Multithreading dos and don'ts

ACCU 2015, Bristol — [une 2015

Hubert Matthews
hubert@oxyware.com

Why this talk?

Copyright © 2015 Oxyware Ltd

\°}
(9]
«

Don't — why not

* Avoid multithreaded programming if you can

— [t's harder to write, to read, to understand and to
test than single-threaded code

— It may appear to work but may just not have failed
sufficiently visibly yet

— Often distracts from the underlying application
problem and focuses developers on technical issues

— A great consumer of developer time and generator
of frustration

— Often avoidable

— May not deliver the performance benefits you
expect

Copyright © 2015 Oxyware Ltd

Do — why

* You need it to access the full power of the
machine (measure, don't guess!)

* You need to scale your application and your
application is CPU-bound

* You are running in a threaded environment

* There is an obvious parallel decomposition of
the problem or algorithm

* Other approaches to covering latency and I/0
are worse or not available

* You are brave or a masochist (or have an ego)

Copyright © 2015 Oxyware Ltd

Alternatives

Multi-threaded approaches
* concurrent library (tasks)

* TBB, PPL
* concurrent library (data)
* OpenMP

Single-threaded approaches
* event-driven code

* asynchronous I/O
* as10, libaio (linux)
* overlapped 1/0O

(Windows)
* non-blocking TCP
- UDP
* coroutines or fibers
' separate processes

' message passing
* MPI

Copyright © 2015 Oxyware Ltd

no sharing

poor perf
(false sharing)

poor perf
(shared writes)

contention

_ deletion

appln races

poor perf
(load balancing)

locking

oversubscription
undersubscription

poor perf
(serialised)

no perf
(deadlock)

poor perf
(context switch)

poor perf
(coarse grain)

poor perf
(fine grain)

A whole new set of problems

* Getting single-threaded code working well and
with good performance can be a challenge

* Multithreading provides a whole new set of
ways of getting it wrong or going slower
—The problems may not show up except under load
or at the most inconvenient time
—They may not be reproducible
—They will be hard to debug or to measure
—Knowing which of these problems you have is hard

focus on getting good single-threaded performance

first before going multithreaded

‘opyright © 2015 Oxyware Ltd 7/55

Problem decomposition

* Before considering how to implement a parallel
solution you have to split the problem up into
pieces and find an algorithm for processing and
recombining these pieces

—This split may be trivial for “embarrassingly parallel
problems” or hard (travelling salesman problem)

* Classic approaches
—Data parallel (sections of an array)
—Task parallel (web requests)

* Interaction between sub-items is key

“opyright © 2015 Oxyware Ltd

Goldilocks

* Parallel approaches have to find the “sweet
spot” between two extremes

* Too fine-grained
—Data — computation dominated by overhead
—Threads — context switching overhead

* Too coarse-grained

—Data — load balancing problems

—Threads — insufficient items to
keep threads busy

“opyright © 2015 Oxyware Ltd 9/5%

Testing

* Single-threaded code can be unit tested
—Repeatable results from isolated code

* Multi-threaded code cannot be unit tested
easily or reliably
—Non-deterministic outputs
—Making them deterministic may be possible
—Errors are transient (data races)

—Problems are often performance-related and show
up only at scale or under load

allow for scaling down to a single thread

for test before scaling up for production

Copyright © 2015 Oxyware Ltd 10/55

Avoid sharing mutable data

* Shared mutable
data is the evil of all
computing!

* Read-only data can
be shared safely
without locks

* Const is your friend
* Pure message-

passing approach
avoids this

‘opyright © 2015 Oxyware Ltd

mutable
A 2
1
~
| o
not shared shared
\)

immutable

11/55

Shared writes don't scale

Operation Scalability

(on 4 processors x4 cores AMD machineg)

23000000000
20000000000
1 5000000000

1 0000000000

(]
D
)
=
=
=
=
=
=
=
=
=
=
'_

SO00000000

&

4

Thread Court

W Fead private "#Read shared ¥White rivae B 00te shared =Ry private =2 Ry shared

single writer principle

(graphic by Dmitry Vykov, http://www.1024cores.net, CC BY-NC-SA 3.0)
for speed/scale

Copyright © 2015 Oxyware Ltd

http://www.1024cores.net/

Why shared writes don't scale

32+32 KB

§ MESI §
F — F 1-3 cycles
MESI 256 KB
ﬁ 5-20 cycles
\J

4 MB
30-50 cycles

16 GB
100-300 cycles

Copyright © 2015 Oxyware Ltd

* Caches have to
communicate
to ensure
coherent view

* MESI protocol
passes
messages
between caches

* Shared writes
limited by
MESI comms

13/55

Shared writes — cache ping-pong

Copyright © 2015 Oxyware Ltd

* Cache line
passed between
caches

s Hardware
serialises writes
to the same line

* Therefore zero
scalability!!!

