (bar == foo) { /* … */ }
}

class Bar {
 // …

 public:
 // …

 operator const char *() const;
 // …

};

Member Operator==

2. Understanding Value Semantics

Value-Semantic Properties

205

class Str {
 // …

 public:

 Str(const char *other);
 // …

 bool operator==(const char *rhs) const;
 // …

};
 // …

bool operator==(const Str& lhs, const Str& rhs);

bool operator==(const char *lhs, const Str& rhs);

class Foo {
 // …

 public:
 // …

 operator const Str&() const;
 // …

};

void f(const Foo& foo, const Bar& bar)

{

 if (bar == foo) { /* … */ }

 if (foo == bar) { /* … */ }
}

class Bar {
 // …

 public:
 // …

 operator const char *() const;
 // …

};

Member Operator==

2. Understanding Value Semantics

Value-Semantic Properties

206

class Str {
 // …

 public:

 Str(const char *other);
 // …

};
 // …

bool operator==(const Str& lhs, const Str& rhs);

bool operator==(const char *lhs, const Str& rhs);

bool operator==(const Str& lhs, const char *rhs);

class Foo {
 // …

 public:
 // …

 operator const Str&() const;
 // …

};

void f(const Foo& foo, const Bar& bar)

{

 if (bar == foo) { /* … */ }

 if (foo == bar) { /* … */ }
}

class Bar {
 // …

 public:
 // …

 operator const char *() const;
 // …

};

 Free Operator==

2. Understanding Value Semantics

Value-Semantic Properties

207

class Str {
 // …

 public:

 Str(const char *other);
 // …

};
 // …

bool operator==(const Str& lhs, const Str& rhs);

bool operator==(const char *lhs, const Str& rhs);

bool operator==(const Str& lhs, const char *rhs);

class Foo {
 // …

 public:
 // …

 operator const Str&() const;
 // …

};

void f(const Foo& foo, const Bar& bar)

{

 if (bar == foo) { /* … */ }

 if (foo == bar) { /* … */ }
}

class Bar {
 // …

 public:
 // …

 operator const char *() const;
 // …

};

 Free Operator==

(proper)

2. Understanding Value Semantics

Value-Semantic Properties

208

The operator== should ALWAYS be free!

Same for most* binary operators with const parameters:

 == != (equality)

 < <= > => (relational)

 + - * / % (arithmetic)

 | & ^ << >> (logical)

X += -= *= /= %= (assignment)

X |= &= ^= <<= >>= (assignment)

2. Understanding Value Semantics

Value-Semantic Properties

209

The operator== should ALWAYS be free!

Same for most* binary operators with const parameters:

 == != (equality)

 < <= > => (relational)

 + - * / % (arithmetic)

 | & ^ << >> (logical)

X += -= *= /= %= (assignment)

X |= &= ^= <<= >>= (assignment)

*Except for operators such as operator[] that return a reference instead of a value, and operator().

2. Understanding Value Semantics

Value-Semantic Properties

210

The operator== should ALWAYS be free!

Same for most* binary operators with const parameters:

 == != (equality)

 < <= > => (relational)

 + - * / % (arithmetic)

 | & ^ << >> (logical)

X += -= *= /= %= (assignment)

X |= &= ^= <<= >>= (assignment)

*Except for operators such as operator[] that return a reference instead of a value, and operator().

2. Understanding Value Semantics

Value-Semantic Properties

211

The operator== should ALWAYS be free!

Same for most* binary operators with const parameters:

 == != (equality)

 < <= > => (relational)

 + - * / % (arithmetic)

 | & ^ << >> (logical)

X += -= *= /= %= (assignment)

X |= &= ^= <<= >>= (assignment)

*Except for operators such as operator[] that return a reference instead of a value, and operator().

2. Understanding Value Semantics

Value-Semantic Properties

212

The operator== should ALWAYS be free!

Same for most* binary operators with const parameters:

 == != (equality)

 < <= > => (relational)

 + - * / % (arithmetic)

 | & ^ << >> (logical)

X += -= *= /= %= (assignment)

X |= &= ^= <<= >>= (assignment)

*Except for operators such as operator[] that return a reference instead of a value, and operator().

2. Understanding Value Semantics

Value-Semantic Properties

213

The operator== should ALWAYS be free!

Same for most* binary operators with const parameters:

 == != (equality)

 < <= > => (relational)

 + - * / % (arithmetic)

 | & ^ << >> (logical)

X += -= *= /= %= (assignment)

X |= &= ^= <<= >>= (assignment)

*Except for operators such as operator[] that return a reference instead of a value, and operator().

2. Understanding Value Semantics

Value-Semantic Properties

214

The operator== should ALWAYS be free!

Same for most* binary operators with const parameters:

 == != (equality)

 < <= > => (relational)

 + - * / % (arithmetic)

 | & ^ << >> (logical)

X += -= *= /= %= (assignment)

X |= &= ^= <<= >>= (assignment)

*Except for operators such as operator[] that return a reference instead of a value, and operator().

2. Understanding Value Semantics

Value-Semantic Properties

215

The operator== should ALWAYS be free!

Same for most* binary operators with const parameters:

 == != (equality)

 < <= > => (relational)

 + - * / % (arithmetic)

 | & ^ << >> (logical)

X += -= *= /= %= (assignment)

X |= &= ^= <<= >>= (assignment)

*Except for operators such as operator[] that return a reference instead of a value, and operator().

2. Understanding Value Semantics

Value-Semantic Properties

216

The operator== should ALWAYS be free!

Same for most* binary operators with const parameters:

 == != (equality)

 < <= > => (relational)

 + - * / % (arithmetic)

 | & ^ << >> (logical)

X += -= *= /= %= (assignment)

X |= &= ^= <<= >>= (assignment)

*Except for operators such as operator[] that return a reference instead of a value, and operator().

2. Understanding Value Semantics

Value-Semantic Properties

217

What semantics
should value-type
operations have?

218

2. Understanding Value Semantics

Where is “Value” Defined?

219

 The salient attributes of a type T are the
documented set of named attributes whose
respective values for a given instance of T …

2. Understanding Value Semantics

Where is “Value” Defined?

220

 The salient attributes of a type T are the
documented set of named attributes whose
respective values for a given instance of T

1. Derive from the physical state of only that
instance of T.

2. Understanding Value Semantics

Where is “Value” Defined?

221

 The salient attributes of a type T are the
documented set of named attributes whose
respective values for a given instance of T

1. Derive from the physical state of only that
instance of T.

2. Must respectively “have” (refer to) the same
value in order for two instances of T to have
(refer to) the same value as a whole.

2. Understanding Value Semantics

Where is “Value” Defined?

222

 The salient attributes of a type T are the
documented set of named attributes whose
respective values for a given instance of T that

1. Derive from the physical state of only that
instance of T.

2. Must respectively “have” (refer to) the same
value in order for two instances of T to have
(refer to) the same value as a whole.

2. Understanding Value Semantics

Where is “Value” Defined?

223

 The salient attributes of a type T are the
documented set of named attributes whose
respective values for a given instance of T that

1. Derive from the physical state of only that
instance of T.

2. Must respectively “have” (refer to) the same
value in order for two instances of T to have
(refer to) the same value as a whole.

Copy Constructor?

2. Understanding Value Semantics

Where is “Value” Defined?

224

• By def., all salient attributes must be copied.

Copy Constructor?

2. Understanding Value Semantics

Where is “Value” Defined?

225

• By def., all salient attributes must be copied.

• What about “non-salient” attributes?
– E.g., capacity()

Copy Constructor?

2. Understanding Value Semantics

Where is “Value” Defined?

226

• By def., all salient attributes must be copied.

• What about “non-salient” attributes?
– E.g., capacity()

• Non-salient attributes may or may not be copied.

Copy Constructor?

2. Understanding Value Semantics

Where is “Value” Defined?

227

• By def., all salient attributes must be copied.

• What about “non-salient” attributes?
– E.g., capacity()

• Non-salient attributes may or may not be copied.

• Hence, we cannot infer from the implementation of
a Copy Constructor which attributes are “salient.”

Copy Constructor?

2. Understanding Value Semantics

Where is “Value” Defined?

228

• By def., all salient attributes must be copied.

• What about “non-salient” attributes?
– E.g., capacity()

• Non-salient attributes may or may not be copied.

• Hence, we cannot infer from the implementation of
a Copy Constructor which attributes are “salient.”

• Cannot tell us if two objects have the same value!

Copy Constructor?

2. Understanding Value Semantics

Where is “Value” Defined?

229

 The salient attributes of a type T are the
documented set of named attributes whose
respective values for a given instance of T that

1. Derive from the physical state of only that
instance of T.

2. Must respectively “have” (refer to) the same
value in order for two instances of T to “have”
(refer to) the same value as a whole.

2. Understanding Value Semantics

Where is “Value” Defined?

230

 The salient attributes of a type T are the
documented set of named attributes whose
respective values for a given instance of T that

1. Derive from the physical state of only that
instance of T.

2. Must respectively “have” iii compare equal value
value in order for two instances of T to iiiiiiiiiavie
iiim compare equal iiIIIIII as a whole.

2. Understanding Value Semantics

Where is “Value” Defined?

231

 The salient attributes of a type T are the
documented set of named attributes whose
respective values for a given instance of T that

1. Derive from the physical state of only that
instance of T.

2. Must respectively compare equal in order for
two instances of T to compare equal as a whole.

 operator==

2. Understanding Value Semantics

Where is “Value” Defined?

232

 The associated, homogeneous (free) operator==
for a type T

 operator==

2. Understanding Value Semantics

Where is “Value” Defined?

233

 The associated, homogeneous (free) operator==
for a type T

1. Provides an operational definition of what it means
for two objects of type T to have “the same” value.

 operator==

2. Understanding Value Semantics

Where is “Value” Defined?

234

 The associated, homogeneous (free) operator==
for a type T

1. Provides an operational definition of what it means
for two objects of type T to have “the same” value.

2. Defines the salient attributes of T as those
attributes whose respective values must
compare equal in order for two instances of T to
compare equal.

 operator==

2. Understanding Value Semantics

Where is “Value” Defined?

235

2. Understanding Value Semantics

Value-Semantic Properties

Value-semantic objects share many properties.

• Each of these properties is objectively
verifiable, irrespective of the intended
application domain.

• Most are (or should be) intuitive.

• Those few that are not, are particularly useful
for providing design guidance in “unusual” cases.

236

Value-semantic objects share many properties.

• Each of these properties is objectively
verifiable, irrespective of the intended
application domain.

• Most are (or should be) intuitive.

• Those few that are not, are particularly useful
for providing design guidance in “unusual” cases.

2. Understanding Value Semantics

Value-Semantic Properties

237

Value-semantic objects share many properties.

• Each of these properties is objectively
verifiable, irrespective of the intended
application domain.

• Most are (or should be) intuitive.

• Those few that are not, are particularly useful
for providing design guidance in “unusual” cases.

2. Understanding Value Semantics

Value-Semantic Properties

238

2. Understanding Value Semantics

What should be copied?

NMOS CMOS

0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1

Orthogonal to value! Orthogonal to value!

Should attributes that are orthogonal to value
be copied?

239

2. Understanding Value Semantics

What should be copied?

Should attributes that are orthogonal to value
be copied?

NMOS CMOS

0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1

240

Should attributes that are orthogonal to value
be copied?

NMOS CMOS

0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 !=

2. Understanding Value Semantics

What should be copied?

241

Should attributes that are orthogonal to value
be copied?

NMOS CMOS assignment

0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1

2. Understanding Value Semantics

What should be copied?

242

Should attributes that are orthogonal to value
be copied?

NMOS CMOS assignment

0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1

2. Understanding Value Semantics

What should be copied?

243

CMOS

Should attributes that are orthogonal to value
be copied?

NMOS CMOS assignment

1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 ==

??

2. Understanding Value Semantics

What should be copied?

244

2. Understanding Value Semantics

What should be copied?

245

 As it turns out…

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

246

If T is a value-semantic type,

 a, b, and c are objects of type T, and

 d is an object of some other type D, then

2. Understanding Value Semantics

Value-Semantic Properties

247

If T is a value-semantic type,

 a, b, and c are objects of type T, and

 d is an object of some other type D, then

 a == b  a and b have the same value
(assuming an associated operator== exists).

2. Understanding Value Semantics

Value-Semantic Properties

248

If T is a value-semantic type,

 a, b, and c are objects of type T, and

 d is an object of some other type D, then

 a == b  a and b have the same value
(assuming an associated operator== exists).

2. Understanding Value Semantics

Value-Semantic Properties

249

If T is a value-semantic type,

 a, b, and c are objects of type T, and

 d is an object of some other type D, then

 a == b  a and b have the same value
(assuming an associated operator== exists).

2. Understanding Value Semantics

Value-Semantic Properties

250

If T is a value-semantic type,

 a, b, and c are objects of type T, and

 d is an object of some other type D, then

 a == b  a and b have the same value
(assuming an associated operator== exists).

2. Understanding Value Semantics

Value-Semantic Properties

251

If T is a value-semantic type,

 a, b, and c are objects of type T, and

 d is an object of some other type D, then

 a == b  a and b have the same value
(assuming an associated operator== exists).

The value of a is independent of any external
object or state; any change to a must be
accomplished via a’s (public) interface.

2. Understanding Value Semantics

Value-Semantic Properties

252

Suppose a “value-semantic” object refers to
another autonomous object in memory:

 class ElemRef {

 Record *d_record_p;

 int elementIndex;

 public:

 // …

 };

2. Understanding Value Semantics

Value-Semantic Properties

253

Suppose a “value-semantic” object refers to
another autonomous object in memory:

 class ElemPtr {

 Record *d_record_p;

 int d_elementIndex;

 public:

 // …

 };

2. Understanding Value Semantics

Value-Semantic Properties

254

Suppose a “value-semantic” object refers to
another autonomous object in memory:

 class ElemPtr {

 Record *d_record_p;

 int d_elementIndex;

 public:

 // …

 };

2. Understanding Value Semantics

Value-Semantic Properties

255

Suppose a “value-semantic” object refers to
another autonomous object in memory:

 class ElemPtr {

 Record *d_record_p;

 int d_elementIndex;

 public:

 // …

 };

2. Understanding Value Semantics

Value-Semantic Properties

256

0x74a1254c

 3
 ElemPtr

Record

0 1 2 3 4 5 6 7 8 9

x
y
z

0x74a1254c:

0x002c5f20:

2. Understanding Value Semantics

Value-Semantic Properties

257

0x74a1254c

 3
 ElemPtr

Record

0 1 2 3 4 5 6 7 8 9

x
y
z

0x74a1254c:

0x002c5f20:

2. Understanding Value Semantics

Value-Semantic Properties

258

0x74a1254c

 3

 ElemPtr

Record

0 1 2 3 4 5 6 7 8 9

x
y
z

0x74a1254c:

0x002c5f20:

2. Understanding Value Semantics

Value-Semantic Properties

259

bool operator==(const ElemPtr& lhs,

 const ElemPtr& rhs);

2. Understanding Value Semantics

Value-Semantic Properties

260

bool operator==(const ElemPtr& lhs,

 const ElemPtr& rhs);

 // Two 'ElemPtr' objects have the

 // same value if they …

2. Understanding Value Semantics

Value-Semantic Properties

261

bool operator==(const ElemPtr& lhs,

 const ElemPtr& rhs);

 // Two 'ElemPtr' objects have the

 // same value if they (1) refer

 // to the same 'Record' object

 // (in the current process) …

2. Understanding Value Semantics

Value-Semantic Properties

262

bool operator==(const ElemPtr& lhs,

 const ElemPtr& rhs);

 // Two 'ElemPtr' objects have the

 // same value if they (1) refer

 // to the same 'Record' object

 // (in the current process), and

 // (2) have the same element

 // index.

2. Understanding Value Semantics

Value-Semantic Properties

263

O
3

Record
objA

O
2

O
3

Record
objB

O
3

ElemPtr

obj1

ElemPtr

obj2

ElemPtr

obj3

ElemPtr

obj4

2. Understanding Value Semantics

Value-Semantic Properties

264

O
3

Record
objA

O
2

O
3

Record
objB

O
3

ElemPtr

obj1

ElemPtr

obj2

ElemPtr

obj3

ElemPtr

obj4

==
??

2. Understanding Value Semantics

Value-Semantic Properties

265

O
3

Record
objA

O
2

O
3

Record
objB

O
3

ElemPtr

obj1

ElemPtr

obj2

ElemPtr

obj3

ElemPtr

obj4

2. Understanding Value Semantics

Value-Semantic Properties

266

O
3

Record
objA

O
2

O
3

Record
objB

O
3

ElemPtr

obj1

ElemPtr

obj2

ElemPtr

obj3

ElemPtr

obj4

2. Understanding Value Semantics

Value-Semantic Properties

267

O
3

Record
objA

O
2

O
3

Record
objB

O
3

ElemPtr

obj1

ElemPtr

obj2

ElemPtr

obj3

ElemPtr

obj4

2. Understanding Value Semantics

Value-Semantic Properties

268

O
3

Record
objA

O
2

O
3

Record
objB

O
3

ElemPtr

obj1

ElemPtr

obj2

ElemPtr

obj3

ElemPtr

obj4

==

2. Understanding Value Semantics

Value-Semantic Properties

269

O
3

O
2

O
3

Record
objB

O
3

ElemPtr

obj1

ElemPtr

obj2

ElemPtr

obj3

ElemPtr

obj4

==

Record
objA

2. Understanding Value Semantics

Value-Semantic Properties

270

O
3

O
2

O
3

Record
objB

O
3

ElemPtr

obj1

ElemPtr

obj2

ElemPtr

obj3

ElemPtr

obj4

==

Record
objA

2. Understanding Value Semantics

Value-Semantic Properties

271

O
3

O
2

O
3

Record
objB

O
3

ElemPtr

obj1

ElemPtr

obj2

ElemPtr

obj3

ElemPtr

obj4

==

Record
objA

2. Understanding Value Semantics

Value-Semantic Properties

272

O
3

O
2

O
3

Record
objB

O
3

ElemPtr

obj1

ElemPtr

obj2

ElemPtr

obj3

ElemPtr

obj4

==

Record
objA

2. Understanding Value Semantics

Value-Semantic Properties

273

O
3

O
2

O
3

Record
objB

O
3

ElemPtr

obj1

ElemPtr

obj2

ElemPtr

obj3

ElemPtr

obj4

==

Record
objA

2. Understanding Value Semantics

Value-Semantic Properties

274

Note that if we were to ascribe a notion of value to,

say, a scoped guard, it would clearly be in-core only.

2. Understanding Value Semantics

“Value Types” having Value Semantics

275

2. Understanding Value Semantics

“Value Types” having Value Semantics

A C++ type that “properly”
represents (a subset of)
the values of an abstract
“mathematical” type is said
to have value semantics.

276

2. Understanding Value Semantics

“Value Types” having Value Semantics

A C++ type that “properly”
represents (a subset of)
the values of an abstract
“mathematical” type is said
to have value semantics.

277

Recall that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

2. Understanding Value Semantics

Value-Semantic Properties

278

Recall that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

2. Understanding Value Semantics

Value-Semantic Properties

279

Recall that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

2. Understanding Value Semantics

Value-Semantic Properties

280

Recall that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

2. Understanding Value Semantics

Value-Semantic Properties

281

Recall that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

2. Understanding Value Semantics

Value-Semantic Properties

282

Recall that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

2. Understanding Value Semantics

Value-Semantic Properties

283

Recall that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value!

2. Understanding Value Semantics

Value-Semantic Properties

284

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value!

2. Understanding Value Semantics

Value-Semantic Properties
There is a lot more to this story!

285

That is…
 if (a == b) {

 op1(a); op1(b); assert(a == b);

 op2(a); op2(b); assert(a == b);

 op3(a); op3(b); assert(a == b);

 op4(a); op4(b); assert(a == b);

 }

 . . .

2. Understanding Value Semantics

Value-Semantic Properties

286

That is…
 if (a == b) {

 op1(a); op1(b); assert(a == b);

 op2(a); op2(b); assert(a == b);

 op3(a); op3(b); assert(a == b);

 op4(a); op4(b); assert(a == b);

 }

 . . .

2. Understanding Value Semantics

Value-Semantic Properties Note that this is
not a test case,

but rather a
requirements
specification.

287

2. Understanding Value Semantics

Value-Semantic Properties

 QUESTION:
Suppose we have a “home grown” ordered-set
type that can be initialized to a sequence of
elements in either increasing or decreasing order:

288

template <class T>

class OrderedSet {

 // …

 OrderedSet(bool decreasingFlag = false);

 // …

};

2. Understanding Value Semantics

Value-Semantic Properties

 QUESTION:
Suppose we have a “home grown” ordered-set
type that can be initialized to a sequence of
elements in either increasing or decreasing order:

What if the two sets were constructed differently.

289

template <class T>

class OrderedSet {

 // …

 OrderedSet(bool decreasingFlag = false);

 // …

};

2. Understanding Value Semantics

Value-Semantic Properties

 QUESTION:
Suppose we have a “home grown” ordered-set
type that can be initialized to a sequence of
elements in either increasing or decreasing order:

What if the two sets were constructed differently.
Should any two empty objects be considered “equal”?
 290

template <class T>

class OrderedSet {

 // …

 OrderedSet(bool decreasingFlag = false);

 // …

};

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value!