* For speed, don't
pass ownership:
Single Writer
Principle

Example — contention costs

std: :atomic<int> counter (0) ;

void count ()

{

for (auto i = 0; i '= numLoops; ++1i)
counter++; 3.5 times faster

) 13.6 times less CPU

// run with 4 threads on a 4-core machine when run on one core

// -03 -march=native

$ time ./a.out $ time taskset -c 1 ./a.out
real Oml.675s real 0mO0.476s
user 0m6.384s user 0mO0.470s
sys 0mO0.007s sys 0mO0.006s

Copyright © 2015 Oxyware Ltd 15/55

Example — contention costs (cont'd)

$ perf stat -D 100 -e cycles,instructions,stalled-cycles-backend, cs

Performance counter stats for './a.out':

16,635,079,957
247,668,647

16,324,609, 637
1,912

cycles

instructions 0.01
65.91

stalled-cycles-backend 98.13%

cs

1.569828247 seconds time elapsed

./a.out

insns per cycle
stalled cycles per insn

backend

cycles idle

$ perf stat -D 100 -e cycles,instructions,stalled-cycles-backend,cs taskset -c 1

Performance counter stats for 'taskset -c 1 ./a.out':

1,135,801,575
197,626,046

1,026,469,027
115

cycles

instructions 0.17
5.19

stalled-cycles-backend 90.37%

cs

0.480011707 seconds time elapsed

Copyright © 2015 Oxyware Ltd

insns per cycle
stalled cycles per insn

backend

cycles idle

./a.out

Don't undersynchronise

* Shared variables need to be synchronised
correctly
—Do not rely on guesswork
—Do not try and cheat
—Do not rely on unspecified ordering or visibility
* Undersychronised variables are subject to data
races (at least one reader and one writer)

* Causes transient and unreproducible errors

use locks on shared mutable data structures

or use single atomics as synchronisation points

Copyright © 2015 Oxyware Ltd 17/55

Don't oversynchronise

* Shared variables need to be synchronised
correctly
—Too much locking will make the code serialised

—Locks are there to slow your program down until
it is (hopefully) correct

—Watch out for deadlock and livelock

—Performance reduces back to slower than a single
thread in the worst case because of locking
overhead (locks are shared writes)

—Amdahl's Law kicks in Q

don't keep adding locks — have a clear plan

Copyright © 2015 Oxyware

Amdahl's Law

Serial portion of code Maximum speedup
1% 100x
5% 20X

10% 10x
20% SX
25% 4x

* Serial code |

imits scale, regardless of the

number of threads or cores available

avold non-read-only data sharing to allow

for maximum parallelism

Copyright © 2015 Oxyware Ltd

19/55

“opyright © 2015 Oxyware Ltd

Deadlock and livelock

* If you have more than one lock in your
program you may end up in a deadlock (deadly
embrace)

—Have only one lock (may limit performance)
—Increases lock hold time

* Locking order is important
—C++11's std::lock
—Use addresses of locks to guarantee ordering
—Release order is not important
—May require exposing internal locks to callers

Qﬂi

Time-based synchronisation

time-based
sync (futures)

i

~ (Amdahl)

g

fork/join
model

horizontal
sync (locks)

locks don't sequence start and finish
use futures to synchronise in time (A comes after B)

Copyright © 2015 Oxyware Ltd

Hardware v. software threads

* There are a limited number of hardware
threads available
—1 per core
—2 per core for Intel hyperthreading
* If there are more s/w than h/w threads then
they will have to take turns (oversubscription)
—Leads to context switching

—Slow; 1000s of cycles to switch
* Call to operating system

* Scheduling
* Cold cache and TLB

one software thread per hardware thread 4”