2. Understanding Value Semantics

Value-Semantic Properties

291

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value!

2. Understanding Value Semantics

Value-Semantic Properties

292

^salient

Note that two distinct objects a and b of
type T that have the same value might not
exhibit “the same” observable behavior.

 However
1. If a and b initially have the same value, and

2. the same operation is applied to each object, then

3. (absent any exceptions or undefined behavior)

4. both objects will again have the same value!

2. Understanding Value Semantics

Value-Semantic Properties

293

^salient

 By salient we mean
operations that directly reflect
those in the mathematical type
this C++ type is attempting to

approximate.

 QUESTION:
What makes two unordered containers represent
the same value?

294

2. Understanding Value Semantics

Value-Semantic Properties

Think about a bag
of Halloween

candy.

 Note that this essential property applies only to
objects of the same type:

 int x = 5; int y = 5; assert(x == y);

 x *= x; y *= y; assert(x == y);

 x *= x; y *= y; assert(x == y);

 x *= x; y *= y; assert(x == y);

2. Understanding Value Semantics

Value-Semantic Properties

295

 Note that this essential property applies only to
objects of the same type:

 int x = 5; short y = 5; assert(x == y);

 x *= x; y *= y; assert(x == y);

 x *= x; y *= y; assert(x == y);

 x *= x; y *= y; assert(x == y);

 . . .

2. Understanding Value Semantics

Value-Semantic Properties

296

Undefined Behavior!

How do we
design proper
value types?

297

 class Rational {

 int d_numerator;

 int d_denominator;

 public:

 //

 int numerator() const;

 int denominator() const;

 };

 // …

 bool operator==(const Rational& lhs,

 const Rational& rhs);

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

298

 numerator()/denominator()

bool operator=(const Rational& lhs,

 const Rational& rhs);
// Two 'Rational' objects have the same value if
// the ratio of the values of 'numerator()' and
// 'denominator ()' for 'lhs' is the same as that for 'rhs'.

Selecting Salient Attributes

as the salient attribute?

2. Understanding Value Semantics

Value-Semantic Properties

299

 numerator()/denominator()

bool operator==(const Rational& lhs,

 const Rational& rhs);
// Two 'Rational' objects have the same value if
// the ratio of the values of 'numerator()' and
// 'denominator ()' for 'lhs' is the same as that for 'rhs'.

Selecting Salient Attributes

as the salient attribute?

2. Understanding Value Semantics

Value-Semantic Properties

300

 numerator()/denominator()

bool operator=(const Rational& lhs,

 const Rational& rhs);
// Two 'Rational' objects have the same value if
// the ratio of the values of 'numerator()' and
// 'denominator ()' for 'lhs' is the same as that for 'rhs'.

Selecting Salient Attributes

as the salient attribute?

==
1
2

2
4

2. Understanding Value Semantics

Value-Semantic Properties

301

 numerator()/denominator()

bool operator=(const Rational& lhs,

 const Rational& rhs);
// Two 'Rational' objects have the same value if
// the ratio of the values of 'numerator()' and
// 'denominator ()' for 'lhs' is the same as that for 'rhs'.

Selecting Salient Attributes

as the salient attribute?

==
1
0

2
0 X X

2. Understanding Value Semantics

Value-Semantic Properties

302

 numerator()/denominator()

bool operator=(const Rational& lhs,

 const Rational& rhs);
// Two 'Rational' objcts have the same value if //
the ratio of the values of 'numerator()' and //
'denominator ()' for 'lhs' is the same as that for 'rhs'.

Selecting Salient Attributes

as the salient attribute?

==
1
2

-1
-2

2. Understanding Value Semantics

Value-Semantic Properties

303

 numerator()/denominator()

bool operator=(const Rational& lhs,

 const Rational& rhs);
// Two 'Rational' objcts have the same value if //
the ratio of the values of 'numerator()' and //
'denominator ()' for 'lhs' is the same as that for 'rhs'.

Selecting Salient Attributes

as the salient attribute?

==
1
2

100
200

2. Understanding Value Semantics

Value-Semantic Properties

304

 numerator()/denominator()

bool operator=(const Rational& lhs,

 const Rational& rhs);
// Two 'Rational' objects have the same value if
// the ratio of the values of 'numerator()' and
// 'denominator ()' for 'lhs' is the same as that for 'rhs'.

Selecting Salient Attributes

as the salient attribute?

==
1
2

100
200

10 10

2. Understanding Value Semantics

Value-Semantic Properties

305

 numerator()/denominator()

bool operator=(const Rational& lhs,

 const Rational& rhs);
// Two 'Rational' objects have the same value if
// the ratio of the values of 'numerator()' and
// 'denominator ()' for 'lhs' is the same as that for 'rhs'.

Selecting Salient Attributes

as the salient attribute?

==
1
2

100
200

10 10

2. Understanding Value Semantics

Value-Semantic Properties

306

If you choose to make
 numerator()/denominator()

a salient attribute

 (probably a bad idea)
then do not expose numerator and

denominator as separate attributes…

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

307

If you choose to make
 numerator()/denominator()

a salient attribute

 (probably a bad idea)
then do not expose numerator and

denominator as separate attributes…

Selecting Salient Attributes

…or maintain them in
 “canonical form” (which
may be computationally

expensive).

2. Understanding Value Semantics

Value-Semantic Properties

308

Selecting Salient Attributes

Guideline

If two objects have the same

value then the values of each

observable attribute that

contributes to value should

respectively compare equal.

2. Understanding Value Semantics

Value-Semantic Properties

309

When should
we omit valid
value syntax?

310

4

1

3 2
0

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

311

Selecting Salient Attributes

Graph

Node Edge

graph

 Cyclic Physical Dependency?

2. Understanding Value Semantics

Value-Semantic Properties

312

Selecting Salient Attributes

Graph

Node Edge

graph

Levelization Technique: Opaque Pointers

2. Understanding Value Semantics

Value-Semantic Properties

313

Selecting Salient Attributes

Graph

Node Edge

graph

Levelization Technique: Dumb Data

2. Understanding Value Semantics

Value-Semantic Properties

314

Selecting Salient Attributes

Graph

Node

NodeIterator

graph

 Simpler Design: No Explicit Edge Object

2. Understanding Value Semantics

Value-Semantic Properties

315

Selecting Salient Attributes

graph

Graph

Node

 Yet Simpler Design: No Explicit NodeIterator

2. Understanding Value Semantics

Value-Semantic Properties

316

Graph

 class Graph {

 // …

 public:

 // …

 int numNodes() const;

 const Node& node(int index) const;

 };

 // …

Selecting Salient Attributes

Node 0 Node 1 Node 2 Node 3 Node 4

2. Understanding Value Semantics

Value-Semantic Properties

317

Graph

 class Node {

 // …

 public:

 // …

 int nodeIndex() const;

 int numAdjacentNodes() const;

 Node& adjacentNode(int index) const;

 };

Selecting Salient Attributes

Node 0 Node 1 Node 2 Node 3 Node 4

2. Understanding Value Semantics

Value-Semantic Properties

318

Graph

 class Node {

 // …

 public:

 // …

 int nodeIndex() const;

 int numAdjacentNodes() const;

 Node& adjacentNode(int index) const;

 };

Selecting Salient Attributes

Node 0 Node 1 Node 2 Node 3 Node 4

2. Understanding Value Semantics

Value-Semantic Properties

Really should be
declared const but

there’s no room!

319

Graph

 class Node {

 // …

 public:

 // …

 int nodeIndex() const;

 int numAdjacentNodes() const;

 Node& adjacentNode(int index) const;

 };

Selecting Salient Attributes

Node 0 Node 1 Node 2 Node 3 Node 4

2

2. Understanding Value Semantics

Value-Semantic Properties

320

Graph

 class Node {

 // …

 public:

 // …

 int nodeIndex() const;

 int numAdjacentNodes() const;

 Node& adjacentNode(int index) const;

 };

Selecting Salient Attributes

Node 0 Node 1 Node 2 Node 3 Node 4

2
2 Node 0

and
Node 4

2. Understanding Value Semantics

Value-Semantic Properties

321

 class Graph {

 // …

 public:

 // …

 int numNodes() const;

a const Node& node(int index) const;

a };

 // …

 bool operator==(const Graph& lhs,

cccccccccccc cconst Graph& rhs);

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

322

 class Graph {

 // …

 public:

 // …

 int numNodes() const;

a const Node& node(int index) const;

a };

 // …

 bool operator==(const Graph& lhs,

cccccccccccc cconst Graph& rhs);

cc // Two 'Graph' objects have the same

cc // value if …???

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

323

What are the salient attributes of Graph?

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

324

What are the salient attributes of Graph?

• Number of nodes.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

325

What are the salient attributes of Graph?

• Number of nodes.

• Number of edges.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

326

What are the salient attributes of Graph?

• Number of nodes.

• Number of edges.

• Number of nodes adjacent to each node.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

327

What are the salient attributes of Graph?

• Number of nodes.

• Number of edges.

• Number of nodes adjacent to each node.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

328

What are the salient attributes of Graph?

• Number of nodes.

• Number of edges.

• Number of nodes adjacent to each node.

• Specific nodes adjacent to each node.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

329

What are the salient attributes of Graph?

• Number of nodes.

• Number of edges.

• Number of nodes adjacent to each node.

• Specific nodes adjacent to each node.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

330

bool operator==(const Graph& lhs,

cccccccccccc const Graph& rhs);

cc// Two 'Graph' objects have the same

 c// value if

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

331

bool operator==(const Graph& lhs,

cccccccccccc const Graph& rhs);

cc// Two 'Graph' objects have the same

 c// value if they have the same number of

 // nodes 'N' and,

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

332

bool operator==(const Graph& lhs,

cccccccccccc const Graph& rhs);

cc// Two 'Graph' objects have the same

 c// value if they have the same number of

 // nodes 'N' and, for each node index 'i'

 // '(0 <= i < N)',

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

333

bool operator==(const Graph& lhs,

cccccccccccc const Graph& rhs);

cc// Two 'Graph' objects have the same

 c// value if they have the same number of

 // nodes 'N' and, for each node index 'i'

 // '(0 <= i < N)', the nodes adjacent to

 // node 'i' in 'lhs' have the same

 // indices as those of the nodes

 // adjacent to node 'i' in 'rhs'.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

334

 class Node {

 // …

 public:

 // …

 int nodeIndex() const;

 int numAdjacentNodes() const;

 Node& adjacentNode(int index) const;

 };

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

335

 class Node {

 // …

 public:

 // …

 int nodeIndex() const;

 int numAdjacentNodes() const;

 Node& adjacentNode(int index) const;

 };

Selecting Salient Attributes

 Maintained in

sorted order?

Is “edge” order a salient attribute?

2. Understanding Value Semantics

Value-Semantic Properties

336

Unordered Edges

 0: 4 1 3

 1: 3 2

 2: 0 4

 3:

 4: 3

 Ordered Edges

 0: 1 3 4

 1: 2 3

 2: 0 4

 3:

 4: 3

Selecting Salient Attributes

4

1

3 2
0

Node Edge

2. Understanding Value Semantics

Value-Semantic Properties

337

Unordered Edges

 0: 4 1 3

 1: 3 2

 2: 0 4

 3:

 4: 3

 Ordered Edges

 0: 1 3 4

 1: 2 3

 2: 0 4

 3:

 4: 3

Selecting Salient Attributes

4

1

3 2
0

Node Edge

 ?
O[operator==]

2. Understanding Value Semantics

Value-Semantic Properties

338

Unordered Edges

 0: 4 1 3

 1: 3 2

 2: 0 4

 3:

 4: 3

 O[N + E2]

 Ordered Edges

 0: 1 3 4

 1: 2 3

 2: 0 4

 3:

 4: 3

Selecting Salient Attributes

4

1

3 2
0

 ?
O[operator==]

Node Edge

2. Understanding Value Semantics

Value-Semantic Properties

339

Unordered Edges

 0: 4 1 3

 1: 3 2

 2: 0 4

 3:

 4: 3

 O[N + E2]

 Ordered Edges

 0: 1 3 4

 1: 2 3

 2: 0 4

 3:

 4: 3

 O[N + E]

Selecting Salient Attributes

4

1

3 2
0

Node Edge

 ?
O[operator==]

2. Understanding Value Semantics

Value-Semantic Properties

340

Unordered Edges

 0: 4 1 3

 1: 3 2

 2: 0 4

 3:

 4: 3

 O[N + E2]

 Ordered Edges

 0: 1 3 4

 1: 2 3

 2: 0 4

 3:

 4: 3

 O[N + E]

Selecting Salient Attributes

4

1

3 2
0

Node Edge

 ?
O[operator==]

2. Understanding Value Semantics

Value-Semantic Properties

Note that we could make it O[N + E*Log(E)]. 341

Unordered Edges

 0: 4 1 3

 1: 3 2

 2: 0 4

 3:

 4: 3

 O[N + E2]

 Ordered Edges

 0: 1 3 4

 1: 2 3

 2: 0 4

 3:

 4: 3

 O[N + E]

Selecting Salient Attributes

4

1

3 2
0

Node Edge

 ?
O[operator==]

2. Understanding Value Semantics

Value-Semantic Properties

Note that we could make it O[N + E*Log(E)]. 342

Observation

2. Understanding Value Semantics

Value-Semantic Properties

Observation

343

Value Syntax: Not all or nothing!

Observation

2. Understanding Value Semantics

Value-Semantic Properties

Observation

344

Value Syntax: Not all or nothing!

An std::set<int> is a value-semantic type.

2. Understanding Value Semantics

Value-Semantic Properties

Observation

345

Observation

Value Syntax: Not all or nothing!

An std::set<int> is a value-semantic type.

An std::unordered_set<int> is a value-

semantic type, except that – until 2010 – it did
not provide an operator==.

2. Understanding Value Semantics

Value-Semantic Properties

346

Observation

Value Syntax: Not all or nothing!

An std::set<int> is a value-semantic type.

An std::unordered_set<int> is a value-

semantic type, except that – until 2010 – it did
not provide an operator==.

2. Understanding Value Semantics

Value-Semantic Properties

347

Observation

Value Syntax: Not all or nothing!

An std::set<int> is a value-semantic type.

An std::unordered_set<int> is a value-

semantic type, except that – until 2010 – it did
not provide an operator==.

2. Understanding Value Semantics

Value-Semantic Properties

348

Observation

Value Syntax: Not all or nothing!

An std::set<int> is a value-semantic type.

An std::unordered_set<int> is a value-

semantic type, except that – until 2010 – it did
not provide an operator==.

2. Understanding Value Semantics

Value-Semantic Properties

349

Observation

Value Syntax: Not all or nothing!

An std::set<int> is a value-semantic type.

An std::unordered_set<int> is a value-

semantic type, except that – until 2010 – it did
not provide an operator==.

2. Understanding Value Semantics

Value-Semantic Properties

350

What are the salient attributes of Graph?

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

351

What are the salient attributes of Graph?

Number of nodes.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

352

What are the salient attributes of Graph?

Number of nodes.

Specific nodes adjacent to each node.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

353

What are the salient attributes of Graph?

Number of nodes.

Specific nodes adjacent to each node.

X Not adjacent-node (i.e., edge) order.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

354

What are the salient attributes of Graph?

Number of nodes.

Specific nodes adjacent to each node.

X Not adjacent-node (i.e., edge) order.

What about node indices?

 (I.e., the numbering of the nodes)

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

355

bool operator==(const Graph& lhs,

cccccccccccc const Graph& rhs);

cc// Two 'Graph' objects have the same

 c// value if they have the same number of

 // nodes 'N' and there exists a renumbering

 // of the nodes in 'rhs' such that, for

 // each node-index 'i' '(0 <= i < N)',

 // the nodes adjacent to node 'i' in 'lhs'

 // have the same indices as those of the

 // nodes adjacent to node 'i' in 'rhs'.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

356

Selecting Salient Attributes

4

1

3 2
0

2. Understanding Value Semantics

Value-Semantic Properties

357

Selecting Salient Attributes

4

1

3 2
0

Node

Index 3

2. Understanding Value Semantics

Value-Semantic Properties

358

Selecting Salient Attributes

3

0

1 4
2

4

1

3 2
0

Node

Index 3

2. Understanding Value Semantics

Value-Semantic Properties

359

Selecting Salient Attributes

3

0

1 4
2

4

1

3 2
0

Node

Index 3

==

2. Understanding Value Semantics

Value-Semantic Properties

360

Selecting Salient Attributes

3

0

1 4
2

3

1

2

4

4

1

3 2
0

Node

Index 3

==

2. Understanding Value Semantics

Value-Semantic Properties

361

Selecting Salient Attributes

3

0

1 4
2

3

1

2

4

4

1

3 2
0

Node

Index 3

== ==

2. Understanding Value Semantics

Value-Semantic Properties

362

Selecting Salient Attributes

3

0

1 4
2

3

1

2

4

4

1

3 2
0

Node

Index 3

== ==

Should
operator==

mean
isomorphic?

2. Understanding Value Semantics

Value-Semantic Properties

363

 Graph G Graph H
An isomorphism
between G and H

ƒ(a) = 1
ƒ(b) = 6
ƒ(c) = 8
ƒ(d) = 3
ƒ(g) = 5
ƒ(h) = 2
ƒ(i) = 4
ƒ(j) = 7

Selecting Salient Attributes
In graph theory, an isomorphism of graphs* G and H is a bijection ƒ

between the vertex sets of G and H such that any two vertices u and v

of G are adjacent in G if and only if ƒ(u) and ƒ(v) are adjacent in H.

*http://en.wikipedia.org/wiki/Graph_isomorphism

2. Understanding Value Semantics

Value-Semantic Properties

364

How hard is it to determine

Graph Isomorphism?

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

365

How hard is it to determine

Graph Isomorphism?

Is known to be in NP and CO-NP.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

366

How hard is it to determine

Graph Isomorphism?

Is known to be in NP and CO-NP.

Not known to be NP Complete.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

367

How hard is it to determine

Graph Isomorphism?

Is known to be in NP and CO-NP.

Not known to be NP Complete.

Not known to be in P (Polynomial time).

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

368

How hard is it to determine

Graph Isomorphism?

Is known to be in NP and CO-NP.

Not know to be NP Complete.

Not known to be in P (Polynomial time).

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

369

bool operator==(const Graph& lhs,

cccccccccccc const Graph& rhs);

cc// Two 'Graph' objects have the same

 c// value if they have the same number of

 // nodes 'N' and there exists a renumbering

 // of the nodes in 'rhs' such that, for

 // each node-index 'i' '(0 <= i < N)',

 // the nodes adjacent to node 'i' in 'lhs'

 // have the same indices as those of the

 // nodes adjacent to node 'i' in 'rhs'.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

370

bool operator==(const Graph& lhs,

cccccccccccc const Graph& rhs);

cc// Two 'Graph' objects have the same

 c// value if they have the same number of

 // nodes 'N' and there exists a renumbering

 // of the nodes in 'rhs' such that, for

 // each node-index 'i' '(0 <= i < N)',

 // the nodes adjacent to node 'i' in 'lhs'

 // have the same indices as those of the

 // nodes adjacent to node 'i' in 'rhs'.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

371

bool operator==(const Graph& lhs,

cccccccccccc const Graph& rhs);

cc// Two 'Graph' objects have the same

 c// value if they have the same number of

 // nodes 'N' and, for each node-index 'i'

 // '(0 <= i < N)', the ordered sequence

 // of nodes adjacent to node 'i' in

 // 'lhs' has the same value as the one

 // for node 'i' in 'rhs'.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

372

What are the salient attributes of Graph?

Number of nodes.

Specific nodes adjacent to each node.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

373

What are the salient attributes of Graph?

Number of nodes.

Specific nodes adjacent to each node.

And, as a practical matter,

Numbering of the nodes.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

374

What are the salient attributes of Graph?

Number of nodes.

Specific nodes adjacent to each node.

And, as a practical matter,

Numbering of the nodes.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

375

What are the salient attributes of Graph?

Number of nodes.

Specific nodes adjacent to each node.

And, as a practical matter,

Numbering of the nodes.

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

376

2. Understanding Value Semantics

Discussion

Why would we ever
omit valid value
syntax when there
is only one obvious
notion of value?
 377

2. Understanding Value Semantics

Discussion

Why would we ever
omit valid value
syntax when there
is only one obvious
notion of value?
 378

2. Understanding Value Semantics

Discussion

Why would we ever
omit valid value
syntax when there
is only one obvious
notion of value?
 379

 (Summary So Far)

Selecting Salient Attributes

2. Understanding Value Semantics

Value-Semantic Properties

380

When selecting salient attributes, avoid
subjective (domain-specific) interpretation:

Selecting Salient Attributes
 (Summary So Far)

2. Understanding Value Semantics

Value-Semantic Properties

381

When selecting salient attributes, avoid
subjective (domain-specific) interpretation:

 Fractions may be equivalent, but not the same.

Selecting Salient Attributes
 (Summary So Far)

2. Understanding Value Semantics

Value-Semantic Properties

382

When selecting salient attributes, avoid
subjective (domain-specific) interpretation:

 Fractions may be equivalent, but not the same.