Copyright © 2015 Oxyware Ltd 22/55

Queue-based systems

* Systems that are based on queues can have
performance issues caused by:
—Context switching when queues are empty or full
—Voluntary context switching
—Shared writes to queue (insert and remove)
—Processing per item is too small
—Can be difficult to run in single-threaded mode

—c.f. Disruptor pattern

be careful with queues if performance is important AN \

Copyright © 2015 Oxyware Ltd

Lock hold time and scope

* The time that a lock is held for determines the
amount of parallelism
—Shorter hold times are better
—Shorter times may also indicate less shared state
* However, small lock scopes may not protect the
data across lock scopes adequately

—Need to consider business-level transactions and
logical unit of works

—Can lead to application-level errors because of
concurrently changing data

Copyright © 2015 Oxyware Ltd

TOCTOU and application errors

* Time-of-check to time-of-use errors (TOCTOU)
can lead to application errors

—Note: these are not data races caused by
synchronisation errors (i.e. locking errors)

—These are caused by concurrent modifications at the
application level

—Usually caused by inappropriate APIs

Sample conversation
Me: Is there any ice cream left, please?

Waiter: I'll check... yes there is

Me: I'll have some please
Waiter: Oops, we've just run out @

Copyright © 2015 Oxyware Ltd 25/55

TOCTOU and application errors (2)

* Locking doesn't help
* Need a different API
—e.g. putlfAbsent()
—popltNotEmpty()
* Single batched
operation with
expection and
failure notification

* Compare-and-set
(CAS) is a classic
approach (retries)

Copyright © 2015 Oxyware Ltd 26/55

Volatile

* Volatile in C and C++ is of no use for
multithreading
—In Java and C# it means “atomic”

* [t disables caching in registers
* [t forces memory accesses
* [t doesn't ensure cross-thread visibilty

* [t doesn't affect compiler or hardware
reordering of operations

do not use volatile variables except for

memory-mapped device I/O @

Copyright © 2015 Oxyware Ltd 27/55

Spin loops and polling

* Spin loops are disastrous on single-threaded
machines

—They just burn CPU cycles until the OS
reschedules the thread
* On a multi-thread machine they are of use
when they use less CPU than the overhead of a
context switch (1000s of cycles)
* Polling with a sleep() uses little CPU but has
longer wakeup latency (avg 1/2 polling time)

avoid spin loops unless you have

measured the latency-CPU tradeoff

A\

C

opyright ©

Blocking 1/0

* Programs can be CPU, memory, network or I/O
limited
*1/0O limited programs that use blocking 1/0O

will often use too many threads to handle
blocking calls for I/O

* This causes lots of context switching

* Investigate asynchronous approaches
—libaio, non-blocking sockets, overlapped I/0O
* Damage-limitation approaches such as I/0
thread pools

* Watch out for copying of data (zero copy) ﬂ

2015 Oxyware Ltd

Interrupting threads and shutdown

* Don't even think about trying to interrupt
another thread

* Plan a clean shutdown mechanism for your
program
* Often will involve a cooperative approach
—Shared stop /start/state flag

—Shutdown message in message-passing
applications

Copyright © 2015 Oxyware Ltd 30/55

Thread priorities and scheduling

* If your application requires the use of thread
priorities to operate correctly then it's almost
certainly broken

* Beware of priority inversion and locking issues
* Thread scheduling is rarely the correct solution

—Probably implies locking issues and too
much contention; fix that first

—Can be useful in limited circumstances to
provide run-to-completion semantics

“opyright © 2015 Oxyware Ltd 31/55

Deletion

* Be careful about deleting data in concurrent
systems; another thread may still have a
reference

* Reference counting can help but counters must
be thread-safe (std::shared ptr is, mostly...)

* Avoid concurrent deletions:
tbb::concurrent vector is append-only

* Separate the program into phases so that
deletion is in a safe serial part

* Garbage collection is a big win here

‘opyright © 2015 Oxyware Ltd

Multiple atomics

* Can be used successfully individually

* The problem becomes more about transactional
correctness

—Do the atomics make sense together?
—Race window between modifying both
—Initialisation order

—Visibility of updates

1) use atomic<Data *> instead of multiple atomics
(even better, use atomic<const Data *>)

2) use std::call once for initialisation

(‘Opyrighl © 2015 ()\J dIc

‘opyright © 2015 Oxyware Ltd

Immutable data and safe publishing

* Immutable data can be shared without locking
* Fewer errors and easy to understand

* Be careful about deletion; are there still
references to the object?!

* std::shared ptr<> has atomic counters but not
its body so it must be locked

* Helps with exception safety, transactions and
copy-on-write optimisation

publish safely using std::atomic<const Data *>

Error handling

* Propagating errors from one thread to another
is tricky

* std::future<> catches exceptions thrown in the
called thread and rethrows them in the calling
thread when f.get() is called

* Make sure you have a try/catch at the top-level
of every thread you start

use std::future<> for time sequencing

and easier error handling

‘opyright © 2015 Oxyware Ltd 35/55

False sharing

cache line

thread 1 thread 2

* Separate threads can access separate variables on the
same cache line (often 64 bytes long)

* Writes by one thread invalidate the cache line for the
other thread, leading to “cache ping-pong”

* Major performance killer — effectively shared writes

watch out for false sharing
use padding to length of cache line

Copyright © 2015 Oxyware Ltd 36/55

Parallel algorithms

* Some libraries can run in parallel mode without
you having to start any threads or do any
synchronisation

* Gee does this for STL algorithms if compiled
with -D_GLIBCXX PARALLEL and -fopenmp

use “free” parallelism if available

Copyright © 2015 Oxyware Ltd 37/55

&

Read /write ratio

* Different approaches are appropriate for read-
mostly or write-mostly access patterns

* Also depends on lock hold time
* Short hold, lots of writes => CAS, spin lock et al
* Short hold, mixed R/W => distributed mutex

* Short (zero) hold => RCU-style lock free
* Beware of reader/writer lock scaling

select an approach based on
data-access patterns

V4

‘opyright © 2015 Oxyware Ltd 38/55

Fast/slow paths

* Know what operations need to be fast
—Frequent operations

* Avoid locks on the fast path
—Mutexes, I/O, memory allocation, etc

* Push work to the slow path
—Maybe use a queue or a background thread

—Block slow path until there are no fast path users

—RCU, garbage collection, distributed read /write
mutex

know what needs to be fast l

‘opyright © 2015 Oxyware Ltd 39/55

Example — distributed R/
|

* Per-core mutex can be locked by
only one read thread at a time so
the mutex 1s uncontended and
therefore fast; read mutex cache

line is not shared across cores * Windows: GetCurrentProcessorNumber()

per core

* Write thread locks all mutexes to * Linux: sched getcpu()

block readers; slow operation * See http://1024cores.net for more details

Copyright © 2015 Oxyware Ltd 40/55

http://1024cores.net/

Distributed R/W mutex read performance

struct alignas (64) PerCorelock {
std: :mutex lock;

}i
PerCorelock locks[numThreads];

void lockLoop ()

{
for (auto i = 0; i !'= numlLoops; ++i) {
auto core = sched getcpu() one shared
std::lock guard<std::mutex> guard(locks[core] .lock) ; lock — context

switching

/ho alignas(64) -~
false sharing

$ time ./a.out $ time ./a.out $ time ./a.out

real 0mO0.537s real 0m4.204s real 0m10.097s
user O0m2.019s user 0m10.514s user Om11.862s
sys 0m0.003s sys 0m0.005s sys 0m24.078s

$ time taskset -c¢ 1 ./a.out $ time taskset -c 1 ./a.out $ time taskset -c 1 ./a.out
real O0m1.992s real 0m2.091s real 0m2.057s
user 0Om1.985s user 0m2.077s user 0m2.045s
sys 0mO0.005s sys 0mO0.004s sys 0mo0.003s

Copyright © 2015 Oxyware Ltd

Memory model and ordering

* We want our programs to run quickly

e Modern hardware reorders instructions and
can run multiple instruction at once

* Compilers can reorder instructions too (e.g. to
cover possible cache misses, delay slots, etc)

* Some languages (Java, C++11) have defined a
memory model to say what reordering means
at the language level

* Don't go there unless you can prove through
measurement it's necessary

‘opyright © 2015 Oxyware Ltd 42/5°

Need for a memory model

// C++03 code
// single thread

compiler
reordering

// C++11 code
// thread 1

“happens
before” compiler

reordering

sequence volatile reads
points and writes
hardware

4

memory

reordering
and caching

“synchronizes
with” and

visibility memory

// C++11 code
// thread 2

compiler
reordering

hardware
reordering
and caching

* Correctness now based on memory, not just code
* Need to control caching (register, L1, L2, etc)