Graphs may be isomorphic, yet distinct.

Selecting Salient Attributes Selecting Salient Attributes
 (Summary So Far)

2. Understanding Value Semantics

Value-Semantic Properties

383

When selecting salient attributes, avoid
subjective (domain-specific) interpretation:

 Fractions may be equivalent, but not the same.

Graphs may be isomorphic, yet distinct.

Triangles may be similar and still differ.

Selecting Salient Attributes Selecting Salient Attributes
 (Summary So Far)

2. Understanding Value Semantics

Value-Semantic Properties

384

Relegate any “subjective interpretations” of equality

to named functions!

Selecting Salient Attributes Selecting Salient Attributes
 (Summary So Far)

2. Understanding Value Semantics

Value-Semantic Properties

385

Relegate any “subjective interpretations” of equality

to named functions – ideally, in higher-level components:

Selecting Salient Attributes Selecting Salient Attributes
 (Summary So Far)

2. Understanding Value Semantics

Value-Semantic Properties

386

Relegate any “subjective interpretations” of equality

to named functions – ideally, in higher-level components:

struct MyUtil {

 static bool areEquivalent(const Rational& a)-

-------------------- const Rational& b);

 static bool areIsomorphic(const Graph& g1,---

-------------------- const Graph& g2);

 static bool areSimilar(const Triangle& x,----

----------------- const Triangle& y);

};

Selecting Salient Attributes Selecting Salient Attributes
 (Summary So Far)

2. Understanding Value Semantics

Value-Semantic Properties

387

Relegate any “subjective interpretations” of equality

to named functions – ideally, in higher-level components:

struct MyUtil {

 static bool areEquivalent(const Rational& a)-

-------------------- const Rational& b);

 static bool areIsomorphic(const Graph& g1,---

-------------------- const Graph& g2);

 static bool areSimilar(const Triangle& x,----

----------------- const Triangle& y);

};

Selecting Salient Attributes Selecting Salient Attributes
 (Summary So Far)

2. Understanding Value Semantics

Value-Semantic Properties

388

Relegate any “subjective interpretations” of equality

to named functions – ideally, in higher-level components:

struct MyUtil {

 static bool areEquivalent(const Rational& a)-

-------------------- const Rational& b);

 static bool areIsomorphic(const Graph& g1,---

-------------------- const Graph& g2);

 static bool areSimilar(const Triangle& x,----

----------------- const Triangle& y);

};

Selecting Salient Attributes Selecting Salient Attributes
 (Summary So Far)

2. Understanding Value Semantics

Value-Semantic Properties

389

Relegate any “subjective interpretations” of equality

to named functions – ideally, in higher-level components:

struct MyUtil {

 static bool areEquivalent(const Rational& a)-

-------------------- const Rational& b);

 static bool areIsomorphic(const Graph& g1,---

-------------------- const Graph& g2);

 static bool areSimilar(const Triangle& x,----

----------------- const Triangle& y);

};

Selecting Salient Attributes Selecting Salient Attributes
 (Summary So Far)

2. Understanding Value Semantics

Value-Semantic Properties

390

 A collateral benefit is Terminology:

2. Understanding Value Semantics

Value-Semantic Properties

391

2. Understanding Value Semantics

Collateral Benefit: Terminology

 “…objects are the same…”

 “…objects are identical…”

 “…objects are equal…”

 “…objects are equivalent…”

 “…create a copy of…”

392

 “…objects are the same…”

 “…objects are identical…”

 “…objects are equal…”

 “…objects are equivalent…”

 “…create a copy of…”

2. Understanding Value Semantics

Collateral Benefit: Terminology

393

 “…objects are the same…”

 “…objects are identical…”

 “…objects are equal…”

 “…objects are equivalent…”

 “…create a copy of…”

2. Understanding Value Semantics

Collateral Benefit: Terminology

394

 “…objects are the same…”

 “…objects are identical…”

 “…objects are equal…”

 “…objects are equivalent…”

 “…create a copy of…”

2. Understanding Value Semantics

Collateral Benefit: Terminology

395

 “…objects are the same…”

 “…objects are identical…”

 (identity)

2. Understanding Value Semantics

Collateral Benefit: Terminology

396

 “…objects are the same…”

 “…objects are identical…”

 (identity)

“…(aliases) refer to the same object…”

2. Understanding Value Semantics

Collateral Benefit: Terminology

397

 “…objects are the same…”

 (value)

2. Understanding Value Semantics

Collateral Benefit: Terminology

398

 “…objects are the same…”

 (value)

 “…(objects) have the same value…”

2. Understanding Value Semantics

Collateral Benefit: Terminology

399

 “…objects are the same…”

 (value)

 “…(objects) have the same value…”

“…(objects) refer to the same value…”

2. Understanding Value Semantics

Collateral Benefit: Terminology

400

 “…objects are the same…”

 (value)

 “…(objects) have the same value…”

“…(objects) refer to the same value…”

“…(objects) represent the same value…”

2. Understanding Value Semantics

Collateral Benefit: Terminology

401

 “…objects are the same...”

 “…objects are equal…”

 (equality)

2. Understanding Value Semantics

Collateral Benefit: Terminology

402

 “…objects are the same...”

 “…objects are equal…”

 (equality)

 “…(objects) compare equal…”

2. Understanding Value Semantics

Collateral Benefit: Terminology

403

 “…objects are the same...”

 “…objects are equal…”

 (equality)

 “…(objects) compare equal…”
“…(homogeneous) operator== returns true…”

2. Understanding Value Semantics

Collateral Benefit: Terminology

404

 “…objects are the same...”

 “…objects are equal…”

 (equality)

 “…(objects) compare equal…”
“…(homogeneous) operator== returns true…”

2. Understanding Value Semantics

Collateral Benefit: Terminology

405

 “…objects are the same...”

 “…objects are equal…”

 (equality)

 “…(objects) compare equal…”
“…(homogeneous) operator== returns true…”

2. Understanding Value Semantics

Collateral Benefit: Terminology

406

 “…objects are the same...”
 aaa (equivalent)

2. Understanding Value Semantics

Collateral Benefit: Terminology

407

 “…objects are the same...”
 aaa (equivalent)
 In separate named functions:

2. Understanding Value Semantics

Collateral Benefit: Terminology

408

 “…objects are the same...”
 aaa (equivalent)
 In separate named functions:

 “…fractions are equivalent…”

2. Understanding Value Semantics

Collateral Benefit: Terminology

409

 “…objects are the same...”
 aaa (equivalent)
 In separate named functions:

 “…fractions are equivalent…”

 “…graphs are isomorphic…”

2. Understanding Value Semantics

Collateral Benefit: Terminology

410

 “…objects are the same...”
 aaa (equivalent)
 In separate named functions:

 “…fractions are equivalent…”

 “…graphs are isomorphic…”

 “…triangles are similar…”

2. Understanding Value Semantics

Collateral Benefit: Terminology

411

Outline

1. Introduction and Background
Components, Physical Design, and Class Categories

2. Understanding Value Semantics (and Syntax)
Most importantly, the Essential Property of Value

3. Two Important, Instructional Case Studies
Specifically, Regular Expressions and Priority Queues

4. Conclusion
What must be remembered when designing value types

412

Outline

1. Introduction and Background
Components, Physical Design, and Class Categories

2. Understanding Value Semantics (and Syntax)
Most importantly, the Essential Property of Value

3. Two Important, Instructional Case Studies
Specifically, Regular Expressions and Priority Queues

4. Conclusion
What must be remembered when designing value types

413

Important Design Questions:

• What is a Regular Expression?

• Why create a separate class for it?

• Does/should it represent a value?

• How should its value be defined?

• Should such a class be regular?

3. Two Important, Instructional Case Studies

Regular Expressions

414

Important Design Questions:

• What is a Regular Expression?

• Why create a separate class for it?

• Does/should it represent a value?

• How should its value be defined?

• Should such a class be regular?

3. Two Important, Instructional Case Studies

Regular Expressions

415

What is a Regular Expression?

3. Two Important, Instructional Case Studies

Regular Expressions

416

What is a Regular Expression?
A Regular Expression describes a
language that can be accepted by a
Finite-State Machine (FSM).

3. Two Important, Instructional Case Studies

Regular Expressions

417

What is a Regular Expression?
A Regular Expression describes a
language that can be accepted by a
Finite-State Machine (FSM).

E.g.,
 (1|0)+ describes binary numbers.

3. Two Important, Instructional Case Studies

Regular Expressions

418

Important Design Questions:

• What is a Regular Expression?

• Why create a separate class for it?

• Does/should it represent a value?

• How should its value be defined?

• Should such a class be regular?

3. Two Important, Instructional Case Studies

Regular Expressions

419

Why create a separate class for it?

3. Two Important, Instructional Case Studies

Regular Expressions

420

Why create a separate class for it?
A Regular-Expression class imbued
with the value of a regular expression
can be used to determine whether (or
not) arbitrary string tokens are
members of the language that the
regular-expression value denotes.

3. Two Important, Instructional Case Studies

Regular Expressions

421

Why create a separate class for it?
class RegEx {

 // …

 public:

 static bool isValid(const char *regEx);

 RegEx(); // Empty language; accepts nothing.

 RegEx(const char *regEx);

 RegEx(const RegEx& other);

 ~RegEx();

 RegEx& operator=(const RegEx& rhs);

 void setValue(const char *regEx);

 int setValueIfValid(const char *regEx);

 bool isMember(const char *token) const;

};

3. Two Important, Instructional Case Studies

Regular Expressions

422

Why create a separate class for it?
class RegEx {

 // …

 public:

 static bool isValid(const char *regEx);

 RegEx(); // Empty language: Accepts nothing.

 RegEx(const char *regEx);

 RegEx(const RegEx& other);

 ~RegEx();

 RegEx& operator=(const RegEx& rhs);

 void setValue(const char *regEx);

 int setValueIfValid(const char *regEx);

 bool isMember(const char *token) const;

};

3. Two Important, Instructional Case Studies

Regular Expressions

Class Methods

423

Why create a separate class for it?
class RegEx {

 // …

 public:

 static bool isValid(const char *regEx);

 RegEx(); // Empty language: Accepts nothing.

 RegEx(const char *regEx);

 RegEx(const RegEx& other);

 ~RegEx();

 RegEx& operator=(const RegEx& rhs);

 void setValue(const char *regEx);

 int setValueIfValid(const char *regEx);

 bool isMember(const char *token) const;

};

3. Two Important, Instructional Case Studies

Regular Expressions

Creators

424

Why create a separate class for it?
class RegEx {

 // …

 public:

 static bool isValid(const char *regEx);

 RegEx(); // Empty language: Accepts nothing.

 RegEx(const char *regEx);

 RegEx(const RegEx& other);

 ~RegEx();

 RegEx& operator=(const RegEx& rhs);

 void setValue(const char *regEx);

 int setValueIfValid(const char *regEx);

 bool isMember(const char *token) const;

};

3. Two Important, Instructional Case Studies

Regular Expressions

Creators

425

Why create a separate class for it?
class RegEx {

 // …

 public:

 static bool isValid(const char *regEx);

 RegEx(); // Empty language: Accepts nothing.

 RegEx(const char *regEx);

 RegEx(const RegEx& other);

 ~RegEx();

 RegEx& operator=(const RegEx& rhs);

 void setValue(const char *regEx);

 int setValueIfValid(const char *regEx);

 bool isMember(const char *token) const;

};

3. Two Important, Instructional Case Studies

Regular Expressions

Creators

426

Why create a separate class for it?
class RegEx {

 // …

 public:

 static bool isValid(const char *regEx);

 RegEx(); // Empty language: Accepts nothing.

 RegEx(const char *regEx);

 RegEx(const RegEx& other);

 ~RegEx();

 RegEx& operator=(const RegEx& rhs);

 void setValue(const char *regEx);

 int setValueIfValid(const char *regEx);

 bool isMember(const char *token) const;

};

3. Two Important, Instructional Case Studies

Regular Expressions

Creators

427

Why create a separate class for it?
class RegEx {

 // …

 public:

 static bool isValid(const char *regEx);

 RegEx(); // Empty language: Accepts nothing.

 RegEx(const char *regEx);

 RegEx(const RegEx& other);

 ~RegEx();

 RegEx& operator=(const RegEx& rhs);

 void setValue(const char *regEx);

 int setValueIfValid(const char *regEx);

 bool isMember(const char *token) const;

};

3. Two Important, Instructional Case Studies

Regular Expressions

Manipulators

428

Whatever the value is.

Why create a separate class for it?
class RegEx {

 // …

 public:

 static bool isValid(const char *regEx);

 RegEx(); // Empty language: Accepts nothing.

 RegEx(const char *regEx);

 RegEx(const RegEx& other);

 ~RegEx();

 RegEx& operator=(const RegEx& rhs);

 void setValue(const char *regEx);

 int setValueIfValid(const char *regEx);

 bool isMember(const char *token) const;

};

3. Two Important, Instructional Case Studies

Regular Expressions

Manipulators

429

What is the value?

Why create a separate class for it?
class RegEx {

 // …

 public:

 static bool isValid(const char *regEx);

 RegEx(); // Empty language: Accepts nothing.

 RegEx(const char *regEx);

 RegEx(const RegEx& other);

 ~RegEx();

 RegEx& operator=(const RegEx& rhs);

 void setValue(const char *regEx);

 int setValueIfValid(const char *regEx);

 bool isMember(const char *token) const;

};

3. Two Important, Instructional Case Studies

Regular Expressions

Manipulators

430

Why both?

Why create a separate class for it?
class RegEx {

 // …

 public:

 static bool isValid(const char *regEx);

 RegEx(); // Empty language: Accepts nothing.

 RegEx(const char *regEx);

 RegEx(const RegEx& other);

 ~RegEx();

 RegEx& operator=(const RegEx& rhs);

 void setValue(const char *regEx);

 int setValueIfValid(const char *regEx);

 bool isMember(const char *token) const;

};

3. Two Important, Instructional Case Studies

Regular Expressions

Accessors

431

 a.k.a.
“accept”

or
“matching”

Why create a separate class for it?
class RegEx {

 // …

 public:

 static bool isValid(const char *regEx);

 RegEx(); // Empty language; accepts nothing.

 RegEx(const char *regEx);

 RegEx(const RegEx& other);

 ~RegEx();

 RegEx& operator=(const RegEx& rhs);

 void setValue(const char *regEx);

 int setValueIfValid(const char *regEx);

 bool isMember(const char *token) const;

};

3. Two Important, Instructional Case Studies

Regular Expressions

432

Why create a separate class for it?
class RegEx {

 // …

 public:

 static bool isValid(const char *regEx);

 RegEx(); // Empty language; accepts nothing.

 RegEx(const char *regEx);

 RegEx(const RegEx& other);

 ~RegEx();

 RegEx& operator=(const RegEx& rhs);

 void setValue(const char *regEx);

 int setValueIfValid(const char *regEx);

 bool isMember(const char *token) const;

};

3. Two Important, Instructional Case Studies

Regular Expressions

Just one!

433

Why create a separate class for it?
class RegEx {

 // …

 public:

 static bool isValid(const char *regEx);

 RegEx(); // Empty language; accepts nothing.

 RegEx(const char *regEx);

 RegEx(const RegEx& other);

 ~RegEx();

 RegEx& operator=(const RegEx& rhs);

 void setValue(const char *regEx);

 int setValueIfValid(const char *regEx);

 bool isMember(const char *token) const;

};

3. Two Important, Instructional Case Studies

Regular Expressions

Just one!

434

Why create a separate class for it?
class RegEx {

 // …

 public:

 static bool isValid(const char *regEx);

 RegEx(); // Empty language; accepts nothing.

 RegEx(const char *regEx);

 RegEx(const RegEx& other);

 ~RegEx();

 RegEx& operator=(const RegEx& rhs);

 void setValue(const char *regEx);

 int setValueIfValid(const char *regEx);

 bool isMember(const char *token) const;

};

3. Two Important, Instructional Case Studies

Regular Expressions

Just one!
Let’s think
about this!

435

Important Design Questions:

• What is a Regular Expression?

• Why create a separate class for it?

• Does/should it represent a value?

• How should its value be defined?

• Should such a class be regular?

3. Two Important, Instructional Case Studies

Regular Expressions

436

Does/should it represent a value?

3. Two Important, Instructional Case Studies

Regular Expressions

437

Does/should it represent a value?
Is a RegEx class a value type, or a
mechanism?

3. Two Important, Instructional Case Studies

Regular Expressions

438

Does/should it represent a value?
Is a RegEx class a value type, or a
mechanism?

I.e., is there an obvious notion of
what it means for two RegEx
objects to have the same value?

3. Two Important, Instructional Case Studies

Regular Expressions

439

Does/should it represent a value?
Is a RegEx class a value type, or a
mechanism?

I.e., is there an obvious notion of
what it means for two RegEx
objects to have the same value?

3. Two Important, Instructional Case Studies

Regular Expressions

440

Important Design Questions:

• What is a Regular Expression?

• Why create a separate class for it?

• Does/should it represent a value?

• How should its value be defined?

• Should such a class be regular?

3. Two Important, Instructional Case Studies

Regular Expressions

441

How should its value be defined?

1. The string used to create it.

3. Two Important, Instructional Case Studies

Regular Expressions

442

How should its value be defined?

1. The string used to create it.

2. The language it accepts.

3. Two Important, Instructional Case Studies

Regular Expressions

443

How should its value be defined?

1. The string used to create it.

2. The language it accepts.

Note that there is no accessor to get
the string used to initialize the value.

3. Two Important, Instructional Case Studies

Regular Expressions

444

How should its value be defined?

1. The string used to create it.

2. The language it accepts.

IMO, the correct answer is 2. Why?
Note that there is no accessor to get
the string used to initialize the value.

3. Two Important, Instructional Case Studies

Regular Expressions

445

How should its value be defined?

1. The string used to create it.

2. The language it accepts.

The correct answer is 2. Why?
Because, there is no accessor to get
the string used to assign the value.

3. Two Important, Instructional Case Studies

Regular Expressions

446

How should its value be defined?

1. The string used to create it.

2. The language it accepts.

The correct answer is 2. Why?
Because, there is no accessor to get
the string used to assign the value.

3. Two Important, Instructional Case Studies

Regular Expressions

What makes a RegEx
value special – i.e.,

distinct from that of the
(const char *)

used to create it – is the
language value a RegEx

object represents.

447

How should its value be defined?

1. The string used to create it.

2. The language it accepts.

The correct answer is 2. Why?
Because, there is no accessor to get
the string used to assign the value.

3. Two Important, Instructional Case Studies

Regular Expressions

448

How should its value be defined?

1. The string used to create it.

2. The language it accepts.

The correct answer is 2. Why?
Because, there is no accessor to get
the string used to assign the value.

3. Two Important, Instructional Case Studies

Regular Expressions
Just like capacity for
std::vector

449

How should its value be defined?

1. The string used to create it.

2. The language it accepts.

The correct answer is 2. Why?
Because, there is no accessor to get
the string used to assign the value.

3. Two Important, Instructional Case Studies

Regular Expressions
Or iteration order for

std::unorderd_map

450

How should its value be defined?

1. The string used to create it.

2. The language it accepts.

The correct answer is 2. Why?
Because, there is no accessor to get
the string used to assign the value.

3. Two Important, Instructional Case Studies

Regular Expressions
Or iteration order for

std::unorderd_map

451

“Language”??

Important Design Questions:

• What is a Regular Expression?

• Why create a separate class for it?

• Does/should it represent a value?

• How should its value be defined?

• Should such a class be regular?

3. Two Important, Instructional Case Studies

Regular Expressions

452

Should such a class be regular?

I.e., Should our RegEx class
support all of the value-semantic
syntax of a regular class?

3. Two Important, Instructional Case Studies

Regular Expressions

453

Should such a class be regular?

I.e., Should our RegEx class
support all of the value-semantic
syntax of a regular class?

Question: How expensive would
operator== be to implement?

3. Two Important, Instructional Case Studies

Regular Expressions

454

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Regular Expressions

455

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Regular Expressions

456

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Regular Expressions

457

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[1]?

3. Two Important, Instructional Case Studies

Regular Expressions

458

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[1]?