Copyright © 2015 Oxyware Ltd

43/55

Instruction interleaving

// thread 1
// 1
y; // 2 interleave

// 6 possible sequentially consistent
// execution orders

1234 // x=1; rl=y; y=1;

1324 // x=1; y=1; rl=y;
1342 // x=1; y=1; r2=x;
3412 // y=1; r2=x; x=1;
3142 // y=1; x=1; r2=x;
3124// y=1; x=1; rl=y;

// thread 2
y=1; // 3
r2 =x; // 4

* “Sequential consistency” means operations in
separate threads are interleaved and that all threads
see the same interleaving

— Sequence is preserved within and across threads

* This is the “natural” mental model for programmers

to think of thread execution order and memory
— Itis also the C++11 default memory ordering

Copyright © 2015 Oxyware Ltd 44/55

Instruction reordering

// thread 1
// 1
y; // 2 reorder

// 4 factorial (== 24)
// possible execution orders

1234 // x=1; rl=y; y=1; r2=x;
4321 // r2=x; y=1; rl=y; x=1;
3124 // y=1; x=1; rl=y; r2=x;
// etc...

// thread 2
y=1; // 3
r2 =x; // 4

could be
executed in
reverse order

* In order to gain performance both the compiler and the
hardware may reorder instructions
— compiler may move loads earlier (to allow for cache misses)
— hardware may not write back to memory immediately (store buffers)

* X, y,rl and r2 are all independent so code can be reordered

* Even worse, changes in one thread may not be visible in
another thread so results are not defined — data race

Copyright © 2015 Oxyware Ltd

Hardware memory reordering

SPARC PSO
SPARC TSO

Loads reordered after loads

Loads reordered after stores

Stores reordered after stores

Stores reordered after loads

Atomic reordered with loads

Atomic reordered with stores
Dependent loads reordered
Incoherent Instruction cache pipeline

<| <[<[=<|PA-RISC

<[<] <[<| <| <|POWER
x86
<[<[<[<|x86 oostore

<
<
<

N~
>
=
o
<
Y
Y
Y
Y
Y
Y

<[<[<] <] <| <|SPARC RMO

<] <} <[<| <[<| <| <|Alpha
~<| <| <[<] <] <||A-64

<
<

Y Y Y Y Y Y Y
http://en.wikipedia.org/wiki/Memory_ordering

* Hardware can reorder memory operations in different ways

— Can also depend on operating system
* Solaris on SPARC uses Total Store Order (TSO)
* Linux on SPARC uses Relaxed Memory Order (RMO)

Copyright © 2015 Oxyware Ltd

Synchronisation with seq. consistency

// thread 1 // thread 2

x = 42; while (! x init) {}

X init = true; y = xX;

* This code is correct when sequentially consistent
— thread 2 doesn’t access x until it has been set by thread 1

* But in the presence of reordering it can fail

* The problem is that we haven’t specified that cross-
thread order or visibility is important

* We need to use synchronisation variables — atomics

* Making everything atomic is slow — 30-60 cycles
— cache synchronisation is slow and has limited bandwidth

Copyright © 2015 Oxyware Ltd 47/55

Synchronisation with atomics

// thread 1 // thread 2
std: :atomic<bool> x init; extern std::atomic<bool> x init;

int x; extern int x;

while (! x init.load());
y = x;

x = 42;
X init.store(true) ;

// or x init = true; // or while (! x_init);

* This now works without relying on having
sequential consistency everywhere (just atomics)
— atomics prevent the compiler moving code across

accesses
— atomics also cause memory updates to be visible

* Load and store uses sequential consistency
— uses default parameter of std::memory_order_seq_cst

Copyright © 2015 Oxyware Ltd 48/55

Low-level synchronisation detail

// thread 1 // thread 2
std: :atomic<bool> x init; extern std::atomic<bool> x init;

x = 42 prevents x and x_init while (/*rfence*/! x init.load :
// blue fence being reordered // blue fence rfence here in

X init.store(true); loop forces load
of latest value

// red fence
makes store to prevents of x_init
X_init visible reordering

* Blue fences prevent the compiler reordering code
— they don’t generate any run-time code