3. Two Important, Instructional Case Studies

Regular Expressions

459

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

3. Two Important, Instructional Case Studies

Regular Expressions

460

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

3. Two Important, Instructional Case Studies

Regular Expressions

461

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

3. Two Important, Instructional Case Studies

Regular Expressions

462

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

3. Two Important, Instructional Case Studies

Regular Expressions

463

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

3. Two Important, Instructional Case Studies

Regular Expressions

464

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

3. Two Important, Instructional Case Studies

Regular Expressions

465

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

3. Two Important, Instructional Case Studies

Regular Expressions

466

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

3. Two Important, Instructional Case Studies

Regular Expressions

467

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

 O[N * sqrt N]

3. Two Important, Instructional Case Studies

Regular Expressions

468

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

 O[N * sqrt N]

 O[N^2]

3. Two Important, Instructional Case Studies

Regular Expressions

469

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

 O[N * sqrt N]

 O[N^2]

 O[N^2 * log N]

3. Two Important, Instructional Case Studies

Regular Expressions

470

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

 O[N * sqrt N]

 O[N^2]

 O[N^2 * log N]

 Polynomial

3. Two Important, Instructional Case Studies

Regular Expressions

471

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

 O[N * sqrt N]

 O[N^2]

 O[N^2 * log N]

 Polynomial

 NP

3. Two Important, Instructional Case Studies

Regular Expressions

472

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

 O[N * sqrt N]

 O[N^2]

 O[N^2 * log N]

 Polynomial

 NP

 NP complete

3. Two Important, Instructional Case Studies

Regular Expressions

473

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

 O[N * sqrt N]

 O[N^2]

 O[N^2 * log N]

 Polynomial

 NP

 NP Complete

 P-SPACE

3. Two Important, Instructional Case Studies

Regular Expressions

474

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

 O[N * sqrt N]

 O[N^2]

 O[N^2 * log N]

 Polynomial

 NP

 NP Complete

 P-SPACE

 P-SPACE Complete

3. Two Important, Instructional Case Studies

Regular Expressions

475

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

 O[N * sqrt N]

 O[N^2]

 O[N^2 * log N]

 Polynomial

 NP

 NP Complete

 P-SPACE

 P-SPACE Complete

 Undecidable

3. Two Important, Instructional Case Studies

Regular Expressions

476

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

 O[N * sqrt N]

 O[N^2]

 O[N^2 * log N]

 Polynomial

 NP

 NP Complete

 P-SPACE

 P-SPACE Complete

 Undecidable

3. Two Important, Instructional Case Studies

Regular Expressions

477

3. Two Important, Instructional Case Studies

Regular Expressions

Over an alphabet Σ, given one DFA having states S={si} (of which
A⊆S are accepting) and transition function δ:S×Σ→S, and another
DFA having states T={tj} (of which B⊆T are accepting) and
transition function ζ:T×Σ→T, one can "easily" construct a DFA
with states U=S×T (Cartesian product) and transition function
η((si, tj), σ) = (δ(si, σ), ζ(tj, σ)), where σ e Σ. Then the two original
DFAs are equivalent iff the only states reachable in this Cartesian-
product DFA are a subset of (A×B)∪((S∖A)×(T∖B)) — i.e., it's
impossible to reach a state that is accepting in one of the original
DFAs, but not in the other. Once one has translated the regular
expressions to DFAs, the naive time complexity is O[|Σ||S||T|],
and the space complexity is O[|S||T||Σ|].

478

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

 O[N * sqrt N]

 O[N^2]

 O[N^2 * log N]

 Polynomial

 NP

 NP Complete

 P-SPACE

 P-SPACE Complete

 Undecidable

3. Two Important, Instructional Case Studies

Regular Expressions

479

Should we avoid value types
where equality comparison

is expensive?

Should such a class be regular?
Question: How expensive would operator== be to implement?

 O[log N]

 O[sqrt N]

 O[N]

 O[N * log N]

 O[N * sqrt N]

 O[N^2]

 O[N^2 * log N]

 Polynomial

 NP

 NP Complete

 P-SPACE

 P-SPACE Complete

 Undecidable

3. Two Important, Instructional Case Studies

Regular Expressions

480

3. Two Important, Instructional Case Studies

Regular Expressions

Discussion?

481

Important Design Questions:

• What is a Priority Queue?

• Why create a separate class for it?

• Does/should it represent a value?

• How should its value be defined?

• Should such a class be regular?

3. Two Important, Instructional Case Studies

Priority Queues

482

Important Design Questions:

• What is a Priority Queue?

• Why create a separate class for it?

• Does/should it represent a value?

• How should its value be defined?

• Should such a class be regular?

3. Two Important, Instructional Case Studies

Priority Queues

483

What is a Priority Queue?

3. Two Important, Instructional Case Studies

Priority Queues

484

What is a Priority Queue?

A priority queue is a (generic) container that

provides constant-time access to its top

priority element – defined by a user-

supplied priority function (or functor) – as

well as supporting logarithmic-time pushes

and pops of queue-element values.

3. Two Important, Instructional Case Studies

Priority Queues

485

What is a Priority Queue?

A priority queue is a (generic) container that

provides constant-time access to its top

priority element – defined by a user-

supplied priority function (or functor) – as

well as supporting logarithmic-time pushes

and pops of queue-element values.

3. Two Important, Instructional Case Studies

Priority Queues

Salient
Operations

Salient
Operations

Salient
Operations

486

Example Queue Element:

class LabeledPoint {
 std::string d_label;
 int d_x;
 int d_y;
 public:

 // … (Regular Type)

 const std::string& label() const { return d_label };
 int x() const { return d_x; };
 int y() const { return d_y; };
};

bool operator==(const LabeledPoint& lhs,
 const LabeledPoint& rhs) {
 return lhs.label() == rhs.label()

 && lhs.x() == rhs.x()
 && lhs.y() == rhs.y(); (Unconstrained Attribute Class)
}

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

487

Example Queue Element:

class LabeledPoint {
 std::string d_label;
 int d_x;
 int d_y;
 public:

 // … (Regular Type)

 const std::string& label() const { return d_label };
 int x() const { return d_x; };
 int y() const { return d_y; };
};

bool operator==(const LabeledPoint& lhs,
 const LabeledPoint& rhs) {
 return lhs.label() == rhs.label()

 && lhs.x() == rhs.x()
 && lhs.y() == rhs.y(); (Unconstrained Attribute Class)
}

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
Example Comparison Function:
bool less(const LabeledPoint& a,

 const LabeledPoint& b) {

 return abs(a.x()) + abs(a.y())

 < abs(b.x()) + abs(b.y());

} (a.k.a. “Manhattan Distance”)

488

Example Comparison Function:
bool less(const LabeledPoint& a,

 const LabeledPoint& b) {

 return abs(a.x()) + abs(a.y())

 < abs(b.x()) + abs(b.y());

} (a.k.a. “Manhattan Distance”)

Example Queue Element:

class LabeledPoint {
 std::string d_label;
 int d_x;
 int d_y;
 public:

 // … (Regular Type)

 const std::string& label() const { return d_label };
 int x() const { return d_x; };
 int y() const { return d_y; };
};

bool operator==(const LabeledPoint& lhs,
 const LabeledPoint& rhs) {
 return lhs.label() == rhs.label()

 && lhs.x() == rhs.x()
 && lhs.y() == rhs.y(); (Unconstrained Attribute Class)
}

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

489

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 3 30

 4 80 31 31

 99 99 80

 2 3 30 4 80 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

0

1

2

3

490

Each distinct color

represents an

element having a

distinct value.

Each element is

labeled with its

calculated priority.

 2

assert(q.top() ==); 2

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 3 30

 4 80 31 31

 99 99 80

 2 3 30 4 80 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

0

1

2

3

491

Each distinct color

represents an

element having a

distinct value.

Each element is

labeled with its

calculated priority.

Different Priorities,
Different Values

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 3 30

 4 80 31 31

 99 99 80

 2 3 30 4 80 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

0

1

2

3

492

Each distinct color

represents an

element having a

distinct value.

Each element is

labeled with its

calculated priority.

Different Priorities,
Different Values

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 3 30

 4 80 31 31

 99 99 80

 2 3 30 4 80 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

0

1

2

3

493

Each distinct color

represents an

element having a

distinct value.

Each element is

labeled with its

calculated priority.

Same Priority,
Different Values

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 3 30

 4 80 31 31

 99 99 80

 2 3 30 4 80 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

0

1

2

3

494

Each distinct color

represents an

element having a

distinct value.

Each element is

labeled with its

calculated priority.

Same Priority,
Same Value

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 3 30

 4 80 31 31

 99 99 80

 2 3 30 4 80 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

0

1

2

3

495

Each distinct color

represents an

element having a

distinct value.

Each element is

labeled with its

calculated priority.

Same Priority,
Different Values

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 3 30

 4 80 31 31

 99 99 80

 2 3 30 4 80 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

496

q.push(); 2

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 3 30

 4 80 31 31

 99 99 80

 2 3 30 4 80 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

497

q.push(); 2 2

 2

Swap with
parent.

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 3 30

 4 80 31 31

 99 99 80

 2 3 30 4 80 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

498

q.push(); 2 2

 2

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 3 30

 4 2 31 31

 99 99 80

 2 3 30 4 2 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

499

q.push(); 2 80

 80

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 3 30

 4 2 31 31

 99 99 80

 2 3 30 4 2 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

500

q.push(); 2 80

 80

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 2 30

 4 3 31 31

 99 99 80

 2 2 30 4 3 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

501

q.push(); 2 80

 80

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 2 30

 4 3 31 31

 99 99 80

 2 2 30 4 3 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

502

q.push(); 2 80

 80

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 2 30

 4 3 31 31

 99 99 80

 2 2 30 4 3 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

503

q.push(); 2 80

 80

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 2 30

 4 3 31 31

 99 99 80

 2 2 30 4 3 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

504

 q.pop(); 80

 80

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 2 30

 4 3 31 31

 99 99 80

 2 2 30 4 3 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

505

 q.pop(); 80

 80

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?

 2 30

 4 3 31 31

 99 99 80

 2 30 4 3 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

506

 q.pop(); 80

 80

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 80

 2 30

 4 3 31 31

 99 99 80

 80 2 30 4 3 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

507

 q.pop();

Swap with the
element having the

more urgent priority.

If equally urgent,
choose the left child.

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 80

 2 30

 4 3 31 31

 99 99 80

 80 2 30 4 3 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

508

 q.pop();

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 80 30

 4 3 31 31

 99 99 80

 2 80 30 4 3 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

509

 q.pop();

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 80 30

 4 3 31 31

 99 99 80

 2 80 30 4 3 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

510

 q.pop();

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 3 30

 4 80 31 31

 99 99 80

 2 3 30 4 80 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

511

 q.pop();

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 3 30

 4 80 31 31

 99 99 80

 2 3 30 4 80 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

512

 q.pop();

3. Two Important, Instructional Case Studies

Priority Queues

What is a Priority Queue?
 2

 3 30

 4 80 31 31

 99 99 80

 2 3 30 4 80 31 31 99 99 Array-Based Heap: 80

0 1 2 3

…

Each distinct color

represents an

element having a

distinct value.

0

1

2

3

Each element is

labeled with its

calculated priority.

513

 q.pop();

Important Design Questions:

• What is a Priority Queue?

• Why create a separate class for it?

• Does/should it represent a value?

• How should its value be defined?

• Should such a class be regular?

3. Two Important, Instructional Case Studies

Priority Queues

514

Why create a separate class for it?

3. Two Important, Instructional Case Studies

Priority Queues

515

Why create a separate class for it?
A Priority Queue is a useful data
structure for dispensing value-
semantic (as well as other types of)
objects according to a user-specified
priority order.

3. Two Important, Instructional Case Studies

Priority Queues

516

Important Design Questions:

• What is a Priority Queue?