. force memory to make changes visible
— they do generate code: fence, lock pretix, CAS opcodes

— depends heavily on underlying hardware (c.f.
reordering)
— only need one of the two red fences, usually on store

* One reason that threads can’t just be a library

Copyright © 2015 Oxyware Ltd

49/55

sequential consistent
by default

Generated assembler code

// thread 1 // thread 2

x = 42;

// blue fence while (/*rfence*/ ! x init.load()):;
x_init.store (true) ; // blue fence

// red fence y = Xx;

no fence
// with atomic bool x_init // with atomic bool x ini{ peeded on load

mov DWORD PTR x, 42 L25: for X86
mov BYTE PTR x init, 1 movzx eax, BYTE PTR x i

£ 1 1
arence fence needed 1_:est =20 &
je .L25

// with bool x init o S)t((’gg for mov eax, DWORD PTR x
mov DWORD PTR x, mov DWORD PTR y, eax
mov BYTE PTR x init, 1

// with bool x init

cmp BYTE PTR x init, O
jne .L3

.L5:

g 4 47 infinite loop jmp L5

because L3

output, x86 visibility not mov eax, DWORD PTR x
specified mov DWORD PTR y, eax

Copyright © 2015 Oxyware Ltd

acquire means no

Using memory order flags eads i st

reordered before here

// thread 1 // thread 2

= 42; while (!
// blue fence X _init.load(std: :memory order acquire)) ;
x_init.store (true, // blue fence

std: :memory order release); Y = X,/

no fence
// with bool x init seq cst // with bool atomic x ini{ pceded on load
mov DWORD PTR x, 42 L25: for X86
mov BYTE PTR x init, 1 movzx eax, BYTE PTR x i
mfence needed on test al, al

seq_cst store je .L25
// with bool x init release mov eax, DWORD PTR x

mov DWORD PTR x, 42 mov DWORD PTR y, eax
mov BYTE PTR x _init, 1

// same code for x init acquire
no fence for —
release store

* Release provides only the blue fence (no writes
in this thread reordered after the store)

* Controls compiler reordering but not hardware

Copyright © 2015 Oxyware Ltd 51/55

Memory model advice

* This is a complex and subtle area and you
should avoid using it unless you can prove
that you can’t get adequate performance
without it

— yes, really, I mean it....
* Even experts get confused by this stuft!
— did I mention you should avoid it....

* If you do use it, use acquire on load and

release on store
— Anything else will be a source of subtle bugs

‘opyright © 2015 Oxyware Ltd

52/5¢

Memory model - example

std: :atomic<int> counter (0) ;

void count ()

{
for (auto i = 0; i '= numloops; ++i)
counter.store (5) ;

//counter.store (5, std::memory order seq cst);
//counter.store(5, std::memory order release);

m_o release
(no mfence)

m o0 seq cst

(default)

$ time ./a.out $ time ./a.out

real 0m2.039s real Om2.118s
user 0m5.932s user 0mo6.496s
sys 0m0.002s sys 0m0.009s

$ time taskset -c 1 ./a.out $ time taskset -c 1 ./a.out
real 0m1.004s real 0mo0.999s
user 0m1.002s user 0mO0.994s
sys 0mO0.001s sys 0mO0.004s

Copyright © 2015 Oxyware Ltd

$ time ./a.out

real 0mo0.097s
user 0mO0.225s
sys 0mO0.002s

$ time taskset -c 1 ./a.out
real 0mo0.057s
user 0mO0.055s
sys 0m0.002s

53/55

shared
Concurrency spectrum memory

processes TBB/PPL ~ threads
messaging atomics, memory

futures ordering

_ keep as far to the
left as possible
* Invest your time in splitting up the problem

* You know your domain
* Leave concurrency parts to others

Copyright © 2015 Oxyware Ltd

“opyright © 2015 Oxyware Ltd

Summary

* Multithreaded programming is tricky
— New skills and ideas and ways to get it wrong

* Focus on partitioning the problem

—Determines data sharing, locking, work breakdown
and scheduling

* Avoid shared mutable data where possible

* Know your access patterns

*Scale down as well as up

* Balance extremes of grain size, lock extent, etc

* Don't try and be clever i

55/55