• Why create a separate class for it?

• Does/should it represent a value?

• How should its value be defined?

• Should such a class be regular?

3. Two Important, Instructional Case Studies

Priority Queues

517

Does/should it represent a value?

3. Two Important, Instructional Case Studies

Priority Queues

518

Does/should it represent a value?
Is a PriorityQueue class a value
type, or a mechanism?

3. Two Important, Instructional Case Studies

Priority Queues

519

Does/should it represent a value?
Is a PriorityQueue class a value
type, or a mechanism?

I.e., is there an obvious notion of what it
means for two PriorityQueue
objects to have the same value?

3. Two Important, Instructional Case Studies

Priority Queues

520

Does/should it represent a value?
Is a PriorityQueue class a value
type, or a mechanism?

I.e., is there an obvious notion of what it
means for two PriorityQueue
objects to have the same value?

3. Two Important, Instructional Case Studies

Priority Queues

521

Does/should it represent a value?
Is a PriorityQueue class a value
type, or a mechanism?

I.e., is there an obvious notion of what it
means for two PriorityQueue
objects to have the same value?

3. Two Important, Instructional Case Studies

Priority Queues

522

Important Design Questions:

• What is a Priority Queue?

• Why create a separate class for it?

• Does/should it represent a value?

• How should its value be defined?

• Should such a class be regular?

3. Two Important, Instructional Case Studies

Priority Queues

523

How should its value be defined?

3. Two Important, Instructional Case Studies

Priority Queues

524

How should its value be defined?

3. Two Important, Instructional Case Studies

Priority Queues

525

How should its value be defined?

3. Two Important, Instructional Case Studies

Priority Queues

526

How should its value be defined?
Two objects of class PriorityQueue
have the same value iff there does not
exist a distinguishing sequence among
all of its salient operations:
 1. top

 2. push

 3. pop

3. Two Important, Instructional Case Studies

Priority Queues

527

Important Design Questions:

• What is a Priority Queue?

• Why create a separate class for it?

• Does/should it represent a value?

• How should its value be defined?

• Should such a class be regular?

3. Two Important, Instructional Case Studies

Priority Queues

528

Should such a class be regular?

I.e., should our PriorityQueue
class support all of the value-
semantic syntax of a regular class?

3. Two Important, Instructional Case Studies

Priority Queues

529

Should such a class be regular?

I.e., should our PriorityQueue
class support all of the value-
semantic syntax of a regular class?

Question: How expensive would
operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

530

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

531

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

532

Moreover, how on earth would we
determine whether two arbitrary
PriorityQueue objects do or do
not have a distinguishing sequence
of salient operations??

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

533

Necessary:

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

534

Necessary:
 - Same number of elements.

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

535

Necessary:
 - Same number of elements.

 - Same numbers of respective element values.

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

536

Necessary:
 - Same number of elements.

 - Same numbers of respective element values.

Sufficient:

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

537

Necessary:
 - Same number of elements.

 - Same numbers of respective element values.

Sufficient:
 - Same underlying linear heap order.

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

538

Necessary:
 - Same number of elements.

 - Same numbers of respective element values.

Sufficient:
 - Same underlying linear heap order.

BUT IS THIS NECESSARY OR NOT??

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

539

For example, both of these linear heaps
pop in the same order:

 2 3 30 4 80 31 31 99 99 Array-Based Heap 2: 80

0 1 2 3

…

539

539

 2 3 30 4 80 31 31 99 99 Array-Based Heap 1: 80

0 1 2 3

…

539

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

540

For example, both of these linear heaps
pop in the same order (of course!):

 2 3 30 4 80 31 31 99 99 Array-Based Heap 2: 80

0 1 2 3

…

540

540

 2 3 30 4 80 31 31 99 99 Array-Based Heap 1: 80

0 1 2 3

…

540

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

541

But so do these:

 1 3 2 3 4 Array-Based Heap 2:

0 1 2 541

 1 2 4 3 3 Array-Based Heap 1:

0 1 2

1

 2 4

3 3

1

 3 2

3 4

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

542

As it turns out, we can distinguish these
two values with appropriate pushes,
tops, and pops.

542

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

543

As it turns out, we can distinguish these
two values with appropriate pushes,
tops, and pops.

 But can we always do that?

543

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

544

As it turns out, we can distinguish these
two values with appropriate pushes,
tops, and pops.

 But can we always do that?

If we aren’t sure, should we implement
operator== for this class anyway? 544

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

545

As it turns out, we can distinguish these
two values with appropriate pushes,
tops, and pops.

 But can we always do that?

If we aren’t sure, should we implement
operator== for this class anyway? 545

What if we know that more than
99.99% (but less than 100%) of the time

we can distinguish the values of two
PriorityQueue objects that do not
have the same linear heap orderings?

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

546

As it turns out, we can distinguish these
two values with appropriate pushes,
tops, and pops.

 But can we always do that?

If we aren’t sure, should we implement
operator== for this class anyway? 546

What if we know that more than
99.99% (but less than 100%) of the time

we can distinguish the values of two
PriorityQueue objects that do not
have the same linear heap orderings?

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

547

Suppose it were true that, for any pair
of priority queues, where the linear
heap order is not the same, there exists
a sequence of salient operations that
distinguishes them:

What is the complexity of operator==?
547

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

548

Suppose it were true that, for any pair
of priority queues, where the linear
heap order is not the same, there exists
a distinguishing sequence of salient
operations that distinguishes them:

What is the complexity of operator==?
548

O[n]

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

549

Until quite recently, that linear order is
necessary was just a conjecture.

549

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

550

Until quite recently, that linear order is
necessary was just a conjecture.

I finally have a simple constructive proof.

550

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

551

Until quite recently, that linear order is
necessary was just a conjecture.

I finally have a simple constructive proof.

Here is a very quick sketch:

551

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

552 552

Priority One

Priority Two

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

553 553

Priority One

Priority Two

Element Index i

Highest-Index Element Having Distinct Priorities

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

554 554

Priority One

Priority Two

Element Index i

Push Arbitrary Priority-Two Values

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

555 555

Priority One

Priority Two

Element Index i

Push a Priority-One Value

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

556 556

Priority One

Priority Two

Element Index i

Push a Priority-One Value

h

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

557 557

Priority One

Priority Two

Element Index i
h

Push Arbitrary Priority-Two values

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

558 558

Priority One

Priority Two

Element Index i
h

Push a Different Priority-One Value

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

559 559

Priority One

Priority Two

Element Index i
h

Push a Different Priority-One Value

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

560 560

Priority One

Priority Two

Element Index i
h

Push N Arbitrary Priority-Two Values

N N

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

561 561

Priority One

Priority Two

Element Index i
h

Push N Arbitrary Priority-Two Values

N N

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

562 562

Priority One

Priority Two

Element Index i
h

Pop N Elements

N N

Will Pop
First!

Will Pop
First!

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

563 563

Priority One

Priority Two

After almost N pop operations

the tops are not the same!

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

564 564

Priority One

Priority Two

After one more pop operation

the element values are not the same!

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

565

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

566

Should such a class be regular?
Question: How expensive would operator== be to implement?

3. Two Important, Instructional Case Studies

Priority Queues

567

3. Two Important, Instructional Case Studies

Priority Queues

Discussion?

568

Outline

1. Introduction and Background
Components, Physical Design, and Class Categories

2. Understanding Value Semantics (and Syntax)
Most importantly, the Essential property of Value

3. Two Important, Instructional Case Studies
Specifically, Regular Expressions and Priority Queues

4. Conclusion
What must be remembered when designing value types

569

Outline

1. Introduction and Background
Components, Physical Design, and Class Categories

2. Understanding Value Semantics (and Syntax)
Most importantly, the Essential property of Value

3. Two Important, Instructional Case Studies
Specifically, Regular Expressions and Priority Queues

4. Conclusion
What must be remembered when designing value types

570

4. Conclusion

What to Remember about VSTs

571

4. Conclusion

What to Remember about VSTs

So what are the take-aways?

572

4. Conclusion

What to Remember about VSTs

So what are the take-aways?
 Some types naturally represent a value.

573

4. Conclusion

What to Remember about VSTs

So what are the take-aways?
 Some types naturally represent a value.
 Ideally, each value type will have regular syntax.

574

4. Conclusion

What to Remember about VSTs

So what are the take-aways?
 Some types naturally represent a value.
 Ideally, each value type will have regular syntax.
 Moreover, all operations on value types should

follow proper value semantics:

575

4. Conclusion

What to Remember about VSTs

So what are the take-aways?
 Some types naturally represent a value.
 Ideally, each value type will have regular syntax.
 Moreover, all operations on value types should

follow proper value semantics:
 Value derives only from autonomous object state,

but not all object state need contribute to value.

576

4. Conclusion

What to Remember about VSTs

So what are the take-aways?
 Some types naturally represent a value.
 Ideally, each value type will have regular syntax.
 Moreover, all operations on value types should

follow proper value semantics:
 Value derives only from autonomous object state,

but not all object state need contribute to value.

 Adhere to the Essential Property of Value.

577

4. Conclusion

What to Remember about VSTs

So what are the take-aways?
 Some types naturally represent a value.
 Ideally, each value type will have regular syntax.
 Moreover, all operations on value types should

follow proper value semantics:
 Value derives only from autonomous object state,

but not all object state need contribute to value.

 Adhere to the Essential Property of Value.

 Behave as if each value has a canonical internal
representation.

578

4. Conclusion

What to Remember about VSTs

 Two objects of a given value-
semantic type have the same
value iff there does not exist a
distinguishing sequence among
all of its salient operations.

579

4. Conclusion

What to Remember about VSTs

The key take-away:

580

4. Conclusion

What to Remember about VSTs

The key take-away:

What makes a value-type proper
has essentially nothing to do with
syntax…

581

4. Conclusion

What to Remember about VSTs

The key take-away:

What makes a value-type proper
has essentially nothing to do with
syntax; it has everything to do with
semantics:

582

4. Conclusion

What to Remember about VSTs

The key take-away:

What makes a value-type proper
has essentially nothing to do with
syntax; it has everything to do with
semantics: A class that respects the
Essential Property of Value is value-
semantic…

583

4. Conclusion

What to Remember about VSTs

The key take-away:

What makes a value-type proper
has essentially nothing to do with
syntax; it has everything to do with
semantics: A class that respects the
Essential Property of Value is value-
semantic; otherwise, it is not!

584

• Find our open-source distribution at:
http://www.openbloomberg.com/bde

• Moderator: kpfleming@bloomberg.net

• How to contribute? See our site.

• All comments and criticisms welcome...

• I can be reached at jlakos@bloomberg.net

 The End

For More Information

585

mailto:kpfleming@bloomberg.net
mailto:jlakos@bloomberg.net

